燃料电池用新型Nafion复合质子交换膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池因其能量转化效率高、环境友好而在近些年备受关注。其中质子交换膜作为以甲醇溶液为燃料的燃料电池的关键材料,其性能的好坏直接影响燃料电池的整体性能与使用寿命,目前基于全氟磺酸膜Nafion的改性是提高膜整体性能的重要途径。
     本文着重针对Nafion膜在直接甲醇燃料电池工作条件下,甲醇透过率高的缺点,通过在Nafion树脂溶液中分布添加一定量的多孔纳米二氧化锰颗粒、多孔四氧化三钴颗粒、磺化的聚苯硫醚颗粒、磺化的聚醚砜组分,利用流延成膜法,制备出相应的复合膜材料,并研究了它们在电池中应用的性能。具体内容如下:
     1、以多孔纳米MnO2为添加剂与Nafion复合成膜。通过测试,发现随着多孔MnO2添加量的增加,复合膜的质子传导率下降;随着Mn02的添加量的增加,复合膜的甲醇透过率受到明显的抑制;MnO2/Nafion复合膜的质子传导率与甲醇透过率之比均低于Nafion膜。
     2、以多孔纳米Co3O4为添加剂与Nafion复合成膜。通过测试,发现随着多孔Co3O4添加量的增加,复合膜的质子传导率下降;随着多孔Co3O4添加量的增加,复合膜的甲醇透过率受到明显的抑制;当Co3O4添加量为1%时,Co3O4/Nafion复合膜的质子传导率与甲醇透过率之比与Nafion膜相当。
     3、以磺化的聚苯硫醚颗粒(SPPS)为添加剂与Nafion复合成膜。通过测试,发现随着磺化度的增加,质子传导率呈增加趋势;随着SPPS的添加,复合膜的甲醇透过率受到明显的抑制;当磺化度为50%的SPPS添加量为5%时,复合膜的质子传导率与甲醇透过率之比达到最佳状态,是同比下Nafion膜的1.4倍。
     4、以磺化的聚醚砜(SPES)为添加剂与Nafion复合成膜。通过测试,发现随着添加量的增加,质子传导率呈增加趋势;随着SPES的添加,复合膜的甲醇透过率受到明显的抑制;当SPES添加量为1%时,复合膜的质子传导率与甲醇透过率之比优于Nafion膜,是其1.3倍。
Proton exchange membrane fuel cell (PEMFC) has attracted extensive attention in recent years, as its high efficiency in energy conversion and zero emission. As one of key materials in direct methanol fuel cell (DMFC), proton exchange membrane can affect the overall performance and lifetime of DMFC. Currently, modification of Nafion is one of the important ways to improve the property of proton exchange membrane.
     In this thesis, to inhibit high methanol permeability of Nafion in DMFC, porous MnO2, Co3O4 nano-particles, sulphonated PPS (SPPS) particles or sulphonated polyether sulphone (SPES) have been prepared and added in Nafion resin solution to make composite membranes by casting method. The basic properties of the Nafion composite membranes were assasyed as well. The detailed contents are given as follows.
     1. Porous nano MnO2 particle was synthesized, characterized and doped in Nafion to prepare the corresponding composite membranes. The results indicate that the methanol permeability of the composite membranes could be greatly inhibited with the increase of MnO2 content. However, the proton conductivity of the composite membranes greatly dropped as well, and the ratio between proton conductivity and methanol permeability of MnO2/Nafion composite membrane is lower than that of Nafion membrane.
     2. Porous nano Co3O4 particle was synthesized, characterized and doped in Nafion to prepare Co3O4/Nafion composite membranes. The results show that the methanol permeability of the composite membranes could be greatly inhibited with the increase of Co3O4 content. To some extents, the proton conductivity of the composite membranes dropped as well, but the ratio between pronton conductivity and methanol permeability of Co3O4/Nafion composite membrane is similar to that of recasting Nafion membrane when the weight content of Co3O4 is 1%.
     3. SPPS resin has been synthesized and been doped in Nafion resin solution to prepare SPPS/Nafion composite membranes. The results show that the methanol permeability of the composite membranes could be greatly inhibited with the increase of SPPS content. The proton conductivity of SPPS/Nafion composite membranes increases with increasing sulphonation degree of SPPS. When 5wt% SPPS (sulphonation degree is 50%) doped in Nafion resin solution, the ratio between proton conductivity and methanol permeability of SPPS/Nafion composite membrane is 40% higher than that of Nafion recasting membranes.
     4. SPES has been synthesized and characterized as well, and doped in Nafion solution to prepare SPES/Nafion composite membranes. The results show that the methanol permeability of the composite membranes could be greatly inhibited with the increase of SPES content. The proton conductivity of SPES/Nafion composite membranes increases with increasing content of SPES. When 1wt% SPES doped in Nafion solution, the ratio between proton conductivity and methanol permeability of SPPS/Nafion composite membrane is 30% higher than that of Nafion recasting membranes.
引文
[1]Hickner M.A, Ghassemi H, Kim Y.S, Einsla B.R, McGrath J.E, Alternative polymer systems for proton exchange membranes (PEMs) [J]. Chemical. Review 2004,104:4587-4612
    [2]Smitha B, Sridhar S, Khan A.A, Solid polymer electrolyte membranes for fuel cellapplications a review [J]. Journal of Membrane Science 2005,259:10-26
    [3]Ren X, Zelaney P, Thomas S, Davey J, Gottesfeld S. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory [J]. Journal of Power Sources 2000,86:111
    [4]Shahi V.K. Highly charged proton-exchange membrane:Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells [J]. Solid State Ionics 2007,177: 3395
    [5]任学佑,质子交换膜燃料电池的研究进展[J].中国工程科学2005 7:1
    [6]Janssen G.J.M, Sitters E.F, Pfrang A. Proton-exchange-membrane fuel cells durability evaluated by load-on/off cycling [J]. Journal of Power Source 2009 191:501-509
    [7]Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers [J].Progress Polymer Science 2000,25:1463-1502
    [8]Vinod K. Shahi. Highly charged proton-exchange membrane:Sulfonated poly(ether sulfone) silica polyelectrolyte composite membranes for fuel cells [J]. Solid State Ionics 2007,177:3395-3404
    [9]Bijay P. Tripathi, Vinod K. Shahi. SPEEK-zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation [J] Journal of Colloid and Interface Science 2007,316:612-621
    [10]Peighambardoust S.J, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications [J]. International Journal of hydrogen energy 2010, 35:9349-9384
    [11]Fabricio Celso, SPEEK based composite PEMs containing tungstophosphoric acid and modified with benzimidazole derivatives [J]. Journal of Membrane Science 2009, 336:118-127
    [12]Guan R, Zou H, Lu D.p. Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics [J]. European Polymer Journal 2005,41:1554-1560
    [13]Schauer J, Brozov L. Heterogeneous ion-exchange membranes based on sulfonated poly(1,4-phenylene sulfide) and linear polyethylene:preparation,oxidation stability, methanol permeability and electrochemical properties [J].Journal of Membrane Science 2005,250:151-157
    [14]Yu S, Xiao L, Benicewicz B. C. Durability Studies of PBI-based High Temperature PEMFCs [J] FUEL CELLS 08 2008,3-4:165-174
    [15]邢丹敏,刘永浩,衣宝廉等.燃料电池用质子交换膜的研究进展[J].电池,2005,35(4):312-313
    [16]Suresh Babu, Anthony Velez, Krzysztof Wozniak. Electron paramagnetic study on radical scavenging properties of ceria nanoparticles[J] Chemical Physics Letters 2007,442:405-408
    [17]Libby B, Smyrl W.H, Cussler E.L. Polymer-zeolite composite membranes for direct methanol fuel cells [J]. Journal of AIChemistry 2003,49(4):991
    [18]Wang K.p., Scott McDermid, Li Jing. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells [J]. Journal of Power Sources 2008,184:99-103
    [19]Marschall R., Sharifi M., Wark M. Proton conductivity of imidazole functionalized ordered mesoporous silica:Influence of type of anchorage, chain length and humidity [J]. Microporous and Mesoporous Materials 2009,123:21-29
    [20]Munch W, Kreuer K.D, Silverstri W, Maier J, Seifert G. Proton conducting alkaline earth zirconates and titanates forhigh drain electrochemical applications [J]. Solid State Ionics 2001,145:295
    [21]Sahu A. K, Pitchumani S, Sridhar P, Shukla A. K. Co-assembly of a Nafion-Mesoporous Zirconium Phosphate Composite Membrane for PEM Fuel Cells [J]. Fuel Cells 09 2009, 2:139-147
    [22]Donnadio A, Casciola M, Pica M, Sganappa M. Conductivity and Methanol Permeability of Nafion-Zirconium Phosphate Composite Membranes Containing High Aspect Ratio Filler Particles [J]. FUEL CELLS 09 2009,4:394-400
    [23]Dicks A.L, Duke M.C, Diniz da Costa J.C. Silica Nafion Modified Composite Membranes for Direct Methanol Fuel Cells [J]. Development of Chemical Eng. Mineral Process 2006, 14(1/2):119-131.
    [24]Patil Y, Kenneth A. Durability Enhancement of Nafion Fuel Cell Membranes Via In Situ Sol-Gel-Derived Titanium Dioxide Reinforcement [J]. Journal of Applied Polymer Science 2009 113:3269-3278
    [25]Wu Z. m, Sun G. q. Nafion and nano-size TiO2-SO42- solid superacid composite membrane for direct methanol fuel cell [J] Journal of Membrane Science 2008 313:336-343
    [26]Tran A.T.T, Duke M, Gray P.G, Diniz da Costa J.C. Proton Conductivities of Titanium Phosphate at High Temperature for PEMFC [J]. Development of Chemical Engenering. Mineral Process 2006,14(1/2):101-118
    [27]Won J. Proton-exchange composite membranes, composite solutions, and method for manufacturing Sand Fuel Cell using the same [P]. US7029559B2
    [28]Zhao D, Yi B.L, Zhang H.M. MnO2/SiO2-SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes [J]. Journal of Membrane Science 2010,346:143-151
    [29]Soltmann C, Jeske M. Proton Conducting Membranes for the High Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Based on Functionalized Polysiloxanes [J]. FUEL CELLS 07 2007,1:40-46
    [30]Donnadio A, Casciola M. Nafion-Zirconium Phosphate Nanocomposite Membranes with High Filler Loadings:Conductivity and Mechanical Properties [J]. Fuel Cells 08 2008,3-4:217-224
    [31]Lakshminarayana G, Masayuki Nogami. Synthesis and characterization of proton conducting inorganic-organic hybrid nanocomposite membranes based on tetraethoxysilane/trimethylphosphate/3-glycidoxypropyltrimethoxysilane /heteropoly acids [J]. Electrochimica Acta 2009,54:4731-4740
    [32]Weiner L. Sulfonated polyphosphazenes for proton-exchange membrane Fuel Cells [P]. US6365294B1
    [33]Wang C. H, Chen C.C, Hsu H.C, Du H.Y. Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells[J] Journal of Power Sources 2009, 190:279-284
    [34]Yang S. f, Guan R, Zou H, Dai H. Sulfonated poly(phenylene oxide) membranes as promising materials for new proton exchange membranes [J]. Polymer for Advanced Technologies 2006,17:360-365
    [35]Zhang P.x., Li C.h. Effect of heating and stretching membrane on ionic conductivity of sulfonated poly(phenylene oxide) [J]. Journal of Membrane Science 2007,287:180-186
    [36]Mohammad Mahdi Hasani-Sadrabadi, Shahriar Hojjati Emami. Preparation and characterization of nanocomposite membranes made of poly (2,6-dimethyl- -1,4-phenylene oxide) and montmorillonite for direct methanol fuel cells [J]. Journal of Power Sources 2008,183:551-556
    [37]Fu R.q, Xu T.w. A novel proton-conductive membrane with reduced methanol permeability prepared from bromomethylatedpoly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) [J]. Journal of Membrane Science 2008,310:522-530
    [38]Kallitsis J. K, Maria G, Neophytides S. G. Polymer electrolyte membranes for high-temperature fuel cells based on aromatic polyethers bearing pyridine units [J]. Polymer International 2009,58:1226-1233
    [39]Zhang C.j, Xiao G.y. Synthesis and characterization of sulfonated poly(arylene ether phosphineoxide)s with fluorenyl groups by direct polymerization for proton exchange membranes [J]. Journal of Membrane Science 2009,329:99-105
    [40]Xing P. x, Guiver M. D. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes [J]. Journal of Membrane Science 2004 229:95-106
    [41]Jaafar J, Ismail A.F, Mustafa A. Physicochemical study of poly(ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application [J]. Materials Science and Engineering A 2007 460-461:475-484
    [42]Deb P. C, Rajput L. D, Hande V. R, Sasane S, Kumar A. Modification of sulfonated poly(ether ether ketone) with phenolic resin [J] Polymer for Advanced Technologies 2007,18:419-426
    [43]Bijay P. Tripathi, Vinod K. Shahi. SPEEK-zirconium hydrogen phosphate composite membraneswith low methanol permeability prepared by electro-migration and in situ precipitation [J]. Journal of Colloid and Interface Science 2007,316:612-621
    [44]Bello M, Javaid Zaidi S.M. Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application [J]. Journal of Membrane Science 2008 322:218-224
    [45]Bijay P. Tripathi, Vinod K. Shahi. Highly stable proton conducting nanocomposite polymer electrolyte membrane (PEM) prepared by pore modifications.An extremely low methanol permeable PEM [J]. Journal of Membrane Science 2009,327:145-154
    [46]Mecheri B, Licoccia S. Effect of a Proton Conducting Filler on the Physico-Chemical Properties of SPEEK-Based Membranes [J]. FUEL CELLS 09 2009,4:372-380
    [47]Yu S, Xiao L, Benicewicz B. C. Durability Studies of PBI-based High Temperature PEMFCs [J] Fuel Cells 08 2008,3-4:165-174
    [48]Mustarelli B. P, Quartarone E, Grandi S, Carollo A.. Polybenzimidazole-Based Membranes as a Real Alternative to Nafion for Fuel Cells Operating at Low Temperature [J]. Advanced Materials 2008,20:1339-1343
    [49]Li Q, Jensen J.O, Pan C, Bandur V. Partially Fluorinated Aarylene Polyethers and their Ternary Blendswith PBI and H3PO4. Part Ⅱ. Characterisation and Fuel Cell Tests of the TernaryMembranes [J]. Fuel Cells 08,2008,3-4:188-199
    [50]Qian G.Q, Benicewicz B. C. Synthesis and Characterization of High Molecular Weight Hexafluoroisopropylidene-Containing Polybenzimidazole for High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Journal of Polymer Science:Part A:Polymer Chemistry 2009,47:4064-4073
    [51]Yin Y, Yamada O. Chemically Modified Proton-Conducting Membranes Based on Sulfonated Polyimides:Improved Water Stability and Fuel-Cell Performance [J]. Journal of Polymer Science:Part A:Polymer Chemistry 2006,44:3751-3762
    [52]Vatansever S. Synthesis and characterization of sulfonated homo- and co-polyimides based on 2,4 and 2,5-diaminobenzenesulfonic acid for proton exchange membranes [J]. Polymer for Advanced Technologies 2008,19:1792-1802
    [53]Krishnan N N, Kim H.J, Jang J. H. Sulfonated Poly(ether sulfone)-Based Catalyst Binder for a Proton Exchange Membrane Fuel Cell [J]. Journal of Applied Polymer Science 2009,113:2499-2506
    [54]Zhang N, Li J. j, Wang X. y, Xia Z. Preparation and Properties of Bisphenol A-Based Sulfonated Poly(arylene ether sulfone) Proton Exchange Membranes for Direct Methanol Fuel Cell [J]. Journal of Applied Polymer Science,2009,114:304-312
    [55]K. Matsumoto, T. Nakagawa, T. Higashihara, M. Ueda. Sulfonated Poly(ether sulfone)s with Binaphthyl Units as Proton Exchange Membranes for Fuel Cell Application [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2009,47:5827-5834
    [56]Xu N, Guo X, Fang J, Yin J, Preparation and Properties of Cross-linked Sulphonated Poly(sulphide sulphone) Membranes for Fuel Cell Applications [J]. Fuel Cells 09 2009,4: 363-371
    [57]D. S. Phu, Y. M. Lee. Synthesis of Crosslinked Sulfonated Poly(phenylene sulfide sulfone nitrile) for Direct Methanol Fuel Cell Applications [J]. Macromolecular Rapid Communication 2009,30:64-68
    [58]Liu Z. c, Jiang S. P. Layer-by-Layer Self-Assembly of Composite Polyelectrolyte Nafion Membranes for Direct Methanol Fuel Cells [J]. Advanced Materials 2006,18:1068-1072
    [59]Wang L, Yi B.L. Pt/SiO2 as addition to multilayer SPSU/PTFE composite membrane for fuel cells [J]. Polymer for Advanced Technologies 2008,19:1809-1815
    [60]Fu T. Z, Na H, Sulphonated Tetramethyl Poly(ether ether ketone)/Epoxy/Sulphonated Phenol Novolac Semi-IPNMembranes for Direct Methanol Fuel Cells [J]. Fuel Cells 09 2009,5:570-578
    [61]Wang E, Chang Y. W, Shin G, Han J. E. Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (SPOSS) hybrid membranes for direct methanol fuel cell applications [J]. Polymer for Advanced Technologies 2007,18:535-543
    [62]Matsuura A, Kakigi T, Sato Y, Fujii K, Mitani N. Study on PEFC Membrane Based on Crosslinked FEP Using EB-Grafting [J]. Macromol. Symp 2007,249-250:221-227
    [63]Kishi A, Umeda M. Preparation of a Crosslinked Polyelectrolyte Membrane for Fuel Cells with an Allyl Methacrylate BasedTwo-Step Reaction [J]. Journal of Applied Polymer Science 2009 114:3343-3350
    [64]Roy A, McGrath J. E. Influence of microstructure and chemical composition on proton exchange membrane properties of sulfonated-fluorinated, hydrophilic-hydrophobic multiblock copolymers [J]. Journal of Membrane Science 2009,327:118-124
    [65]US pations [P]. Pub.No.:2008/0219916 A1
    [66]Zhao D, Yi B.L, Zhang H.M, Yu H.M, Wang L, Ma Y.W, Xing D.M. Cesium substituted 12-tungstophosphoric (CsxH3-xPW12O40) loaded on ceria-degradation mitigation in polymer electrolyte membranes [J]. Journal of Power Sources 2009,190:301-306
    [67]Zhao D, Yi B.L, Zhang H.M, Yu H.M. MnO2/SiO2-SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes [J]. Journal of Membrane Science 2010,346:143-151
    [68]Tang X.h, Liu Z. h, Zhang C.x. Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area [J]. Journal of Power Sources 2009,193:939-943
    [69]Stobber W, Fink A and Bohn E. Synthesis of nano-silica [J].Journal of Collid and Interface Science 1968,0:62-67
    [70]Xiong S.1, Yuan C. z, Zhang X. g, Xi B. j, QianY.t. Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors [J]. Chem.Eur.J.2009,15:5320-5326
    [71]王兴磊,欧阳艳,罗新泽,马浩亚·艾斯江,贾孝婷.四氧化三钴超级电容器电极材料的制备与研究[J].无机盐工业,2009,41(9):15-17.
    [72]Chen Y.c, Hu L, Wang M, Min Y.I, Zhang Y.g. Self-assembled Co3O4 porous nanostructures and their photocatalytic activity [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 2009,336:64-68.
    [73]Fink J. K.5-Poly(phenylene sulfide) [J]. High performance Plymer 2008,1:175-207
    [74]崔崇威,孙士权,黄君礼.羟自由基捕捉剂的比较分析[J].哈尔滨商业大学学报,2004,20(3),342-345
    [75]Jan S, Vlastimil K., Klaus R, Reinhard M.. Heterogeneous ion-exchange membranes based on sulfonated poly(1,4-phenylene sulfide) [J]. Desalination 2006,198:256-264
    [76]Jan S, Libuse B. Heterogeneous ion-exchange membranes based on sulfonated poly(1,4-phenylene sulfide) and linear polyethylene:preparation,oxidation stability, methanol permeability and electrochemical properties [J]. Journal of Membrane Science 2005,250: 151-157
    [77]闫波,李刚,陈彦模,张瑜.超支化聚苯硫醚与线性聚苯硫醚的对比表征[J].合成技术及应用2007,22:2
    [78]Fu Y Z, Manthiram A. Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells [J]. Journal Power Sources,2006,157:222-225
    [79]Sun Y M, Wu T C, Lee H C. Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells [J]. Journal of membrane science 2005, 265:108-114
    [80]Phu D. S, Chang H.L, Chi H. P, Lee S. Y, Lee Y. M. Synthesis of Crosslinked Sulfonated Poly(phenylene sulfide sulfone nitrile) for Direct Methanol Fuel Cell [J] Macromolecular Rapid Communication 2009,30:64-68
    [81]Sankir M, Bhanu V A, Li W, Wile K. B. Synthesis and Characterization of 3,3-Disulfonated 4,4-dichlorodiphenyl Sulfone (SDCDPS) Monomer for ProtonExchange Membranes (PEM) in Fuel Cell Applications [J] Journal of Applied Polymer Science 2006,100:4595-4602
    [82]Wang F, Hickner M, Kim Y. S, Thomas A. Z.Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes [J]. Journal of Membrane Science 2002,197:231-242
    [83]Hong Y. T, Lee C. H, Park H. S, Min K. A, Kim H. J. Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole) [J]. Journal of Power Sources 2008,175:724-731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700