溶胶—凝胶法制备磷酸掺杂聚苯并咪唑质子交换膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯并咪唑(PBI)由于其突出的热稳定性,可被用做高温质子交换膜燃料电池的膜电解质材料。纯PBI膜在室温下的电导率仅为10-7S/cm,通过浸泡磷酸使其质子化是一种常用的提高其电导率的方法。通常采用溶液浇注法制备纯PBI膜,但由于PBl分子的刚性结构其难溶解在有机溶剂中,尤其对于聚合度较大的PBI聚合物。PBI聚合物在有机溶剂中的溶解难题给进一步开发PBI类质子交换膜带来困难。为此研究者提出利用三氟乙酸与磷酸混合酸作为溶剂溶解PBI再直接浇注成膜的办法;也有研究者提出通过修饰PBl分子骨架结构,如在分子骨架中引入醚键、六氟双苯丙基、侧链烷基等的办法降低分子刚性,从而改善其在有机溶剂中的溶解性。但这些办法在改善PBI溶解性的同时,往往增加了制膜成本,或以牺牲PBI原有分子骨架结构为代价。
     本文基于Jana等人有关PBI在浓磷酸中热可逆溶胶凝胶的研究,提出利用PBI-H3PO4的溶胶凝胶化法制备PBI/H3PO4凝胶膜。再通过在低浓度磷酸溶液中的酸调节过程制备不同酸掺杂水平的PBI/H3PO4膜。与采用有机溶剂的溶液浇注法相比,这种方法简便易行,同时也避免了有机溶剂的使用。通过本方法制备的酸掺杂水平5.2的PBI/H3PO4膜,120℃时的电导率、断裂拉伸强度分别为2.4×10-2S/cm与5.1 MPa。
     研究了PBI/H3PO4凝胶膜在低浓度磷酸溶液中的酸调节过程。发现与纯PBI膜的磷酸掺杂过程相比,PBI/H3PO4膜的磷酸去掺杂过程非常迅速。酸调节过程在降低膜磷酸掺杂水平、增加膜断裂拉伸强度的同时,也引起PBI膜的收缩。得到的PBI/H3PO4膜的酸掺杂水平主要受控因素为酸调节过程所用的磷酸浓度,而与酸调节过程温度关系不大。但温度越高,酸调节过程所需时间越短,得到的PBI/H3PO4膜也更致密。通过XRD研究发现磷酸掺杂会增加PBl分子骨架间距离,导致PBI膜的断裂拉伸强度降低。
Polybenzimidazole (PBI) membranes are used as membrane electrolyte materials for high temperature pronton exchange membrane fuel cells (HT-PEMFCs) working at 120-200℃due to its excellent thermal and chemical stabilities. The proton conductivity of the pure PBI membrane is as low as about 10-7 S/cm at room temperature, therefore PBI membranes need to be modified by doping with phosphoric acid for using as the proton exchange membrane electrolyte. PBI membranes are usually prepared by means of solution casting method. However, the PBI solubility in organic solvents, such as DMAc, decreases obviously with the increase of PBI molecular weight owing to its very rigid molecular structure. The restricted solubility of PBI in organic solvents results in a difficulty of preparation of PBI membranes especially when polymer has a high molecular weight. Therfore, direct casting acid doped PBI membrane was proposed by preparation of PBI solutions in mixed acids of triluoroacetic acid and phosphoric acid. N-substituted polybenzimidazoles by introducing ether linkage, side-chain alkyl and hexafluoropropyl in the polymer backbones have also been synthesized in order to improve the solubility. But these methods may increase the cost of preparing membranes or sacrifice the brand PBI properties to improve the processibility.
     Jana et al. studied the thermoreversible gelation of PBI in phosphoric acid. This provides us a route to prepare the acid doped PBI membranes by conveniently dissolving PBI powders in phosphoric acid without organic solvents. Based on this sdudy, we prepared PBI membranes with various acid doping levels controlled by means of acid de-doping. The PBI-H3PO4 Sol-gel method shortens experiment period and doesn't use organic solwents at the same time. For a PBI membrane with an acid doping level of 5.2, the stress at break and proton conductivity at 120℃without humidification were 5.1 MPa and 2.4×10-2 S/cm, respectively.
     The process for acid de-doping of the membranes was investigated. The process of the acid de-doping from the membrane was faster than of acid doping in the membrane. The de-doped acid molecules caused the shrinkage of the PBI membrane and thus the increase of the membrane strength due to the closeness of PBI chains according to the X-ray diffraction analysis. The acid doping level of PBI membranes only depends on the concentration of phosphoric acid used for acid de-doping. When acid de-doping process occurred in H3PO4 solvent at boiling point, it made membranes denser and cost less time than at room temperature. The increased separation of PBI backbones for PBI membranes by doped with phosphoric acids is confirmed by the analysis of XRD patterns.
引文
1. Jones D J, Roziere J. Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications [J], J. Membr. Sci.,2001,185:41-58.
    2.衣宝廉.燃料电池——原理、技术、应用[M],北京:化学工业出版社,2003,1-8.
    3. Steele B C, Heinzel A. Materials for fuel-cell technologies [J], Nature,2001, 414(15):345-352.
    4.谢晓峰,张迪,毛宗强等.质子交换膜的研究现状与进展[J],膜科学与技术,2005,25(4):44-50.
    5.卿胜波,黄卫,颜德岳.芳杂环类聚合物质子交换膜的研究进展[J],化工新材料,2006,34(12):39-43.
    6.毛宗强等.燃料电池[M],北京:化学工业出版社,2005,60-61.
    7. Wang C, Chua H, Yan Y, et al. Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells [J], J. Power Sources,2007,170:235-241.
    8. Pan C, He R, Li Q, et al. Integration of high temperature PEM fuel cells with a methanol refoemer [J], J. Power Sources,2005,145:392-398.
    9. Wasmus S, Kuever A. Methanol oxidation and direct methanol fuel cells:a selective review [J], J. Electroanal. Chem.1999,461:14-31
    10.毛宗强等.燃料电池[M],北京:化学工业出版社,2005,50-51.
    11. Savinell R, Yeager E, Tryk D, et al. A polymer electrolyte for operation at temperatures up to 200℃ [J], J. Electrochem. Soc.,1994,141:L46-L48.
    12. Doyle M, Choi S, Proulx G. High-temperature pronton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites [J], J. Electrochem. Soc.,2000,147:34-37.
    13. Sun J, Jordan L, Forsyth M, et al. Acid-organic base swollen polymer membranes [J], Electrochim. Acta,2001,46:1703-1708.
    14. Staiti P, Arico A, Baglio V, et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells [J], Solid State Ionics, 2001,145:101-107.
    15. Costamagna P, Yang C, Bocarsly A B, et al. Nafion(?)115/zirconium phosphate composite membranes for operation of PEMFCs above 100℃ [J], Electrochim. Acta,2002,47:1023-1033.
    16. Watanabe M, Uchida H, Emori M. Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells [J], J. Electrochem. Soc.,1998,145:1137-1141.
    17. Staiti P, Minutoli M, Hocevar S. Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application [J], J. Power Sources,2000,90, 231-235.
    18. Sancho T, Soler J, Pina M. Conductivity in zeolite-polymer composite membranes for PEMFCs [J], J. Power Sources,2007,169:92-97.
    19. Depre L, Kappel J, Poppall M. Inorganic-organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods [J], Electrochim. Acta,1998,43(10-11):1301-1306.
    20. Xing P, Robertson G P, Guiver M D. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes [J], J. Membr. Sci.,2004, 29:95-106.
    21. Guo X, Fang J, Watari T, et al. Novel sulfonated polyimides as polyelectrolytes for fuel cell application.2. Synthesis and proton conductivity of polyimides from 9,9-bis(4-aminophenyl)fluorene-2,7-disulfonic acid [J], Macromolecules,2002,35: 6707-6713.
    22. Fernicola A, Panero S, Scrosati B. Proton-conducting membranes based on protic ionic liquids [J], J. Power Sources,2008,178:591-595.
    23. Li Q, He R, Jensen J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃ [J], Chem. Mater., 2003,15:4896-4915.
    24.肖长发.聚苯并咪唑纤维及其应用[J],高科技纤维与应用,2003,28(3):5-10.
    25. Wang K Y, Chung T. Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate [J], J. Membr. Sci.,2006,281: 307-315.
    26. Savinell R F, Litt M H. Proton conducting polymers used as membranes [P], US5525436,1996.
    27. Savinell R F, Litt M H. Proton conducting polymers prepared by direct acid casting [P], US5716727,1998.
    28. Bjerrum N J, Li Q, Hjuler H A. Polymer electrolyte membrane fuel cells [P], US6946211,2005.
    29.李景虹.先进电池材料[M],北京:化学工业出版社,2004,337-341.
    30. Allcock H R, Lampe F W, Mark J E(张其锦等译).当代聚合物化学[M],北京:化学工业出版社,2006,288-291.
    31.何白天,胡汉杰.功能高分子与新技术[M],北京:化学工业出版社,2001,52-53.
    32. He R, Li Q, Xiao G, et al. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors [J], J. Membr. Sci.,2003,226:169-184.
    33. Lobato J, Canizares P, Rodrigo M, et al. Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs [J], J. Membr. Sci.,2006,280:351-362.
    34. Zhai Y, Zhang H, Zhang Y, et al. A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells [J], J. Power Sources,2007,169:259-264.
    35. Jiang F, Pu H, Meyer W H, et al. A new anhydrous proton conductor based on polybenzimidazole and tridecyl phosphate [J], Electrochim. Acta,2008,53: 4495-4499.
    36. Ainla A, Brandell D. Nafion(?)-polybenzimidazole (PBI) composite membranes for DMFC applications [J], Solid State Ionics,2007,178:581-585.
    37. Kim T, Lim T, Lee J. High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting [J], J. Power Sources,2007,172:172-179.
    38. Litt M, Ameri R, Wang Y, et al. Polybenzimidazoles/phosphoric acid solid polymer electrolytes:mechanical and electrical properties [J], Mater. Res. Soc. Symp. Proc.,1999,548:313-323.
    39. Tomlin D W, Fratini A V, Hunsaker M, et al. The role of hydrogen bonding in rigid-rod polymers the crystal structure of a polybenzobisimidazole model compound [J], Polymer,2000,41:9003-9010.
    40. Lin H, Chen Y, Li C, et al, Preparation of PBI/PTFE composite membranes from PBI in N, N-dimethyl acetamide solutions with various concentrations of LiCl [J], J. Power Sources,2008,181:228-236.
    41. Shogbon C B, Brousseau J, Zhang H, et al. Determination of the molecular parameters and studies of the chain conformation of polybenzimidazole in DMAc/LiCl [J], Macromolecules,2006,39,9409-9418.
    42. Li M, Shao Z, Scott K. A high conductivity Cs2.5H0.5PM12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature [J], J. Power Sources,2008,183:69-75.
    43.张健泓,陈优生.溶胶-凝胶法的应用研究[J],广东化工,2008,35(3):47-49.
    44. Jana T, Nandi A K. Sulfonic acid-doped thermoreversible polyaniline gels: morphological, structural, and thermodynamical investigations [J], Langmuir, 2000,16:3141-3147.
    45. Vikki T, Ruokolainen J, Ikkala O T. Thermoreversible gels of polyaniline: viscoelastic and electrical evidence on fusible network structures [J], Macromolecules,1997,30:4064-4072
    46.陆威,鲁德平,管蓉.Sol-gel法在燃料电池用质子交换膜制备中的应用[J],高分子通报,2006,6:82-88.
    47. Klein L, Daiko Y, Aparicio M, et al. Methods for modifying proton exchange membranes using the sol-gel process [J], Polymer,2005,46:4504-4509.
    48. Matsuda A, Kanzaki T, Tadanaga K, et al. Proton conductivities of sol-gel derived phosphosilicate gels in medium temperature range with low humidity [J], Solid State Ionics,2002,154-155:687-692
    49. Nogami M, Suwa M, Kasuga T. Proton conductivity in sol-gel-derived P2O5-TiO2-SiO2 glasses [J], Solid State Ionics,2004,166:39-43.
    50.李景虹.先进电池材料[M],北京:化学工业出版社,2004,353-357.
    51. Xiao L, Zhang F, Scanlon E, et al. High-temperature polybenzimidazole fuel cell membranes via a Sol-Gel process [J], Chem. Mater.,2005,17:5328-5333.
    52. Xiao L, Benicewica B E, Jana T, et al. Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications [J], Fuel cells,2005,5(2):287-296.
    53. Kim T, Lim T, Park Y, et al. Proton-conducting zirconium pyrophosphate/poly(2,5-benzimidazole) composite membranes prepared by a PPA direct casting method [J], Macromol. Chem. Phys.,2007,208:2293-2302.
    54. Sannigrahi A, Arunbabu D, Jana T. Thermoreversible gelation of polybenzimidazole in phosphoric acid [J], Macromol. Rapid Commun.,2006,27: 1962-1967.
    55. Mecerreyes D, Grande H, Miguel O, et al. Porous polybenzimidazole membranes doped with phosphoric acid:highly proton-conducting solid electrolytes [J], Chem. Mater.,2004,16:604-607.
    56. Weber J, Antonietti M, Thomas A. Mesoporous poly(benzimidazole) networks via solvent mediated templating of hard spheres [J], Macromolecules,2007,40: 1299-1304.
    57. Weber J, Kreuer K, Maier J, et al. Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts [J], Adv. Mater.,2008,20:2595-2598.
    58. Vogel H, Marvel C S. Polybenzimidazoles, new thermally stable polymers [J], J. Polym. Sci.,1961,50(154):511-539.
    59. Iwakura Y, Uno K, Imai Y. Polyphenylenebenzimidazoles [J], J. Polym. Sci., Part A:Polym. Chem.,1964,2:2605-2615.
    60. Plummer L, Marvel C S. Polybenzimidazoles.Ⅲ [J], J. Polym. Sci., Part A:Polym. Chem.,1964,2:2559-2596.
    61. Foster R T, Marvel C S. Polybenzimidazoles IV. Polybenzimidazoles containing aryl ether linkages [J], J. Polym. Sci., Part A:Polym. Chem.,1965,3:417-421.
    62. Li Q, Jensena J O, Savinell R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells [J], Prog. Polym. Sci., 2009,34:449-477.
    63.浦鸿汀,叶盛.聚苯并咪唑的合成、性能及在燃料电池膜材料中的应用[J],高分子通报,2006,9:9-19.
    64. Kreuer K, Paddison S, Spohr E, et al. Transport in proton conductors for fuel-cell applications:simulations, elementary reactions, and phenomenology [J], Chem. Rev.,2004,104:4637-4678.
    65. Bouchet R, Siebert E. Proton conduction in acid doped polybenzimidazole [J], Solid State Ionics,1999,118:287-299.
    66. Wainright J S, Wang J, Weng D, et al. Acid doped polybenzimidazoles:a new polymer electrolyte [J], J. Electrochem. Soc.,1995,142:L121-L123.
    67. Li Q, He R, Berg R W, et al. Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells [J], Solid State Ionics,2004,168:177-185.
    68. Protonation promoter of acid-base membranes for proton exchange membrane fuel cells [P], patent-draft-1st version,2005
    69. Gieselman M, Reynolds J. Water-soluble polybenzimidazole-based polyelectrolytes [J], Macromolecules,1992,25:4832-4834.
    70. Glipa X, Haddad M E, Jones D. Synthesis and characterization of sulfonated polybenzimidazole:a highly conducting proton exchange polymer [J], Solid State Ionics,1997,97:323-331.
    71. Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI) [J], Electrochem. Commun.,2000,2:697-702.
    72. Tarasevich M, Karichev Z, Bogdanovskaya V, et al. Electroconductance and penetrability of polybenzimidazole membranes in alkaline solutions [J], Russian J. Electrochem.,2004,40(6):653-656.
    73. Hou H, Sun G, He R, et al. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell [J], J. Power Sources,2008,182: 95-99.
    74. He R, Li Q, Bjerrum N J. Phosphoric acid doped polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells [J], Chin. J. Appl. Chem.,2006,23(7):697-703.
    75. Kerres J, Ullrich A, Meier F, et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells [J], Solid State Ionics,1999,125:243-249.
    76. Zhang H, Li X, Zhao C, et al. Composite membranes based on highly sulfonated PEEK and PBI:morphology characteristics and performance [J], J. Membr. Sci., 2008,308:66-74.
    77. Pasupathi S, Ji S, Bladergroen B J, et al. High DMFC performance output using modified acid-base polymer blend [J], Int. J. Hydrogen energy,2008,33: 3132-3136.
    78. Wycisk R, Chisholm J, Lee J, et al. Direct methanol fuel cell membranes from Nafion-polybenzimidazole blends [J], J. Power Sources,2006,163:9-17.
    79. Wycisk R, Lee J K, Pintauro P N. Sulfonated polyphosphazene-polybenzimidazole membranes for DMFCs [J], J. Electrochem. Soc.,2005,152(5):A892-A898.
    80. Pu H, Liu Q, Qiao L, et al. Studies on proton conductivity of acid doped polybenzimidazole/polyimide and polybenzimidazole/polyvinylpyrrolidone blends [J], Polym. Eng. Sci.,2005,1395-1400.
    81. Samms S R, Wasmus S W, Savinell R F, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments [J], J. Electrochem. Soc.,1996,143:1225-1232..
    82. Guo Q, Pintauro P N, Tang H, et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes [J], J. Membr. Sci.,1999, 154:175-181.
    83. Chen G, Hoag G E, Chedda P, et al. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton's reagent [J], J. Hazard. Mater.,2001, 87(1-3):171-186.
    84. Li Q, He R, Jensen J O, et al. PBI based polymer membranes for high temperature fuel cell preparation characterization and fuel cell demonstration [J], Fuel Cell, 2004,4(3):147-159.
    85. He R, Li Q, Bach A, et al. Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells [J], J. Membr. Sci.,2006,277: 38-45.
    86.吴雪梅,贺高红,顾爽等.化学交联法在质子交换膜制备中的应用[J],高分子材料科学与工程,2006,22(4):28-31.
    87. Jorgensen B S, Young J S, Espinoza B F. Cross-linked polybenzimidazole membranes for gas separation [P], US6946015B2,2005.
    88. Wang K Y, Xiao Y, Chung T. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin [J], Chem. Eng. Sci.,2006,61:5807-5817.
    89. Li Q, Pan C, Jensen J O, et al.Cross-linked polybenzimidazole membranes for fuel cells [J], Chem. Mater.,2007,19:350-352.
    90. Noye'P, Li Q, Pan C, et al. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker [J], Polym. Adv. Technol.,2008,19:1270-1275.
    91. Fontanella J J, Wintersgill M C, Wainright J S, et al. High pressure electrical conductivity studies of acid doped PBI [J], Electrochim. Acta,1998,43: 1289-1294.
    92. Wang J T, Wainright J S, Savinell R F, et al. A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte [J], J. Appl. Electrochem., 1996,26:751-756.
    93. Bouchet R, Miller S, Duclot M, et al. A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole [J], Solid State Ionics,2001,145: 69-78.
    94. He R, Li Q, Jensen J O, et al. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells [J], J. Polym. Sci., Part A:Polym. Chem.,2007,45:2989-2997.
    95. Kreuer K D. Proton conductivity:materials and applications [J], Chem. Mater., 1996,8:610-641.
    96. Kawahara M, Morita J, Rikukawa M, et al. Synthesis and proton conductivity of thermally stable polymer electrolyte:poly(benzimidazole) complexes with strong acid molecules [J], Electrochim. Acta,2000,45:1395-1398.
    97. Ma Y L, Wainright J S, Litt M H, et al. Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells [J], J. Electrochem. Soc.,2004, 151:A8-A16.
    98. Pu H, Meyer W H, Wegner G. Proton transport in polybenzimidazole blended with H3PO4 or H2SO4 [J], J. Polym. Sci., Part B:Polym. Phys.,2002,40:663-669.
    99. Schechter A, Savinell R F. Imidazole and 1-methyl imidazole in phosphoric acid doped [J], Solid State Ionics,2002,147:181-187.
    100. Ye H, Huang J, Xu J, et al. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures [J], J. Power Sources,2008,178:651-660.
    101. Weng D, Wainright J S, Landau U, et al. Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures [J], J. Electrochem. Soc.,1996,143:1260-1263.
    102. Carollo A, Quartarone E, Tomasi C, et al. Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications [J], J. Power Sources,2006,160:175-180.
    103. Pu H, Liu Q, Liu G. Methanol permeation and proton conductivity of acid-doped poly(N-ethylbenzimidazole) and poly(N-methylbenzimidazole) [J], J. Membr. Sci.,2004,241:169-175.
    104. Li Q, Hjuler H, Bjerrum N. Phosphoric acid doped polybenzimidazole membranes:phsiochemical characterization and fuel cell application [J], J. Appl. Electrochem.,2001,31:773-779.
    105. Lin H, Yu T, Changa W, et al. Preparation of a low proton resistance PBI/PTFE composite membrane [J], J. Power Sources,2007,164:481-487.
    106. Li Q, He R, Gao J, et al. The CO poisoning effect in PEMFCs operational at temperatures up to 200℃ [J], J. Electrochem. Soc.,2003,150(12): A1599-A1605.
    107. Wang J T, Savinell R F, Wainright J S, et al. A H2-O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte [J], Electrochim. Acta,1996,41(2): 193-197.
    108. Wang J T, Wasmus S. Savinell R F. Real-time mass spectrometric study of the methanal crossover in a direct methanol fuel cell [J], J. Electrochem. Soc.,1996, 143(4):1233-1239.
    109. Gedye R, Smith F, Westaway K, et al. The use of microwave ovens for rapid organic synthesis [J], Tetrahedron Lett.,1986,27:279-282.
    110.王陆瑶,田敏,李晓娟等.微波辐射下几种特殊的2-取代苯并咪唑的合成[J],化学通报,2005,68:1-4.
    111. Samanta S K, Kylanlahti I, Yli-Kauhaluoma J. Microwave-assisted synthesis of imidazoles:reaction of p-toluenesulfonylmethyl isocyanide and polymer-bound imines [J], Bioorg. Med. Chem. Lett.,2005,15:3717-3719.
    112.赵寒梅.聚苯并咪唑的合成及其膜性能研究[D],沈阳:东北大学,2007.
    113. Savinell R F, Wainright J S, Litt M. High temperature polymer electrolyte fuel cells [J], Electrochem. Soc. Proc.,1998,98-27:81-90.
    114.周其凤,胡汉杰.高分子化学[M],北京:化学工业出版社,2001,58-61.
    115. Klaehn K J, Luther T A, Orme C J, et al. Soluble N-substituted organosilane polybenzimidazoles [J], Macromolecules,2007,40:7487-7492.
    116.卿胜波,黄卫,颜德岳.耐高温磺化聚苯并咪唑的合成与表征[J],高等学校化学学报,2005,26(11):2145-2148.
    117.卿胜波,黄卫,颜德岳.耐高温含氟磺化聚苯并咪唑的合成及表征[J],化学学报,2005,63(7):667-670.
    118. Tanaka F. Thermoreversible gelation strongly coupled to coil-to-helix transition of polymers [J], Colloids Surf., B,2004,38:111-114.
    119. Vikki T, Isotalob H, Ruokolainena J, et al. Thermoreversible gels of acid doped polyaniline:Electrical switching based on network transitions [J], Synth. Met., 1999,101:742-745.
    120. Wereta A, Gehatia M T, Wiff D R. Morphological and physical property effects for solvent cast films of poly-2,5(6) benzimidazole [J], Polym. Eng. Sci.,1978, 18:204-209.
    121. Jenkins S, Jacob K I, Polk M B, et al. Structure, morphology, and properties of methyl-pendant poly(p-phenylene benzobisimidazole) and methyl-pendant poly(p-phenylene benzobisthiazole) [J], Macromolecules,2000,33:8731-8738.
    122.孙宝英.高温质子交换膜材料—聚(2,2’-(问亚苯基)-5,5’-二苯并咪唑)膜的制备及其性能研究[D],沈阳:东北大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700