低温液相合成甲醇铜铬催化剂制备及合成工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温液相合成甲醇可以有效的提高甲醇合成的单程转化率和甲醇的选择性,催化剂的性能对低温液相甲醇合成反应具有决定性的作用。本论文通过对催化剂体系、合成机理、反应过程和工艺、动力学模型以及失活机理等问题进行细致的分析,采用了络合沉淀法制备低温液相合成甲醇的铜铬催化剂,根据对不同催化剂的催化活性评价结果对催化剂制备的优化条件及反应工艺条件进行了详细的研究,并提出了中间试验的概念流程和设计参数。
     活性评价结果表明,络合沉淀法得到的催化剂具有更高的比表面积(92m~2/g),沉淀物的晶粒尺寸小而均匀,得到的微晶在40-50nm范围内。因此,络合法得到的催化剂具有比普通沉淀法更高的反应活性,在110℃的低温条件下便具有很好的反应活性。Cu-Cr催化剂制备中,各种制备条件对催化剂的催化性能有很大的影响。Cu/Cr比对催化剂活性和选择性的影响较大,Cu/Cr比为0.9-1.0时,催化剂的活性和选择性达到最高;沉淀母液的PH值对反应的活性影响较大,对选择性的影响较弱,而实验条件范围内没有发现沉淀物的老化时间和老化温度对催化性能存在明显的影响。沉淀物加热分解温度和气氛都对反应结果有很大的影响,在氮气气氛下分解得到的催化剂催化反应性能比在空气气氛下分解获得的催化剂要好;试验结果表明,催化剂的加热分解温度在340-350℃为宜。
     实验表明溶剂介电常数对低温甲醇合成反应速率有明显的影响,选择非极性介电常数小和强极性非质子型溶剂,如二甲苯、丙酮、四氢呋喃等对合成甲醇有利。实验确定了适宜的低温液相合成甲醇的工艺条件为:温度110-120℃,压力4.5-5.0MPa,甲醇初始浓度2.5-3%(wt),甲醇钠用量4%(wt);
     通过对催化剂体系失活原因的初步探索,认为催化剂体系的失活主要由羰化催化剂甲醇钠失活造成,但反应的速率控制步骤是氢解反应,提高氢解反应速率可以加快总反应速率,也可以减缓甲醇钠催化剂的失活。
Liquid phase synthesis of methanol (LPSM) at lower temperature can effectively raise the conversion degree and selectivity of the methanol synthesis. The reaction performance of this reaction is greatly relied on the catalyst used. In this work, the catalytic effects, reaction mechanism, reaction process and parameters, kinetics and deactivation of the catalysts were systematically discussed. A Cu/Cr catalyst for LPSM was prepared with a complex precipitation technique. Based on the activity measurement, the optimal parameters for the catalyst preparation and reaction operation were well investigated. A principle process for LPSM was proposed.
    The catalyst prepared by the complex precipitation method has a higher surface area (92 m2/g). The precipitate possesses a uniform and smaller crystal size, about 40-50 nm. The activity measurement showed that this catalyst had a higher activity than the catalyst obtained from a traditional precipitation method. The preparation condition of the catalyst showed great influence on the performance of the catalyst. The atomic ratio of Cu/Cr in catalyst significantly affects the activity and selectivity. The Optimal ratio was found in the range of 0.9-1.0. The PH value of the precipitation solution influenced on the activity, but it did not influence on the selectivity. In our experimental condition, the effects of aging time and aging temperature on both activity and selectivity were negligible. The results also showed that calcining the catalyst in a nitrogen atmosphere brought about a better performance than in an air atmosphere. The preferred temperature for calcinations is 340-350.
    Solvent effects on the reaction were examined. The results show that the dielectric constant of the solvent has a significant influence on the reaction rate. Nonpolar solvents with lower dielectric constant or non-protonic polar solvents, such
    
    
    
    
    as xylene, acetone and tetrhydric furan, can enhance the synthesis reaction. The optimal operation parameters for the LPSM are suggested to be 110-120 , 4.5-5.0 MPa, 2.5-3.0%(wt) of initial methanol concentration and 4%(wt) of sodium methoxide concentration.
    The deactivation of the catalytic system was tested. The deactivation of this catalytic system is due to the deactivation of sodium methoxide catalyst. The hydrogenolysis process is the rate-limiting step of the synthesis. The deactivation of sodium methoxide can be lowered and the reaction rate increased by improving the hydrogenolysis process.
引文
[1] Sunggyu Lee, Methanol Synthesis Technology, CRC Press, Inc.
    [2] 王荐文,张俊峰等.液相甲醇合成新工艺的工业化研究与开发进展.湖北化工,2001,1:13
    [3] 黄仲涛,张树生.甲醇羰化制甲酸甲酯催化体系制备与反应动力学研究.天然气化工,1988,13(6):7
    [4] 何川华,储伟,罗仕忠等.低温液相甲醇合成催化剂研究进展.天然气化工,2000,25(3):41
    [5] M Marchionna, M Laimi, et. Synthesizing methanol at low temperature. Chemtech, 1997, April: 27
    [6] 吴玉塘,陈文凯,罗仕忠等铜铬催化剂的制备方法.中国发明专利,CN1136979A(1996)
    [7] 吴玉塘,罗仕忠等.羰化-氢解法合成甲醇的研究.石油化工,1993,22(1):10
    [8] Vijayaraghavan P, Lee S. Mini-pilot plant design and operation of a liquid entrained reactor for liquid phase methanol synthesis. Fuel & tech Int' L, 1993, 11 (2): 243
    [9] 吴玉塘等,中科院“九五”计划特别支持项目课题进展报告,1998.12
    [10] 赵家乐,李好管甲醇工业进展概述.技术经济,2001,2:32
    [11] W.凯姆主编,黄仲涛等译.C_1化学中的催化.化学工业出版社,1989.11:89
    [12] 赵亮富,吕朝晖,赵玉龙等.甲醇羰基化中溶剂的不同作用.化工进展,2001,1:26
    [13] S P S Andrew[A].Plenary Lecture Post Congress Ymposium 7th Intern. Congr. on Catalysis, Osaka, July, 1980
    [14] G Natta, Catalysis(P H Emmett. Ed.)[M].Reinhold, New York, Vol. Ⅲ, 1995: 349
    [15] 胡云行,黄爱民,蔡启瑞等雾化高温分解法铜基甲醇合成催化剂的活性位[J].催化学报,1993,14(6):415
    [16] J C J Bart, R P A Sneeden, Copper-zinc oxide-alumina methanol catalysis revisited[J] Catal. Today, 1987, 2:1
    [17] 宋维端,肖任坚编.甲醇工学.化学工业出版社,1991.11
    [18] 刘兴泉等,低温液相合成甲醇及甲酸甲酯用Cu-Cr-M-O催化剂的制备与表征,催化学报,2000年第21卷第一期
    
    
    [19] 陈文凯等,羰化—氢解法低温合成甲醇的研究,天然气化工,2000年第25卷
    [20] 陈文凯等,浆态床合成甲醇和甲酸甲酯反应的微模试验,天然气化工,2000年第25卷
    [21] 赵亮富,赵玉龙等,低温液相甲醇合成反应动力学模型与参数估计,化工学报,2002年第53卷第6期
    [22] 李顺芬,罗世忠,杨先贵,戴汉松等,低温浆态合成甲醇催化剂失活原因,石油与天然气化工,2000年第29卷第4期
    [23] 李顺芬,杨先贵等,铜基催化剂低温浆态相合成甲醇和甲酸甲酯,石油与天然气化工,2000年第29卷第6期
    [24] 杨迎春等,合成气低温液相合成甲酸甲酯催化剂及新工艺,石油与天然气化工,2001年第30卷第4期
    [25] 丁百全,秦惠芳,朱炳晨,房鼎业,三相床甲醇合成研究进展,化工进展,1998年第6期
    [26] 王志飞,王卫平,吕功萱,助剂对Cu/Cr催化剂上甲醇部分氧化制氢的活性影响,分子催化,2002年第16卷第4期
    [27] 黄晓江,刘宝山,李好管,甲醇的技术进展及市场分析,煤化工,2001年第3期
    [28] 李志锋,章江洪,陈云华等,一氧化碳、甲醇羰化液相合成甲酸甲酯工艺条件的初步研究,云南化工,2001年第28卷第4期
    [29] 王桂轮,李成岳,以合成气合成甲醇催化剂及其进展,化工进展,2001年第3期
    [29] M. Marchionna, L. Basini, A. Aragno, M. Lami, F. Ancillotti, J. Mol. Catal. 1992, 75 (2) : 147
    [30] W. M. Goldberger, D. F. Othmer, Ind. Eng. Chem., Process Design Develop. 1963, 2 : 202
    [31] USP 4 614 749 (1986)
    [32] USP 4 623 634 (1986)
    [33] USP 4 619 946 (1986)
    [34] 王桂轮,李成岳,甲醇合成路线及其进展,现代化工,2000年第20卷第8期
    [35] CN 1132663A (1996)
    [36] CN 1060409C (2000)
    [37] 丛昱,田金忠,黄宁表,徐长海等.超细Cu-ZnO-zrO_3催化剂的制备及其催化CO_2加氢
    
    合成甲醇的性能.催化学报,2000年第21卷第3期
    [38] W.凯姆主编.C.化学中的催化.化学工业出版社 1989
    [39] Jean-Paul Lange. Methanol synthesis: a short review of technology improvements. Catalysis Today 64(2001)3-8
    [40] P.J.A. Tijm, F.J. Waller, D.M. Brown. Methanol technology development for the new millennium. Applied Catalysis A: General 221(2001)275-282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700