甲醇水蒸气重整制氢催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以液体燃料甲醇分布式现场重整制氢系统开发为研究背景,研制用于甲醇水蒸气重整制氢体系的优良铜基催化剂,最终实现甲醇水蒸气重整制氢催化剂在小型分布式现场制氢集成系统中的应用。围绕铜基催化剂,通过对载体、制备方法和反应机理的系统研究,开发出具有优良活性,选择性和稳定性的催化剂,并揭示了催化剂性能改善的原因。
     通过添加不同载体对CuO/ZnO催化剂进行了改性,借助XRD、 TPR、 OSC、N2O滴定、XPS等表征手段,揭示了催化剂的活性主要与催化剂表面铜的分散情况和还原性能有关,而催化剂的选择性则与催化剂的储放氧能力密切相关。添加Zr02为载体后,能大幅度提高铜的分散度和改善铜的还原能力,进而提高了铜基催化剂的活性。添加Ce02为载体后,能提高催化剂的储放氧功能,进而降低重整气中的CO含量。应用CeO2-ZrO2复合氧化物为载体,既能提高铜的分散度又能提高催化剂的储放氧功能,进而表现出了优良的性能。另外,铈锆固溶体还具有常温下可以促进甲醇的脱氢解离,提高反应的转化速率,加快甲醇水蒸气重整反应。
     系统研究了共沉淀制备CuO/ZnO/CeO2/ZrO2催化剂的沉淀条件,结果发现,沉淀过程主要影响了铜晶粒的大小、分散和还原情况,进而对催化剂的活性和选择性造成显著的影响,综合考虑催化剂重整活性和CO选择性,当前驱体浓度为0.1mol/L,沉淀剂浓度为0.5mol/L,沉淀温度为60℃,搅拌时间为2h和陈化时间为12h时,催化剂的性能最佳。
     应用完全要因实验设计方法,对甲醇水蒸气重整制氢过程中的反应温度、水醇比和甲醇气体空速三个因素进行了优化。结果表明反应温度对甲醇转化率和重整尾气中CO含量的影响最为显著,当反应温度在249-258℃,水醇比1.76-2.00,催化剂的性能最佳。
     将CuO/ZnO/CeO2/ZrO2催化剂应用于小型反应器内,对催化剂在反应器内的性能进行了研究,结果表明反应器在室温下即可启动催化燃烧反应,启动时间小于60min,在150h的稳定性实验中,催化剂表现出良好的性能,无明显失活现象,多次开停车,并未对催化剂和反应器产生明显影响。
     借助原位红外测试技术对甲醇水蒸气重整制氢在CuO/ZnO/CeO2/ZrO2催化剂上的反应机理进行了研究,阐明了甲醇水蒸气重整制氢是由甲醇脱氢解离和转化,甲酸甲酯转化,以及逆水气变换三个过程组成的,中间过渡产物为甲酸甲酯。另外,重整温度在300℃以下时,CO主要是由逆水气变换反应产生的;当重整温度达到300℃以上时,CO是由逆水气变换反应和甲醇分解反应共同产生的。
The research background of this thesis was the development of methanol distributed hydrogen production system. An excellent performance of Cu-based catalyst for methanol steam reforming (MSR) was prepared. Finally, the application of the methanol steam reforming catalysts in the distributed hydrogen production system was realized. The new Cu-based catalyst of high activity, low CO selectivity and good stability in severe conditions was developed through the systematic research of the carriers, prepared methods and reaction mechanism, and the reasons of improved catalytic performance have been revealed.
     The Cu-based catalysts with different supports (CeO2, ZrO2and CeO2-ZrO2) for methanol steam reforming were prepared and the effect of different supports was investigated. The catalysts were characterized by means of X-ray diffraction, temperature-programmed reduction, oxygen storage capacity, N2O titration and X-ray photoelectron spectroscopy. The results showed that the Cu dispersion, reducibility of catalysts and oxygen storage capacity evidently influenced the catalytic activity and CO selectivity. It was noticed that the adding of ZrO2as support increased the dispersion of Cu species and improved the catalytic reducing capacity, and then improved the catalytic activity. The adding of CeO2as suppor increased the oxygen storage capacity, and then decreased the CO concentration in the reforming gas. The CeO2-ZrO2-containing catalyst showed the best performance with lower CO concentration, which was due to the high Cu dispersion and well oxygen storage capacity. Moreover, the dehydrogenation of methanol was promoted by the CeO2-ZrO2solid solution which was beneficial to the methanol steam reforming.
     The precipitation conditions were studied systematically on CuO/ZnO/CeO2/ZrO2catalyst. It was found that the precipitation process mainly affected on the size, dispersion and reduction ability of copper which significantly influenced the catalytic activity and selectivity. Considering the catalytic activity and CO selectivity, when the precursor concentration was0.1mol/L, the Na2CO3concentration was0.5mol/L, the preparation temperature was60℃, the stirring time was2h and the aging time was12h, the catalyst had the best performance.
     The catalytic performance for methanol steam reforming over CuO/ZnO/CeO2/ZrO2catalyst was investigated using a statistical set of experiments in order to optimize the methanol conversion with minimal carbon monoxide in the reforming gas. The operating temperature, steam to methanol (S/M) ratio, the methanol gas hourly space velocity (GHSV) was evaluated with a full factorial design experiment. The reaction temperature displayed a much greater influence on the response (the methanol conversion and CO concentration). The optimum theoretical conditions were found to lie within a reaction temperature of249-258℃and a S/M ratio of1.76-2.00.
     In the mini reformer, the performance of CuO/ZnO/CeO2/ZrO2catalyst was investigated. It was found that the reformer was started at room temperature and the starting time was less than60min. The catalyst had excellent reforming performance with no deactivation during150h stability test.
     The mechanistic research of methanol steam reforming on the CuO/ZnO/CeO2/ZrO2catalyst was investigated by FT-IR. The results showed that the methanol steam reforming was consist of methanol dehydrogenation, the methyl formate transformation and the reverse water gas shift (RWGS). The intermediates products was the methyl formate. Moreover, when the reaction temperature was below573K, the CO formation was mainly through the RWGS reaction. When the reaction temperature was above573K, the CO formation was through the methanol decomposition and RWGS reaction.
引文
[1]Jacobson M. Z., Colella W. G., Golden D. Cleaning the air and improving health with hydrogen fuel-cell vehicles [J]. Science,2005,308(5730):1901-1905.
    [2]Dillon R., Srinivasan S., Arico A. S., et al. International activities in DMFC R&D:status of technologies and potential applications [J]. J. Power Sources,2004,127(1-2):112-126.
    [3]Xie C., Bostaph J., Pavio J. Development of a 2W direct methanol fuel cell power source [J]. J. Power Source,2004,136(1):55-65.
    [4]Ramya K., Dhathathreyan K. S. Direct methnaol fuel cells:determination of fuel crossover in a polymer electrolyte membrane [J]. J. Electroanal Chem.,2003,542:109-115.
    [5]Qi Z., Kaufman A. Open circuit voltage and methanol crossover in DMFCs [J]. J. Power Sources, 2002,110(1):177-185.
    [6]Meier F., Kerres J., Eigenberger G. Methanol diffusion in water swollen ionomer membrances for DMFC applications. J. Membrane Sci.,2004,241(1):137-141.
    [7]Lee J. K., Ko J. B., Kim D. H. Methanol steam reforming over Cu/ZnO/Al2O3 catalyst:kinetics and effectiveness factor [J]. Appl. Catal. A:Gen.,2004,278(1):25-35.
    [8]Chin Y. H., Dagle R., Hu J. L., et al. Steam reforming of methanol over highly active Pd/ZnO catalyst [J]. Catal. Today,2002,77(1-2):79-88.
    [9]Horny C, Kiwi-Minsker L., Renken A. Micro-structured string-reactor for autothermal production of hydrogen. Chem. Eng. J.,2004,101(1-3):3-9.
    [10]Huang T. J., Wang S. W. Hydrogen production via partial oxidation of methanol over copper-zinc catalysts [J]. Appl. Catal.,1986,24(1-2):287-297.
    [11]Huang T. J., Chren S. L. Kinetics of partial oxidation of methanol over a copper-zinc catalyst [J]. Appl. Catal.,1988,40(1-2):43-52.
    [12]Reitz T. L., Lee P. L., Czaplewski K. F., et al. Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction [J]. J. Catal.,2001,199(2):193-201.
    [13]Reitz T. L., Ahmed S., Krumpelt M., et al. Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction [J]. J. Mol. Catal. A:Chem.,2000, 162(1-2):275-285.
    [14]Murcia-Mascaros S., Navarro R. M., Gomez-Sainero L., et al. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors [J]. J. Catal.,2001,198(2): 338-347.
    [15]Basile A., Gallucci F., Paturzo L. Hydrogen production from methanol by oxidative steam reforming carried out in a membrane reactor [J]. Catal. Today,2005,104(2-4):251-259.
    [16]Borodko Y., Somorjai G. A. Catalytic hydrogenation of carbon oxides a 10-year perspective [J], Appl. Catal. A:Gen.,1999,186(1-2):355-362.
    [17]Jones P. M., May J. A., Reitz J. B., et al. Electron spectroscopic studies of CH3OH chemisorption on CuO and ZnO single-crystal surfaces:methoxide bonding and reactivity related to methanol synthesis [J], J. Am. Chem. Soc.,1998,120(7):1506-1516.
    [18]Shimokawabe M., Takezawa N., Kobayashi H. Characterization of copper-silica catalysts prepared by ion exchange [J], Appl. Catal.,1982,2(6):379-387.
    [19]Takezawa N., Kobayashi H., Hirose A., Shimokawabe M., et al. Steam reforming of methanol on copper-silica catalysts:effect of copper loading and calcinations temperature on the reaction [J], Appl Catal,1982,4(2):127-134.
    [20]Takezawa N., Kobayashi H. Characterization of copper-silica catalysts in reduced states [J], Appl. Catal.,1982,3(4):381.
    [21]Lindstrom B., Pettersson L. J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications [J], Int. J. Hydrogen Energy,2001,26(9):923-933.
    [22]Cheng W. H., Akhter S., Kung H. H. Structure sensitivity in methanol decomposition on ZnO single-crystal surfaces [J], J. Catal.,1983,82(2):341-350.
    [23]Cheng W. H. Controlled-environment XRD study Cu/ZnO related to activity in methanol decomposition [J], Mater. Chem. Phys.,1995,41(1):36-40.
    [24]Porta P., Fierro G. Structural characterization of malachite-like coprecipitated precursors of the binary CuO-ZnO catalysts:bulk and surface properties [J], Catal. Today,1988,2(5):675-683.
    [25]Gunter M. M., Ressler T., Jentoft R. E., et al. Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-Ray diffraction and absorption spectroscopy [J], J. Catal.,2001,203(1):133-149.
    [26]Jung K. D., Joo O. S., Han S. H. Structural change of Cu/ZnO by reduction of ZnO in Cu/ZnO with methanol [J], Catal. Lett.,2000,68(1-2):49-54.
    [27]Shen G. C., Fujita S. Steam reforming of methanol on binary Cu/ZnO Catalysts-effects of preparation condition upon precursors, surface-structure and catalytic activity [J], J. Mol. Catal. A:Gen.,1997,124(2-3):123-136.
    [28]Lindstrom B., Pettersson L. J., Menon P. G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on y-alumina for methanol reforming for fuel cell vehicles [J], Appl. Catal. A:Gen.,2002, 234(1-2):111-125.
    [29]Cheng W. H., Shiau C. Y., Shiau C. Y., et al. Stability of copper based catalysts enhanced by carbon dioxide in methanol decomposition [J], Appl. Catal. B:Environ.,1998,18(1-2):63-70.
    [30]Shen J. P., Song C. S. Influece of preparetion method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H? production for fuel cells [J]. Catal. Today,2002,77(1-2):89-98
    [31]Patel S., Pant K. K. Influence of preparation method on performance of Cu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reforming of methanol [J]. J. Porous Mater.,2006, 13(3-4):373-378.
    [32]Yao C. Z., Wang L. C., Liu Y. M.,et al. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts [J]. Appl. Catal. A:Gen.,2006, 297(2):151-158.
    [33]Sandra S., Silva H., Brandao L., et al. Catalysts for methanol steam reforming-A review [J]. Appl. Catal. B:Environ.,2010,99(1-2):43-57.
    [34]Jeong H., Kim K. I., Kim T. H., et al. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst [J]. J. Power Sources,2006, 159(2):1296-1299.
    [35]Shishido T., Yamamoto Y., Morioka H., et al. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol [J]. Appl. Catal. A: Gen.,2004,263(2):249-253.
    [36]Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera Ⅰ, Navaro R M, Fierro J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 [J], J Catal,2003, 219(2):389-403.
    [37]Patel S., Pant K. K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol [J]. J. Power Sources,2006,159(1):139-143.
    [38]Liu Q., Wang L. C, Chen M., et al. Waste-free soft reactive grinding synthesis of high-surface-area copper-manganese spinel oxide catalysts highly effective for methanol steam reforming [J]. Catal. Lett.,2008,121(1-2):144-150.
    [39]Valdes-Solis T., Marban G., Fuertes A. B. Nanosized catalysts for the production of hydrogen by methanol steam reforming [J]. Catal. Today,2006,116(3):354-360.
    [40]Jakdetachai O., Takayama N., Nakajima T. Activity enhancement of CuZn-impregnated FSM-16 by modification with 1,3-butanediol for steam reforming of methanol [J]. Kind. Catal.,2005, 46(1):56-64
    [41]Jones S. D., Hagelin-Weaver H. E. Steam reforming of methanol over CeO2-and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle A12O3 [J]. Appl. Catal. B:Envir.,2009,90(1-2): 195-204.
    [42]Purnama H., Girgsdies F., Ressler T., et al. Activity and selectivity of a nanostructure CuO/ZrO2 catalyst in the steam reforming of methanol [J]. Catal. Lett.,2004,94(1-2):61-68.
    [43]Wang L. C., Liu Y. M., Chen M., et al. Production of hydrogen by steam reforming of methnaol over Cu/ZnO catalysts prepared via practicle soft reactive grinding route based on dry oxalate-precursor synthesis [J]. J. Catal.,2007,246(1):193-204.
    [44]Idem R. O., Bakhshi N. N. Production of hydrogen from methanol 1. catalyst characterization [J]. Ind. Eng. Chem. Res.,1994,33(9):2047-2055.
    [45]Idem R. O., Bakhshi N. N. Production of hydrogen from methanol 2. experimental studies [J]. Ind. Eng. Chem. Res.,1994,33(9):2056-2065.
    [46]Idem R. O., Bakhshi N. N. Production of hydrogen from methanol over promoted coprecipitated Cu-Al catalysts:The effct of various promoters and catalyst activation methods [J]. Ind. Eng. Chem. Res.,1995,34(5):1548-1557.
    [47]Idem R. O., Bakhshi N. N., Characterization studies of calcined, promoted and non-promoted methanol-steam reforming catalysts [J]. Can. J. Chem. Eng.,1996,742(2):288-300.
    [48]Zhang X. R., Shi P. F., Zhao J. X., et al. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts [J]. Fuel Process. Technol.,2003,83(1-3):183-192.
    [49]Zhang X. R., Shi P. F. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts [J]. J. Mol. Catal. A:Chem.2003,194(1-2):99-105.
    [50]张新荣,史鹏飞Cu/La2O3/Al2O3催化剂上甲醇水蒸气重整制氢反应[J].太阳能学报,2002,23(5):651-654.
    [51]Kasaoka S., Sasaoka E., Yokota Y. Reaction performance of methanol reforming with steam over various impregnated and coprecipitated copper-catalysts [J]. J. Chem. Eng. Japan.,1991,17(2): 285-288.
    [52]Baltes C, Vukojevic S., Schuth F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 cataslysts for methanol synthesis [J]. J. Catal.,2008, 258(2):334-344.
    [53]Setinc M., Levec J. On the kinetics of liquid-phase methanol synthesis over Zn-Cr Commercial Cu/ZnO/Al2O3 catalyst [J]. Chem. Eng. Sci.,1999,54(15-16):3577-3586.
    [54]Li J. L., Inui T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures [J]. Appl. Catal. A:Gen.,1996,137(1):105-117.
    [55]Agrell J., Bigrersson H., Boutonnet M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst:a kinetic analysis and strategies for suppression of CO formation [J]. J. Power Sources, 2002,106(1-2):249-257.
    [56]Dugra K. V., Subrahmanyam M., Rautamala A, et al. Correlation of activity and stbaility of Cu/ZnO/Al2O3 methanol steam reofrming catalysts with Cu/Zn composition obtained by SEM-EDAX analysis [J]. Catal. Commun.,2002,3(9):417-424.
    [57]Sekizawa K., Utaka T., Eguchi K. Catalytic production of hydrogen from methanol for fuel cell application [J]. Kinet. and Catal.,1999,40(3):411-413.
    [58]Miyao K., Onodera H., Takezwaa N. Highly-active copper-catalysts for steam reforming of methanol-catalysts derived from Cu/Zn/Al alloys [J]. React. Kinet. Catal. Lett.,1994,53(2): 379-383.
    [59]张新荣,史鹏飞,刘存涛.甲醇水蒸气重整制氢Cu/ZnO/Al2O3催化剂的研究[J].燃料化学学报,2006,21(3):284-287.
    [60]Velu S., Suzuki K., Kapoor M. P., et al. Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts [J]. Appl Catal A:Gen, 2001,213(1):47-63.
    [61]Velu S., Suzuki K. Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts:effect of substitution of zirconium and cerium on the catalytic performance [J]. Top Catal.,2003,22(3-4):235-244.
    [62]Velu S., Suzuki K., Okazaki M., et al. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells:catalyst characterization and performance evaluation [J]. J Catal,2000,194(2):373-493.
    [63]余立新,马建新CuZnAlZr催化剂上甲醇氧化水蒸气重整制氢Ⅰ.催化剂组成的优化[J].催化学报,2004,25(7):523-528.
    [64]李永峰,董新法,林维明CuZn(Zr,Ce)AlO在甲醇氧化水蒸汽重整制氢中的研究[J].天然气化工,2004,29(1):11-14.
    [65]Schrum E. D., Reitz T. L., Kung H. H. Deactivation of CuO/ZnO and CuO/ZrO2 catalysts for oxidative methanol reforming [J]. Stud. Surf. Sci. Catal.,2001,139:229-235.
    [66]Matsumura Y., Ishibe H. High temperarure steam reforming of methanol over Cu/ZnO/ZrO2 catalysts [J]. Appl. Catal. B:Environ.,2009,91(1-2):524-532.
    [67]Wang Z., Xi J., Wang W., et al. Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts [J]. J. Mol. Catal. A:Chem.,2003,191(1):123-134.
    [68]Papavasiliou J., Avgouropoulos G., Ioannides T. Production of hydrogen via combined steam reforming of methanol over CuO-CeO2 catalysts [J]. Catal. Commun.,2004,5(5):231-235.
    [69]Yu X. H., Tu S. T., Wang Z. D., et al. Development of a microchannel reactor concerning steam reforming of methanol [J]. Chem. Eng. J.,2006,116(2):123-132.
    [70]Jiang X. Y., Zhou R. X., Pang P. Effect of the addition of La2O3 on TPR and TPD of CuO/y-Al2O3 catalysts [J], Appl. Catal. A:Gen.,1997,150(1):131-141.
    [71]Fukunaga T., Ryumon N., Ichikuni N., et al. Characterization of CuMn-spinel catalyst for methanol steam reforming [J]. Catal. Commun.,2009,10(14):1800-1803.
    [72]Huang G., Liaw B. J., Jhang C. J., Chen Y. Z. Steam reforming of methanol over Cu/ZnO/CeO2/ZrO2/Al2O3 catalysts [J]. Appl. Cata. A:Gen.,2009,358(1):7-12.
    [73]蔡迎春,刘淑文,徐贤伦等.La助剂对甲醇水蒸气转化制氢CuO-ZnO/Al2O3催化剂性能的影响[J].石油化工,2001,30(6):429-432.
    [74]Lindstrom B., Pettersson L. J. Hydrogen generation by steam reforming of methanol over copper-based cataslysts for fuel cell application [J]. Int. J. Hydrogen Energy,2001,26(9):923-933.
    [75]单文娟,李忠来,雷志斌等.纳米尺寸Ce1-xCuXOY固溶体的表征和甲醇自热制氢反应的研究[J].复旦学报,2003,42(3):295-297.
    [76]Shan W. J., Feng Z. C., Li Z. L., et al. Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, co-precipitation and complexation-combution methods [J]. J. Catal.,2004,228(1):206-217.
    [77]Shan W. J., Shen W. J., Li C. Structural characteristics and redox behaviors of Ce1-xCuxOY solid solutions [J]. Chem. Mater.,2003,15(25):4761-4767.
    [78]Gao L. Z., Sun G. B., Kawi S. A study on methanol steam reforming to CO2 and H2 over the La2CuO4 nanofiber catalyst [J]. J. Solid State Chem.,2008,181(1):7-13.
    [79]Cheng W. H. Deactivation and regeneration of Cu/Cr based methanol decomposition catalysts [J]. Appl. Catal. B:Environ.,1995,7(1-2):127-136.
    [80]周广林,房德仁,程玉春等.铜基甲醇合成催化剂失活原因的探索[J],工业催化,1999,4:56-60.
    [81]殷永泉,肖天存,苏继新等.铜基甲醇合成催化剂的失活研究[J].分子催化,2000,14(5):373-378.
    [82]殷永泉,肖天存,苏继新等.工业甲醇合成催化剂的失活与再生研究[J].天然气化工,2000,2(25):34-36.
    [83]Robinson W. R. A. M., Mol J. C. Copper surface area and activity in CO/H2 of Cu/ZnO/Al2O3 methanol synthesis catalysts [J]. Appl. Catal.,1990,60(1):73-86.
    [84]Huges R. Deactivation of catalysts [M]. Academic press, New York,1994.
    [85]隋国荣,房德仁,王胜国等.合成甲醇铜基催化剂的失活研究[J].上海化工,2006,6:26-35.
    [86]Tohji K., Udagawa Y., Mizushima T., et al. The structure of the copper/zinc oxide catalyst by an in-site EXAFS study [J]. J. Phys. Chem.,1985,89(26):5671-5676.
    [87]Cheng W. H., Shiau C. Y., Liu T. H., et al. Stability of copper based catalysts enhanced by carbon dioxide in methanol [J]. Appl. Catal.,1998,18(1-2):63-70.
    [88]Sodesawa T., Nagacho M., Onodera A., et al. Dehydrogenation of methanol to methyl formate over Cu-SiO2 catalysts prepared by ion exchange methanol [J]. J. Catal.,1986,102(2):460-463.
    [89]Roberts M. W. The role of short-lived oxygen transients and precursor states in the mechanisms of surface reactions; a different view of surface catalysis [J]. Chem. Soc. Rev.,1996,25(6):437-445.
    [90]Carley A. F., Davies P. R.,Jones R. V., et al. The structure of sulfur adlayers at Cu(110) surfaces: an STM and XPS study [J]. Surf. Sci.,2000,447(1-3):39-50.
    [91]Oudar J., Wise H. Decativiation and poisoning of catalysts [M]. Marcel Dekker, INC, New York, 1985, P303.
    [92]易丽丽,国海光,郇昌永.合成甲醇铜基催化剂失活研究进展[J].杭州化工,2005,36(1):25-28.
    [93]亓爱笃,洪学伦,王树东等.甲醇氧化重整催化剂的研究[J],现代化工,2000,20(7):37-39.
    [94]汪丛伟,潘立卫,袁中山等ZnO/Cr2O3/CeO2/ZrO2整体催化剂上甲醇重整的工艺参数分析[J].中国稀土学报,2005,23:31-34.
    [95]Wang C. W., Liu N., Pan L. W., et al. Measurement of concentration profiles over ZnO-CnO3/CeO2-ZrO2 monolithic catalyst in oxidative steam reforming of methanol [J]. Fuel Process. Technol.,2007,88(1):65-71.
    [96]刘娜,袁中山,张纯希等Zn-Cr整体催化剂中Ce-Zr溶胶涂层的制备、表征及对甲醇自热重整反应的影响[J].催化学报,2005,26(12):1078-1082.
    [97]刘娜,王树东,袁中山等.甲醇自热重整制氢整体催化剂的制备[J].化工学报,2004,55:90-94.
    [98]Liu N., Yuan Z. S., Wang S. D., et al. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for methanol auto-thermal reforming process [J]. Int. J. Hydrogen Energy,2008,33(6):1643-1651.
    [99]Takezawa N., Iwasa N.. Steam reforming and dehydrogenation of methanol:difference in the catalytic functions of copper and group VIII metals [J]. Catal. Today,1997,36(1):45-56.
    [100]Iwasa N., Takezawa N. Steam reforming of methanol over Ni, Co, Pd and Pt supported on ZnO [J]. React. Kinet. Catal. Lett.,1995,55(2):349-353.
    [101]Iwasa N., Takezawa N. Steam reforming of methanol over Pd/ZnO:effect of the formation of PdZn alloys upon the reaction [J]. Appl. Catal. A:Gen.,1995,125(1):145-157.
    [102]Iwasa N., Takezawa N. New catalytic functions of Pd-Zn, Pd-Ga, Pd-in, Pt-Zn, Pt-Ga and Pt-in alloys in the conversions of methanol [J]. Catal. Lett.,1998,54(3):119-123.
    [103]Iwasa N., Takezawa N. Highly selective supported Pd catalysts for steam reforming of methanol [J]. Catal. Lett.,1993,19(2-3):211-216.
    [104]Agrell J., Germani G. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique [J]. Appl. Catal. A:Gen., 2003,242(2):233-245.
    [105]Cubeiro M. L., Fierro J. L. G. Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts [J]. J. Catal.,1998,179(1):150-162.
    [106]Takahashi T., Inoue M., Kai T. Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys [J]. Appl. Catal. A:Gen., 2001,218(1-2):189-195.
    [107]Penner S., Lorenz H., Jochum W., et al. Pd/Ga2O3 methanol steam reforming catalyst:Part I. Morphlogy, composition and structural aspects [J]. Catal. Appl. A:Gen.,2009,358(2):193-202.
    [108]Lorenz H., Penner S., Jochum W., et al. Pd/Ga2O3 methanol steam reforming catalyst:Part II. Catalytic selectivity [J]. Appl. Catal. A:Gen.,2009,358(2):203-210.
    [109]Lorenz H., Jochum W., Klotzer B., et al. Novel methanol steam reforming activity and selectivity of pure In2O3 [J]. Appl. Catal. A:Gen.,2008,347(1):34-42.
    [110]Men Y., Kolb G., Zapf R., et al. Methanol steam reforming over bimetallic Pd-In/Al2O3 catalysts in a microstructured reactor [J]. Appl. Catal. A:Gen.,2010,380(1-2):15-20.
    [111]Lorenz H., Turner S., Lebedev O. Ⅰ., et al. Pd-In2O3 interaction due to reduction in hydrogen: Consequences for methanol steam reforming [J]. Appl. Catal. A:Gen.,2010,374(1-2),180-188.
    [112]Ahn S. H., Kwon O. J., Choi I., et al. Synergetic effect of combined use of Cu/ZnO/Al2O3 and Pt/Al2O3 for the steam reforming of methanol [J], Catal. Commun.,2009,10(15):2018-2022.
    [113]云虹,张慧,陈建华等CuO-ZnO-ZrO2催化甲醇水蒸气重整反应机理和中间态[J],物理化学学报,2004,20(5):524-528.
    [114]李言浩,马沛生,苏旭等.铜系催化剂上甲醇蒸汽转化制氢过程的原位红外研究[J],催化学报,2003,24(2):93-96.
    [115]Pour V., Barton J., Benda A. Kinetics of catalyzed reaction of methanol with water vapour [J]. Collect. Czech. Chem. Commun.,1975,40(10):2923-2934.
    [116]Santacesaria E., Carra S. Kinetics of catalytic steam reforming of methanol in a cstr reactor [J]. Appl. Catal.,1983,5(3):345-358.
    [117]韩峭峰,李永峰,董新法等.甲醇水蒸气重整制氢反应的热力学分析[J],工业催化,2007,15(1):4346.
    [118]Takahashi K., Takezawa N., Kobayashi H. The mechanism of steam reforming of methanol over a copper-silica catalyst [J], Appl. Catal.,1982,2(6):363-366.
    [119]Jiang C. J., Trimm D. L., Wainwright M. S. Kinetic study of steam reforming of methanol over copper-based catalysts [J]. Appl. Catal. A:Gen.,1993,93(2):245-255.
    [120]Jiang C. J., Trimm D. L., Wainwright M. S. Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst [J]. Appl. Catal. A:Gen.,1993,97(2):145-158.
    [121]Peppley B. A., Amphlett J. C, Kearns L. M., et al. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1:the reaction network [J]. Appl. Catal. A:Gen.,1999,179(1-2):21-29.
    [122]Peppley B. A., Amphlett J. C, Kearns L. M., et al. Methanol-steam reforming on Cu/ZnO/Al2O3. Part 2. A comprehensive kinetic model [J]. Appl. Catal. A:Gen.,1999,179(1-2):31-49.
    [123]Takezawa N., Iwasa N. Steam reforming and dehydrogenation of methanol:Difference in the catalytic functions of copper and group Ⅷ metals [J]. Catal. Today,1997,36(1):45-56.
    [124]Breen J. P., Ross J. R. H. Methanol reforming for fuel-cell applications:development of zirconia-containing Cu-Zn-Al catalysts [J]. Catal. Today,1999,51(3-4):521-533.
    [125]Shishido T., Yamamoto Y., Morioka H., et al. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation:Steam reforming and oxidative steam reforming [J], J. Mol. Catal. A:Chem.,2007,268(1-2):185-194.
    [126]Frank B., Jentoft F. C., Soerijanto H., et al. Steam reforming of methanol over copper-containing catalysts:Influence of support material on microkinetics [J]. J. Catal.,2007,246(1):177-192.
    [127]Trovarelli A. Catalytic properties of Ceria and CeO2-containing materials [J]. Catal. Rev. Sci. Eng., 1996,38(4):439-520.
    [128]Trovarelli A., Leitenburg C, Boaro M., et al. The utilization of ceria in industrial catalysis [J]. Catal. Today,1999,50(2):353-367.
    [129]Rao G. R., Kaspar J., Meriani S., et al. NO decomposition over partially reduced metalized CeO2-ZrO2 solid solutions [J]. Catal. Lett,1994,24(1-2):107-112.
    [130]Ozawa M, Kimura M, Isogai A. The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts [J]. J. Alloys Compd.,1993,193(1-2):73-75.
    [131]Mamontov E., Egami T., Brezny R., et al. Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia [J]. J. Phys. Chem. B,2000,104(47):11110-11116.
    [132]Fornasiero P., Balducci G., Monte R. D., et al. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2 [J]. J. Catal.,1996,164(1):173-183.
    [133]Yao M. H., Baird R. J., Kunz F. W., et al. An XRD and TEM investigation of the structure of alumina-supported ceria-zirconia [J]. J. Catal.,1997,166(1):67-74.
    [134]Monte R. D., Kaspar J. Heterogeneous environmental catalysis-a gentle art:CeO2-ZrO2 mixed oxides as a case history [J]. Catal. Today,2005,100(1-2):27-35.
    [135]Daturi M., Finocchio E., Binet C., et al. Reduction of high surface area CeO2-ZrO2 mixed oxides [J]. J. Phys. Chem. B,2000,104(39):9186-9194.
    [136]Hickey N., Fornasiero P., Monte R. D., et al. A comparative study of oxygen storage capacity over Ceo.6Zr0.4O2 mixed oxides investigated by temperature-programmed reduction and dynamic OSC measurements [J]. Catal Lett,2001,72(1-2):45-50.
    [137]Fornasiero P., Fonda E., Monte R. D., et al. Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides [J]. J. Catal.,1999,187(1):177-185.
    [138]Fornasiero P., Kaspar J., Sergo V., et al. Redox behavior of high-surface-area Rh-, Pt-, and Pd-loaded Ce0.5Zr0.5O2 mixed oxide [J]. J. Catal.,1999,182(1):56-69.
    [139]王帅帅,冯长根.铈锆固溶体制备方法的研究进展[J].化工进展,2004,23(5):476-479.
    [140]Fornasiero P., Dimonte R., Rao G. R., et al. Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers:dependence of the reduction behavior and the oxygen storage capacity on the structural-properties [J]. J. Catal.,1995,151(1):168-177.
    [141]Kaspar J., Fornasiero P., Graziani M. Use of CeO2-based oxides in the three-way catalysis [J]. Catal. Today,1999,50(2):285-298.
    [142]Pengpanich S., Meeyoo V., Rirksomboon T., et al. Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis [J]. Appl. Catal. A:Gen.,2002, 234(1-2):221-233.
    [143]Reddy B. M., Khan A. Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 mixed oxides:influence of supporting oxide on thermal stability and oxygen storage properties of ceria [J]. Catal. Surveys from Asia,2005,9(3):115-171.
    [144]Ozawa M., Kimura M., Isogai A. The application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts [J]. J. Alloys Compd.,1993,193(1-2):73-75.
    [145]Monte R. D., Kaspar J. Nanostructured CeO2-ZrO2 mixed oxides [J]. J. Mater. Chem.,2005,15(6): 633-648.
    [146]Colon G., Valdivieso F., Pijolat M., et al. Textural and phase stability of CerZr1-xO2 mixed oxides under high temperature oxidising conditions [J]. Catal. Today,1999,50(2):271—284.
    [147]Kakuta N., Ikawa S., Eguchi T., et al. Oxidation behavior of reduced (CeO2)1-x-(ZrO2)x(x= 0,0.2, 0.5) catalysts [J]. J. Alloys Compd.,2006,408-412:1078-1083.
    [148]Thammachart M., Meeyoo V., Risksomboon T., et al. Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique:CO oxidation [J]. Catal. Today,2001,68 (1-3):53-61.
    [149]冯长根,张江山,王亚军.低温合成纳米级固溶体Ce1-xZrxO2的研究[J].硅酸盐学报,2004,32(4):502-506.
    [150]Overbury S. H., Huntley D. R., Mullins D. R., et al. XANES studies of the reduction behavior of (Ce1-yZry)O2 and Rh/(Ce1-yZry)O2 [J]. Catal. Lett.,1998,51(3-4):133-138.
    [151]吴刚.材料结构表征及应用[M].北京:化学工业出版社.2002.
    [152]辛勤.固体催化剂研究方法[M].北京:科学出版社.2004.
    [153]黄惠忠.纳米材料分析[M].北京:化学工业出版社.2003.
    [154]王胜PEMFC甲醇自热重整制氢体系关键过程优化[D].大连:中国科学院大连化学物理研究所,2006.
    [155]天津大学物理化学教研室.物理化学第四版[M].北京:高等教育出版社,2001.
    [156]Seo Y. S., Shirley A., Kolaczkowski S. T. Evaluation of thermodynamically favorable operating conditions for production of hydrogen in three different reforming technologies [J]. J. Power Source,2002,208(1-2):213-225.
    [157]Cao L., Ni C. J., Yuan Z. S., et al, Correlation between catalystic selectivity and oxygen storage capacity in autothermal reforming of methane over Rh/Ceo.45Zr0.45RE0.1 catalysts (RE=La, Pr, Nd, Sm, Eu, Gd, Tb) [J], Catal. Commun.,2009; 10(8):1192-1195.
    [158]Hori C. E., Permana H., Simon N. K. Y., et al. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system [J]. Appl. Catal. B:Envir.,1998,16(2):105-117.
    [159]Liu Y., Hayakawa T., Suzuki K., Hamakawa S., et al. Highly active copper/ceria catalysts for steam reforming of methanol [J]. Appl. Catal. A:Gen.,2002,223(1-2):137-145.
    [160]Patel S., Pant K. K. Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts [J]. Fuel Process. Technol.,2007,88(8):825-832.
    [161]Patel S., Pant K. K. Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxida catalysts [J]. Chem. Eng. Sci.,2007,62(18-20):5436-5443.
    [162]Hurst N. W., Gentry S. J., Jones A. A., et al. Temperature programmed reduction [J]. Catal. Rev.: Sci. Eng.,1982,24(2):233-309.
    [163]Shimokawabe M., Asakawa H., Takezawa N. Characterization of copper/zirconia catalysts perpared by an impregnation method [J]. Appl. Catal.,1990,59(1):45-58.
    [164]Raimondi F., Geissler K., Wanbach J., et al. Hydrogen production by methanol reforming: post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD [J]. Appl. Sur. Sci., 2002,189(1-2):59-71.
    [165]Oguchi H., Kanai H., Utani K., et al. Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts [J]. Appl. Catal. A:Gen.,2005,293:64-70.
    [166]Jones S. D., Neal L. M, Hagelin-Weaver H. E. Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina [J]. Appl. Catal. B:Environ.,2008,84(3-4):631-642.
    [167]Chusuei C. C., Brookshier M. A., Goodman D. W.Correlation of relative X-ray photoelectron spectroscopy shake-up intensity with CuO particle size [J]. Langmuir,1999,15(8):2806-2808.
    [168]Goodby B. E., Pemberton J E. XPS characterization of a commercial Cu/ZnO/Al2O3 catalyst: effects of oxidation reduction, and the steam reformation of methanol [J]. Appl. Spectr.,1988, 42(5):754-760.
    [169]Mullins D. R., Overbury S. H., Huntley D. R. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces [J]. Surf. Sci.,1998,409(2):307-319.
    [170]罗丽珠.金属Ce表面氧化反应XPS研究[D].四川:中国工程物理研究院,2005.
    [171]Wang X. H., Lu G. Z., Guo Y., et al. Properties of CeO2-ZrO2 solid solution supported on Si-modified Alumina and its application in Pd catalyst for methane combustion [J]. Chin. J. Catal., 2008,29(10):1043-1050.
    [172]Waller D., Stirling D., Stone F. S., et al. Copper-zinc oxide catalysts. Activity in relation to precursor structure and morphology, Faraday Discuss. Chem. Soc.,1989,87:107-120.
    [173]郭彦鑫.沉淀法制备铜基甲醇合成催化剂的研究[J].化学工业与工程技术,2010,5(31):42-45.
    [174]Yang H. M., Liao P. H. Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol [J]. Appl. Catal. A:Gen.,2007,317(2):226-233.
    [175]Oguchi H., Kanai H., Utani K., et al. Cu2O as active species in the stram reforming of methanol by CuO/ZrO2catalysts [J]. Appl. Catal. A:Gen.,2005,293(1-2):64-70.
    [176]Koeneman P. B., Busch-Vishniac I. J., Wood K. L. Feasibility of micro power supplies for MEMS [J]. J. Microelecrtomech Sys.,1997,6(4):355-362.
    [177]孙国兵.微型甲醇重整制氢反应器内的吸放热耦合研究[D].太原:太原理工大学,2012.
    [178]米杰,孙国兵,潘立卫等.小型重整制氢反应器的性能[J].化工进展,2012,9(31):1903-1907.
    [179]王胜,王树东.自热制氢反应器研究进展[J].现代化工,2005,25(5):27-30.
    [180]潘立一卫,王树东.板式反应器中甲醇自热重整制氢的研究[J].燃料化学学报.2004,32(3):362-366.
    [181]穆昕,潘立卫,王树东.微型套管式制氢反应器中物流分布的研究[J].现代化工,2008,28(2):58-61.
    [182]Mu X., Pan L., Liu N., Zhang C. X., et al. Autothermal reforming of methanol in a mini-reactor for a miniature fuel cell [J]. Int. J. Hydrogen Energy,2007,32(15):3327-3334.
    [183]Purnama H., Ressler T., Jentoft R. E., et al. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 [J]. Appl. Catal. A:Gen.,2004; 259(1):83-94.
    [184]Jeevanandam P., Koltypin Y., Gedanken A. Preparation of nanosized nickel aluminate spinel by a sonochemical method [J]. Mater. Sci. Eng. B,2002,90(1-2):125-132.
    [185]Jung K. D., Bell A. T. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2 [J]. J. Catal., 2000,193(2):207-223.
    [186]Fisher Ⅰ. A., Bell A. T. A mechanistic study of methanol decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2 [J]. J. Catal.,1999,184(2):357-376.
    [187]Pokrovski K. A., Rhodes M. D., Bell A. T. Effects of cerium incorporation into zirconia on the activity of Cu/ZrO2 for methanol synthesis via CO hydrogenation [J]. J. Catal.,2005,235(2): 368-377.
    [188]Pokrovski K. A., Bell A. T. Effect of dopants on the activity of Cu/Mo.3Zro.702 (M=Ce, Mn, and Pr) for CO hydrogenation to methnaol. J. Catal.,2006,244(1):43-51.
    [189]Fisher I. A., Bell A. T. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2 [J]. J. Catal.,1998,178(1):153-173.
    [190]Jacobs G., Williams L., Graham U., et al. Low temperature water-gas shift:in situ DRIFTS-reaction study of ceria surface area on the evolution of formates on Pt/CeO2 fuel processing catalysts for fuel cell applications [J]. Appl. Catal. A:Gen.,2003,252(1):107-118.
    [191]Finocchio E., Daturi M., Binet C, et al. Thermal evolution of the adsorbed methoxy species on CexZr1-xO2 solid solution samples:a FT-IR study [J]. Catal. Today,1999,52(1):53-63.
    [192]Sexton B. A. Surface vibrations of adsorbed intermediates in the reaction of alcohols with Cu(100) [J]. Surf. Sci.,1979,88(2-3):299-318.
    [193]Sexton B. A., Hughes A. E., A very N. R. A spectroscopic study of the adsorption and reactions of methanol formaldehyde and methyl formate on clean and oxygenated Cu(110) surfaces [J]. Surf Sci,1985,155(1):366-386.
    [194]Vargas L. M. A., Busca G., Costantino U.,et al. An IR study of methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts [J]. J. Mol. Catal. A:Chem.,2007,266(1-2):188-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700