介孔CeO_2的制备及其负载Au-Pd催化剂甲醇部分氧化制氢性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇部分氧化制氢被认为是实现车载制氢的有效途径。Pd基催化剂对该反应具有良好的催化活性,Au催化甲醇部分氧化制氢的研究也较多,Au-Pd双金属催化剂因其不同于其组成金属的性质可在甲醇部分氧化制氢反应中表现出较好的催化性能。
     氧化铈是稀土氧化物系列中活性最高的氧化物之一,具有较为独特的晶体结构、较高的储氧能力和释放氧的能力、较强的氧化-还原性能(Ce~(3+)/Ce~(4+)),已被广泛应用于催化领域。将CeO_2制成介孔材料不但可提高CeO_2的比表面积,且能提供适当的孔结构,有利于反应物的扩散和催化剂活性的提高。
     本文研究了介孔CeO_2的制备方法及制备条件对介孔CeO_2的比表面、孔容和孔径等织构性质的影响,并考察了介孔CeO_2载体的织构性质对Au-Pd催化剂催化性能的影响。同时还研究了活性组分Au、第二组分ZnO的引入以及焙烧温度对催化剂性能的影响。采用XRD、UV-Vis、TEM、N_2吸附、FT-IR、TG、ICP、TPR和TPD等方法对介孔CeO_2及其催化材料进行了表征。
     1.采用有机小分子葡萄糖和丙烯酰胺以及铈前驱体硝酸铈铵为原料,水热法制备介孔CeO_2。结果表明,由四价硝酸铈盐制备的介孔CeO_2其比表面比采用三价硝酸铈盐时有较大增加。丙烯酰胺和葡萄糖共存时有利于提高样品的比表面,缺少丙烯酰胺或葡萄糖时所制样品的比表面均较小。水热处理时间和原料的加入方式对介孔CeO_2的织构性能也有一定的影响。所制样品能在较低温度下除去有机物,有利于保持介孔结构和获得较大的比表面。
     2.分别采用表面活性剂聚乙二醇PEG4000、嵌段共聚物F127、十六烷基三甲基溴化铵(CTAB)、十六胺(HDA)和十二烷基硫酸钠(SDS)为模板剂和无机铈盐为铈前驱体制备介孔CeO_2。结果表明,由于无机铈盐水解缩聚快,不利于其在表面活性剂表面的自组装,表面活性剂的模板剂作用较弱,所得介孔CeO_2的性质主要与铈盐的价态有关,同一铈盐和不同表面活性剂制备的介孔CeO_2孔径大小较接近。
     铈前驱体和沉淀温度对介孔CeO_2织构性质的影响较大。与四价铈盐合成的介孔CeO_2相比,由三价铈盐合成的介孔CeO_2平均晶粒较大、孔径较大、比表面较小。随着沉淀温度的升高,样品的孔径和孔容增大、比表面减小。这些均与无机铈盐的氢氧化物溶解度有关。
     3.以F127、CTAB和HDA表面活性剂制备的m-CeO_2为载体,考察了载体织构性质对Au-Pd催化剂性能的影响。结果表明,m-CeO_2负载Au-Pd后,织构性质变化较小,催化剂的比表面、孔径大小顺序和载体一致,即Au-Pd/F4、Au-Pd/C4和Au-Pd/H4催化剂的平均孔径分别小于对应的Au-Pd/F3、Au-Pd/C3和Au-Pd/H3,比表面分别大于对应的Au-Pd/F3、Au-Pd/C3和Au-Pd/H3。Au-Pd/F3、Au-Pd/C3和Au-Pd/H3催化剂的平均孔径、孔容和比表面差别较小,按此顺序有所增加。与Au-Pd/F4、Au-Pd/C4的孔径较小不同,Au-Pd/H4具有较大的孔径。
     m-CeO_2载体较大的比表面使Au-Pd/m-CeO_2催化剂的活性组分分散度提高、活性组分粒子变小、表面活性中心和碱性中心增多、H_2吸附增强,孔径小的载体不利于反应物及产物的扩散。
     250-300℃反应时,AuPd/F3、AuPd/C3和AuPd/H3催化剂的活性均分别高于对应的AuPd/F4、AuPd/C4和AuPd/H4,但AuPd/H3和AuPd/H4二者的活性差别较小。AuPd/F3、AuPd/C3和AuPd/H3催化剂的活性顺序与催化剂活性组分的分散度有对应关系,这些结果表明,Au-Pd/m-CeO_2催化剂的活性并不完全是由活性组分的分散度决定,是多种因素综合作用的结果,孔径小的催化剂活性受气体扩散的影响较大。
     反应温度为250-400℃时,AuPd/F和AuPd/C催化剂的H_2选择性顺序均为AuPd/F3>AuPd/F4、AuPd/C3>AuPd/C4。AuPd/H催化剂的H_2选择性顺序不同于AuPd/F和AuPd/C催化剂,反应温度为250-300℃时,H_2选择性顺序为AuPd/H3>AuPd/H4;350-400℃反应时,H_2选择性顺序却为AuPd/H4>AuPd/H3。催化剂的H_2选择性与孔径、比表面等因素有关,催化剂比表面大有利于提高活性组分分散度,使活性金属晶粒小,有利于提高H_2选择性;但催化剂孔径小不利于H_2的扩散,使H_2氧化为H_2O的几率增加。Au-Pd/m-CeO_2催化剂H_2的选择性是以上多种因素综合作用的结果。
     4.采用沉积沉淀法制备Pd/CeO_2、Au-Pd/CeO_2和Au/CeO_2,考察了Au的引入对Pd/CeO_2催化剂甲醇部分氧化制氢性能的影响。结果表明,Pd/CeO_2催化剂中Pd对H_2的吸附强,不利于活性中心再生,生成的H_2易被进一步氧化为H_2O,使H_2选择性下降。Au/CeO_2反应活性较低,低温时具有较高的H_2选择性,但400℃时H_2选择性下降较快。
     Au-Pd/CeO_2双金属催化剂表现出较高的催化活性和较高的H_2产率,这是由于Au和Pd的相互作用减少了Pd对反应产物H_2的吸附,有利于活性中心再生,且减小了H_2的深度氧化,同时Au和Pd相互作用使金粒子更稳定、不易聚集,有利于高温时H_2选择性的稳定。
     5.考察了焙烧温度对Au-Pd/CeO_2催化剂甲醇部分氧化制氢性能的影响。结果表明,焙烧温度升高使Au-Pd/CeO_2催化剂的比表面、孔容略微减小,此外PdO和表面CeO_2的还原峰温有所降低,低温还原峰面积减小,H_2吸附量减小,可能是由于随着焙烧温度的升高,金前驱体分解产生的金属态金逐渐增多,金钯前驱体相互作用有所减弱,Pd-CeO_2相互作用加强,同时金属态金有所聚集、覆盖了少量钯表面。
     550℃焙烧的催化剂活性高于300℃焙烧和未焙烧的催化剂,可能与焙烧温度升高使Pd-CeO_2相互作用增强、有利于反应有关。反应温度较低时550℃焙烧的催化剂具有较高的H_2选择性,反应温度较高时未焙烧的催化剂H_2选择性较高。
     6.采用浸渍法制备ZnO-CeO_2,考察了第二组分ZnO的引入对Au-Pd/CeO_2催化剂甲醇部分氧化制氢性能的影响。Au-Pd/ZnO-CeO_2催化剂的TPR中约200℃时开始有部分ZnO被还原,CO-IR中吸收峰移向低频,这些结果表明Au-Pd/ZnO-CeO_2催化剂中Pd和Zn之间发生了相互作用。
     ZnO的引入虽然降低了Au-Pd/CeO_2催化剂的活性,但提高了催化剂H_2选择性和降低了CO选择性,可能是由于Pd和Zn之间发生了相互作用,抑制了Pd的甲醇分解活性,有利于H_2O与甲醇或其脱氢中间体反应转化为H_2和CO_2,从而提高了H_2选择性、降低了CO选择性。
Partial oxidation of methanol has been suggested as a suitable route for hydrogen production from methanol.The supported Pd-based catalyst is reported to be active for partial oxidation of methanol to produce hydrogen.And there are also many researches about Au-based catalyst for hydrogen production from methanol or ethanol. Au-Pd bimetallic catalyst may be shows better performance in the methanol partial oxidation reaction because of its property different from that of components.
     Ceria is one of a series of rare earth oxides with highest activity.It has been widely used as an additive or support of catalysts because of its unique crystal structure,high oxygen storage capacity(OSC) and strong redox properties. Preparation of ceria with mesoporous structure can not only increase surface area but also offer appropriate pore structure,which favors diffusion of reactant and product as well as enhancement of catalytic activity.
     In this paper,the effect of preparation method and factors of mesoporous CeO_2 on its texture properties and the effect of support texture properties on catalytic properties of corresponding catalysts were investigated.Moreover the influence of active component Au and the second component ZnO as well as calcination temperature on catalyst performance were also studied.Physical and chemical properties,structure of mesoporous CeO_2 and Au-Pd catalysts were characterized by means of XRD,UV-Vis,TEM,N_2-adsorption,FT-IR,TPR,and TPD etc.
     1.Mesoporous ceria with high specific surface area were prepared using glucose, acrylamide and ceric nitrate via hydrothermal method.Results indicate that transition of cerium ion valence fromⅢtoⅣcauses higher surface area of mesoporous ceria. Furthermore,glucose and acrylamide coexisting in the synthesis is essential to obtain samples with high surface areas.In the absence of glucose or acrylamide,surface areas of samples are lower.In addition,the properties of mesoporous ceria are also found to be influenced by hydrothermal reaction time and adding sequence of raw materials.Non-surfactant organic compounds can be removed at lower temperature, which facilitates to maintain mesoporous structure and obtain higher surface area.
     2.Mesoporous ceria were prepared with different surfactants PEG4000,F127, CTAB,SDS and HDA,respectively.The results reveal surfactant less affects pore size of mesoporous CeO_2 because of quickly hydrolysis and condensation of inorganic cerium salt,which is adverse to its self-assembly on surfactant surface.The properties of prepared mesoporous CeO_2 mainly reflects nature of inorganic cerium salt and the pore size of mesoporous ceria synthesized from the same cerium salt is similar.
     Precipitation temperature and cerium precursor have large effect on texture properties of mesoporous CeO_2,as a result of their impact on the solubility of hydrous cerium hydroxide.Ceric nitrate as cerium precursor is conducive to preparation of mesoporous CeO_2 with smaller grain size,pore size and higher surface area.Moreover Pore size and volume of samples increase and surface area decrease with the precipitation temperature increasing.
     3.Mesoporous CeO_2 prepared from different surfactants F127,CTAB and HDA, respectively were used as supports for Au-Pd catalysts.And the influence of texture properties of supports on catalytic properties of Au-Pd/m-CeO_2 catalysts was studied. The results show that the texture properties change little after Au-Pd is supported and the sequence of surface area,pore size of catalysts is the same as that of supports.The average pore size of Au-Pd/F4,Au-Pd/C4 and Au-Pd/H4 is smaller than corresponding Au-Pd/F3,Au-Pd/C3 and Au-Pd/H3,respectively.And the surface area of Au-Pd/F4,Au-Pd/C4 and Au-Pd/H4 is higher than that of Au-Pd/F3,Au-Pd/C3 and Au-Pd/H3,respectively.The pore size,pore volume and surface area of Au-Pd/F3, Au-Pd/C3 and Au-Pd/H3 are similar and slightly increase in the sequence.
     The impact of texture properties of support on catalysts is mainly manifested in the following aspects.Catalyst with higher surface area reveals higher dispersion and smaller size of active components,more superficial active sites and base sites,as well as stronger adsorption of H_2.And smaller pore size of carder is adverse to diffusion of reactant and product.
     At low temperature(250~300℃),Au-Pd/F3,Au-Pd/C3 and Au-Pd/H3 exhibits higher catalytic activity than Au-Pd/F4,Au-Pd/C4 and Au-Pd/H4,respectively,in which the activity difference of Au-Pd/H3 and AuPd/H4 is smaller.These catalysts' activities don't present the consistent relations with the dispersion of active components.But Au-Pd/F3,Au-Pd/C3 and Au-Pd/H3 have the corresponding relationships with the dispersion of active components.These results indicate that catalytic activity of Au-Pd/m-CeO_2 is not completely decided by the dispersion of active components.It is a combined result of many factors,in which gas diffusional limitation has large impact on activity of catalysts with small pore size.
     The order of H_2 selectivity of AuPd/F and AuPd/C within reaction temperature of 250-400℃is AuPd/F3>AuPd/F4 and AuPd/C3>AuPd/C4.And the sequence of H_2 selectivity of AuPd/H is different from that of AuPd/F and AuPd/C.H_2 selectivity of AuPd/H is AuPd/H3>AuPd/H4 within 250-300℃and AuPd/H4>AuPd/H3 within 350-400℃.
     H_2 selectivity of catalyst is also related to its pore size and surface area.Higher surface area is beneficial to increase metal dispersion,decrease metal grain size, favorable to enhancement of H_2 selectivity.However smaller pore size of catalyst is against to H_2 diffusion out from pore to gas bulk and H_2 is easily further oxidized to H_2O.H_2 selectivity of catalyst is the comprehensive results of these factors.
     4.Au/CeO_2,Au-Pd/CeO_2 and Pd/CeO_2 catalysts were prepared by deposition-precipitation (DP) method,and their activities and H_2 selectivity for partial oxidation of methanol were evaluated.H_2 adsorption on Pd/CeO_2 is strong, unfavorable to regeneration of the active site,causing its activity is equal to Au-Pd/CeO_2 with lower Pd content.Furthermore strongly adsorbed H_2 on Pd/CeO_2 easily causes depth oxidation of H_2 to H_2O and consequently decrease of H_2 selectivity.Au/CeO_2 shows low reactivity.Its H_2 selectivity is high at lower temperature but significantly reduces at 400℃.In comparison to Au/CeO_2 and Pd/CeO_2 catalysts,Au-Pd/CeO_2 catalyst shows high activity and hydrogen yield for partial oxidation of methanol reaction,due to the synergetic interaction between gold and palladium species,which suppresses aggregate of Au particles and decreases adsorption of hydrogen and hydrogen deep oxidation.
     5.Calcination temperature on the performance of Au-Pd/CeO_2 catalysts for partial oxidation of methanol has been evaluated.With the increase of calcination temperature,surface area and pore volume of catalysts decrease a little.In addition, the reduction peaks for PdO and surface CeO_2 are both slightly shifted toward lower temperatures,and the areas of hydrogen reduction at the lower temperature as well as H_2 adsorption amount decrease.It is because that with the increase of temperature, the amount of metal gold decomposed from its precursor increases,the interaction between the precursors of gold and palladium is weakened while the interaction between palladium and CeO_2 is reinforced.At the same time,aggregate degree of metal gold increases and covers a small amount of palladium surface.
     Activity of catalyst calcined at 550℃is higher than that of the other two.It is probably that interaction between palladium and CeO_2 becomes stronger with the increase of calcination temperature,which is in favor of reaction process.At lower temperature the catalyst calcined at 550℃exhibits higher H_2 selectivity while at higher temperature the uncalcined catalyst shows higher H_2 selectivity.
     6.ZnO-CeO_2 was prepared by impregnation method.The influence of ZnO on the performance of Au-Pd/CeO_2 catalysts for partial oxidation of methanol has been evaluated.TPR reveals that some of ZnO can be initially reduced at about 200℃.And CO-IR shows that the position of the bands is shifted to lower frequencies for Au-Pd/ZnO-CeO_2 catalyst.These reveal interaction between Pd and Zn.
     Although Au-Pd/ZnO-CeO_2 exhibits relatively lower methanol conversion,it shows higher H_2 selectivity and lower CO selectivity than Au-Pd/CeO_2.It may results from interaction between Pd and Zn,which restrains methanol decomposition of Pd and favors H_2O react with methanol or dehydrogenated intermediate to formation of CO_2 and H_2,consequently increasing H_2 selectivity and decreasing CO selectivity of Au-Pd/ZnO-CeO_2 catalyst.
引文
[1] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J].Pure and Applied Chemistry, 1985, 57: 603-619.
    
    [2] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992,359: 710-712.
    [3] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society, 1992,114: 10834-10843.
    [4] Mohamed M M, Bayoumy W A, Khairy M, et al. Synthesis of micro-mesoporous TiO_2 materials assembled via cationic surfactants: Morphology, thermal stability and surface [J]. Microporous and Mesoporous Materials, 2007,103: 174-183.
    [5] P(?)rvulescu V I, P(?)rvulescu V, Endruschat U, et al. Preparation and characterization of mesoporous zirconium oxide, part 2 [J]. Microporous and Mesoporous Materials, 2001,44-45: 221-226.
    [6] Wang T W, Dai L R. Synthesis and characterization of yttrium-based cubic mesophase by using anionic surfactant as template [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209: 65-70.
    [7] Yada M, Kitamura H, Machida M, et al. Yttrium-based porous materials templated by anionic surfactant sssemblies [J]. Inorganic Chemistry, 1998, 37: 6470-6475.
    [8] Wang Y Q, Yin L X, Palchik O, et al. Sonochemical synthesis of layered and hexagonal yttrium-zirconium oxides [J]. Chemistry of Materials, 2001, 13: 1248-1251.
    [9] Ulagappan N and Rao CNR. Mesoporous phases based on SnO_2 and TiO_2 [J]. Chemical Communications, 1996, 14: 1685-1686.
    [10] Sheng Q R, Yuan S, Zhang J L, et al. Synthesis of mesoporous titania with high photocatalytic activity by nanocrystalline particle assembly [J]. Microporous and Mesoporous Materials, 2006, 87: 177-184.
    
    [11] Signoretto M, Breda A, Somm F, et al. Mesoporous sulphated zirconia by liquid-crystal templating method [J]. Microporous and Mesoporous Materials, 2006, 91:23-32.
    
    [12] Jiao F and Bruce P G. Two- and three-dimensional mesoporous iron oxides with microporous walls [J]. Angewandte Chemie International Edition, 2004, 43(14):5958-5961.
    
    [13] Idakiev V, Tabakova T, Naydenov A, et al. Gold catalysts supported on mesoporous zirconia for low-temperature water-gas shift reaction [J]. Applied Catalysis B: Environmental, 2006, 63: 178-186.
    [14]赵旭,罗来涛,刘成文,等.模板剂和制备条件对介孔CeO_2材料性能的影响[J].化学研究与应用,2007,19(8):858-862.
    [15]Tan R Q,He Y,Zhu Y F,et al.Hydrothermal preparation of mesoporous TiO_2 powder from Ti(SO_4)_2 with poly(ethylene glycol) as template[J].Journal of Materials Science,2003,38:3973-3978.
    [16]Devi G S,Hyodo T,Shimizu Y,et al.Synthesis of mesoporous TiO_2-based powders and their gas-sensing properties[J].Sensors and Actuators B,2002,87:122-129.
    [17]Yamamoto S,Kakihana M,Kato S.A polymer complex solution route to the low-tempera- ture synthesis of tetragonal Zr_(0.88)Ce_(0.12)O_2 with a reduced amount of organic substance[J].Journal of Alloys and Compounds,2000,297:81-86.
    [18]Yang P D,Zhao D Y,Margolese D I,et al.Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J].Nature,1998,396:152-155.
    [19]Yuan M J,Shan Z,Tian B Z,et al.Preparation of highly ordered mesoporous WO_3-TiO_2as matrix in matrix-assisted laser desorption-ionization mass spectrometry[J].Microporous and Mesoporous Materials 2005,78:37-41.
    [20]Sinha A K and Suzuki K.Three-dimensional mesoporous chromium oxide:a highly efficient material for the elimination of volatile organic compounds[J].Angewandte Chemic International Edition,2005,44:271-273.
    [21]郑金玉,丘坤元.有机小分子模板法合成二氧化钛中孔材料[J].高等学校化学学报,2000,21(4):647-649.
    [22]Zheng J Y,Pang J B,Qiu K Y,et al.Synthesis of mesoporous titanium dioxide materials by using a mixture of organic compounds as a non-surfactant template[J].Journal of Materials Chemistry,2001,11:3367-3372.
    [23]Jiu J T,Kurumada K,Tanigaki M.Preparation of nanoporous ZnO using copolymer gel template[J].Materials Chemistry and Physics,2003,81:93-98.
    [24]Ba J H,Polleux J,Antonietti M,et al.Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures[J].Advanced Materials,2005,17(20):2509-2512.
    [25]Tian B Z,Liu X Y,Tu B,et al.Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J].Nature Materials,2003,2:159-163.
    [26]Jun S,Joo S H,Ryoo R,et al.Synthesis of New,Nanoporous carbon with hexagonally ordered mesostructure[J].Journal of the American Chemical Society,2000,122(43):10712-10713.
    [27]Laha S C and Ryoo R.Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica,templates[J].Chemical Communications,2003,2138-2139.
    [28]Corma A,Atienzar P,Garcia H,et al.Hierarchically mesostructured doped CeO_2 with potential for solar-cell use[J].Nature Materials,2004,3(6):394-397.
    [29] Fan H Y, Chen Z, Brinker C J, et al. Synthesis of organo-silane functionalized Nanocrystal micelles and their self-assembly [J]. Journal of the American Chemical Society, 2005, 127: 13746-13747.
    [30] Crepaldi E L, Soler-Illia G J, Grosso D, et al. Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO_2 [J]. Journal of the American Chemical Society, 2003, 125(32): 9770-9786.
    [31] Wang C, Li Q, Wang R Dg. Synthesis and characterization of mesoporous TiO_2 with anatase wall [J]. Materials Letters, 2004, 58: 1424- 1426.
    [32] Wu L, Yu J, Wang X C, et al. Characterization of mesoporous nanocrystalline TiO_2 photocatalysts synthesized via a sol-solvothermal process at a low temperature [J].Journal of Solid State Chemistry, 2005,178: 321-328.
    [33] Peng T Y, Song H B, Xiao J R, et al. The effect of acidity on the structural and textural evolution of titania in the presence of primary amine and inorganic precursor [J]. Journal of Non-Crystalline Solids, 2006,352: 3167-3174.
    [34] Yada M, Kitamura H, Ichinose A, et al. Mesoporous magnetic materials based on rare earth oxides [J]. Angewandte Chemie International Edition, 1999, 38(23): 3506-3510.
    [35] Calleja G, Serrano D P, Sanz R, et al. Study on the Synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants [J]. Industrial and Engineering Chemistry Research, 2004,43: 2485-2492.
    [36] Wu Y, Liu H M and Xu B Q. Solvothermal synthesis of TiO_2: anatase nanocrystals and rutile nanofibres from TiCl_4 in acetone [J]. Applied Organometallic Chemistry, 2007,21:146-149.
    [37] Grosso D, Boissiere C, Smarsly B, et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides [J]. Nature materials, 2004, 3:787-792.
    [38] Soler-Illia G J, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chemical Reviews, 2002, 102 (11): 4093-4138.
    [39] Monnier A, Schtlth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science, 1993, 261:1299-1303.
    [40] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant /inorganic composite materials [J]. Nature, 1994, 368: 317-321.
    [41] Zhao D Y, Luan Z H and Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves [J]. Chemical Communications, 1997, 1009-1010.
    
    [42] Liu P, Liu J and Sayari A. Preparation of porous hafnium oxide in the presence of a cationic surfactant [J]. Chemical Communications, 1997, 577-578.
    [43] Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chemistry of Materials, 1994,6(8): 1176-1191.
    [44] Antonelli D M, Nakahira A, Ying J Y. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves [J]. Inorganic Chemistry, 1996, 35, 3126-3136.
    [45] Hudson M J, Knowles J A. Preparation and characterisation of mesoporous high-surface- area zirconium (IV) oxide [J]. Journal of Materials Chemistry, 1996, 6, 89-95.
    [46] Pacheco G, Zhao E, Garcia A, et al. Syntheses of mesoporous zirconia with anionic surfactants [J]. Journal of Materials Chemistry, 1998, 8,219-226.
    [47] Soler-Illia G J and Sanchez C. Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic-inorganic composites [J]. New Journal of Chemistry, 2000,24,493-499.
    [48] Pidol L, Grosso D, Soler-Illia G J, et al. Hexagonally organised mesoporous aluminium - oxo-hydroxide thin films prepared by the template approach. In situ study of the structural formation [J]. Journal of Materials Chemistry, 2002, 12, 557 - 564.
    [49] Grosso D, Soler-Illia G J, Babonneau F, et al. Highly organized mesoporous titania thin films showing mono-oriented 2D hexagonal channels [J]. Advanced Materias, 2001, 13,1085-1090.
    [50] Trovarelli A, Leitenburg C D, Dolcetti G. Design better cerium-based oxidation catalysts [J]. Chem Tech, 1997, 6: 32-37.
    [51] Ricken M, Noelting J, Riess I, et al. Specific heat and phase diagram of nonstoichiometric ceria (CeO_(2-x)) [J]. Journal of Solid State Chemistry, 1984, 54: 89-99.
    [52] Laachir A, Perrichon V, Badri A, et al. Reduction of CeO_2 by hydrogen: magnetic susceptibility and fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements [J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(10): 1601-1609.
    [53] Terribile D, Trovarelli A, Llorca J, et al. The synthesis and characterization of mesoporous high-surface area ceria prepared using hybrid organic/iorganic route [J]. Journal of Catalysis, 1998, 178: 299-308.
    [54] Zhang J H, Yang Y Q, Shen J M, et al. Mesostructured CeO_2 and Pd/CeO_2 nanophases: templated synthesis, crystalline structure and catalytic properties [J]. Journal of Molecular Catalysis A: Chemical 237 (2005) 182-190.
    [55] Wang Y, Ma J, Luo M F, et al. Preparation of high-surface area nano- CeO_2 by template-assisted precipitation method [J]. Journal of Rare Earths, 2007, 25: 58-62.
    [56] Lundberg M, Sk(?)rman B, Wallenberg L R. Crystallography and porosity effects of CO conversion on mesoporous CeO_2 [J]. Microporous and Mesoporous Materials, 2004, 69: 187-195.
    [57] Hung I M, Wang H P, Lai W H, et al. Preparation of mesoporous cerium oxide templated by tri-block copolymer for solid oxide fuel cell[J].Electrochimica Acta,2004,50:745-748.
    [58]Daniel M L,Kevin M R,Michael A M.Preparation of ordered mesoporous ceria with enhanced thermal stability[J].Journal of Materials Chemistry,2002,12:1207-1212.
    [59]杨儒,刘建红,李敏.非表面活性剂合成CeO_2介孔材料[J].中国稀土学报,2004,22(6):739-745.
    [60]Gu F B,Wang Z H,Han D M,et al.Reverse micelles directed synthesis of mesoporous ceria nanostructures[J].Materials Science and Engineering B,2007,139(1):62-68.
    [61]Bumajdad A,Zaki M I,Eastoe J,et al.Characterization of nano-cedas synthesized in microemulsions by N_2 sorptiometry and electron microscopy[J].Journal of Colloid and Interface Science,2006,302:501-508.
    [62]Zawadzki M.Preparation and characterization of ceria nanoparticles by microwaveassisted solvothermal process[J].Journal of Alloys and Compounds,2008,454:347-351.
    [63]Khalil K M S,Elkabee L A,Murphy B.Preparation and characterization of thermally stable porous ceria aggregates formed via a sol-gel process of ultrasonically dispersed cerium(Ⅳ) isopropoxide[J].Microporous and Mesoporous Materials,2005,78:83-89.
    [64]Ho C,Yu J C,Kwong T,et al.Morphology-controllable synthesis of mesoporous CeO_2nano-and microstructures[J].Chemistry of Materials,2005,17:4514-4522.
    [65]Miyazaki E,Yasumori I.Kinetics of the catalytic decomposition of methanol,formaldehyde and methyl formate over a copper-wire surface[J].Bulletin of the Chemical Society of Japan,1967,40:2012-2027.
    [66]Sodesawa T,Nagacho M,Onadera A,et al.Dehydrogenation of methanol to methyl formate over Cu/SiO_2 catalysts prepared by ion exchange method[J].Journal of Catalysis,1986,102:460-463.
    [67]齐共新,费金华,侯昭胤,等.Cu-MnO/Al_2O_3催化剂上CO_2加氢反应的研究[J].石油化工,1999,28:660-662.
    [68]Turco M,Bagnasco G,Costantino U.Production of hydrogen from oxidative steam reforming of methanol Ⅱ.catalytic activity and reaction mechanism on Cu/ZnO/Al_2O_3hydrotalcite-derived catalysts[J].Journal of Catalysis,228(2004):56-65.
    [69]Rebholz M,Mation V,Prins R,et al.Methanol decomposition on oxygen precovered and atomically clean Pd(111) single crystal surfaces[J].Surface Science,1991,251-252:1117-1122.
    [70]Harold M P,Nair B,Kolios G.Hydrogen generation in a Pd membrane fuel processor:assessment of methanol-based reaction systems[J].Chemical Engineering Science,2003,58(12):2551-2571.
    [71]Pour V,Barton J.Kinetics of catalytic reaction of methanol with water vapour[J].Collection of Czechoslovak Chemical Communications,1975,40:923-934.
    [72] Peppley B A, Amphlett J C, Kearns L M, et al. Methanol steam reforming on CuO/ZnO-Al_2O_3 catalysts. Part 1: the reaction net work [J]. Applied Catalysis A: General, 1999,179: 21-29.
    [73] Peppley B A, Amphlett J C, Kearns L M, et al. Methanol-steam reforming on Cu/ZnO-Al_2O_3 catalyst. part2. a comprehensive kenetic model [J]. Applied Catalysis A: General, 1999,179: 31-49.
    [74] Asprey S P, Wojciechowski B W, Peppley B A. Kinetic studies using temperature scanning: the steam- reforming of methanol [J]. Applied Catalysis A: General, 1999, 179:51-70.
    [75] Jiang C J, Trimm D L, Wainwright M S, et al. Kinetic study of steam reforming of methanol over copper-based catalysts [J]. Applied Catalysis A: General, 1993, 93(2): 245-255.
    [76] Liu S, Takahashi K, Uematsu K, et al. Hydrogen production by oxidative methanol reforming on Pd/ZnO [J].Applied Catalysis A: General, 2005, 283: 125-135.
    [77] Takahashi K, Kobayashi H and Takezawa N. On the difference in reaction pathways of steam reforming of methanol over copper-silica and platinum-silica catalysts [J].Chemistry Letters, 1985,14 (6): 759-762.
    [78] Shishido T, Yamamoto Y, Morioka H. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al_2O_3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming [J]. Journal of Molecular Catalysis A: Chemical, 2007, 268: 185-194.
    [79] Iwasa N, Masuda S, Ogawa N, et al. Steam reforming of methanol over Pd/ZnO: Effect of the formation of Pd/Zn alloys upon the reaction [J]. Applied Catalysis A: General, 1995, 125: 145-147.
    [80] Huang T, Wang S. Hydrogen production via partial oxidation of methanol over copper-zinc catalyst [J]. Applied Catalysis A: General, 1986, 24: 283-298.
    [81] Huang T, Chren S. Kinetics of partial Oxidation of methanol over a copper-zinc catalyst [J]. Applied Catalysis A: General, 1988,40: 43-52.
    [82] Andreasen A, Lynggaard H, Stegelmann C, et al. A microkinetic model of the methanol oxidation over silver [J]. Surface Science, 2003, 544: 5-23,
    [83] Pena M A, Gomez J P, Fierro J L G. New catalytic routes for syngas and hydrogen production [J]. Applied Catalysis A: General, 1996,144: 7-57.
    [84] Chen M T, Lin Y S, Lin Y F, et al. Dissociative adsorption of HCOOH, CH_3OH, and CH_2O on MCM-41 [J]. Journal of Catalysis, 2004,228:259-263.
    [85] Imamura S, Uchihori D, Utan K. Oxidative decomposition of formaldehyde on silver-cerium composite oxide catalyst [J].Catalysis Letters, 1994,24: 377-384.
    [86] Rebellato J, Natile M M, Glisenti A. Influence of the synthesis procedure on the properties and reactivity of nanostructured ceria powders [J]. Applied Catalysis A: General, 2008, 339: 108-120.
    [87]Boccuzzi F,Chiorino A,Manzoli M.FTIR study of methanol decomposition on gold catalyst for fuel cells[J].Journal of Power Sources,2003,118:304-310.
    [88]Chen W K,Liu S H,Cao M J,et al.Adsorption and dissociation of methanol on Au(1 11) surface:A first-principles periodic density functional study[J].Journal of Molecular Structure:THEOCHEM,2006,770:87-91.
    [89]Espinosa L A,Lago R M,Pena M A,et al.Mechanistic aspects of hydrogen production by partial oxidation of methanol over Cu/ZnO catalysts[J].Topics in Catalysis,2003,22(3-4):245-251.
    [90]Alejo L,Lago R,Pena M A,et al.Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts[J].Appllied Catalysis A:General,1997,162(1-2):281-297.
    [91]Raimondi F,Geissler K,Wambach J.Hydrogen production by methanol reforming post-reaction characterisation of a Cu/ZnO/Al_2O_3 catalysts by XPS and TPD[J].Applied Surface Science,2002 189:59-71.
    [92]Agrell J,Boutonnet M,Fierro J L G.Production of hydrogen from methanol over binary Cu/ZnO catalysts part Ⅱ.catalytic activity and reaction pathways[J].Applied Catalysis A:General,2003,253:213-223.
    [93]Wang Z F,Xi J Y,Wang W P,et al.Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts[J].Journal of Molecular Catalysis A:Chemical,2003,191:123-134.
    [94]王志飞,王卫平,吕功煊.Cu/Fe催化剂催化甲醇部分氧化制氢[J].分子催化.2003,17(1):34-39.
    [95]Cubeiro M L,Fierro J L G.Partial oxidation of methanol over supported palladium catalysts[J].Appllied Catalysis A:General,1998,168:307-322.
    [96]Chin Y H,Dagle R,Hu J,et al.Steam reforming of methanol over highly active Pd/ZnO catalyst[J].Catal Today,2002,77:79-88.
    [97]Agrell J,Germani G,J(a|¨)ras S G,et al.Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique[J].Applied Catalysis A:General,2003,242:233-245.
    [98]Ranganathan E S,Bej S K,Thompson L T.Methanol steam reforming over Pd/ZnO and Pd/CeO_2 catalysts[J].Applied Catalysis A:General,2005,289:153-162.
    [99]Iwasa N and Takezawa N.New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol[J].Topics in Catalysis,2003,22:215-224.
    [100]Iwasa N,Takezawa N,Nomura W.Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol[J].AppliedCatalysisA:General,2003,248:153-160.
    [101]Chang F W,Yu H Y,Roselin L S,et al.Production of hydrogen via partial oxidation of methanol over Au/TiO_2 catalysts[J].Applied Catalysis A:General,2005,290(1-2):138-147.
    [102]Chang F W,Yu H Y,Roselin L S,et al.Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO_2-MO_x (M=Fe, Co, Zn) composite oxides [J]. Applied Catalysis A: General, 2006,302(2): 157-167.
    [103] Chang F W, Lai S C, Roselin L S, et al. Hydrogen production by partial oxidation of methanol over ZnO-promoted AU/Al_2O_3 catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2008, 282: 129-135.
    [104] Chang F W, Roselin L S, Ou T C, et al. Hydrogen production by partial oxidation of methanol over bimetallic Au-Ru/Fe_2O_3 catalysts [J]. Applied Catalysis A: General, 2008, 334: 147-155.
    [105] Yang H C, Chang F W, Roselin L S, et al. Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts [J]. Journal of Molecular Catalysis A: Chemical, 2007,276:184-190.
    [106] Bonarowska M, Pielaszek J, Semikolenov V A, et al. Pd-Au/Sibunit Carbon Catalysts: Characterization and Catalytic Activity in Hydrodechlorination of Dichlorodifluoro -methane (CFC-12) [J]. Journal of Catalysis, 2002, 209: 528-538.
    [107] Pawelec B, Venezia A M, Parola V L, et al. AuPd alloy formation in Au-Pd/Al_2O_3 catalysts and its role on aromatics hydrogenation [J].Applied Surface Science, 2005,242:380-391.
    [108] Hurtado-Juan M A, Yeung C M Y, Tsang S C. A study of co-precipitated bimetallic gold catalysts for water - gas shift reaction [J]. Catalysis Communications, 2008, 9: 1551-1557.
    [109] Venezia A M, Parola V La, Deganello G, et al. Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds [J]. Journal of Catalysis, 2003,215: 317-325.
    [110] Venezia A M, Parola V La, Nicoi V, et al. Effect of gold on the HDS activity of supported palladium catalysts [J]. Journal of Catalysis, 2002, 212(1): 56-62.
    [111] Suo Z H, Ma C Y, Jin M S, et al. The active phase of Au-Pd/Al_2O_3 for CO oxidation [J]. Catalysis Communications, 2008, 9: 2187-2190.
    
    [112] 马良涛,王香.气相色谱法分析天然气成分 [J]. 光谱实验室,2000, 17(5):605-609.
    [113] Ellis A V, Wilson M A. Carbon exchange in hot alkaline degradation of glucose [J]. Journal of Organic Chemistry, 2002, 67: 8469-8474.
    [114] Yang B Y, Montgomery R. Alkaline degradation of glucose: effect of initial concentration of reactants [J]. Carbohydrate Research, 1996, 280: 27-45.
    [115] Oikawa M, Fujihara S. Crystal growth of Ce_2O(CO_3)_2·H_2O in aqueous solutions: film formation and samarium doping [J]. Journal of Solid State Chemistry, 2005, 178:2036-2041.
    [116] Iwakura Y, Imai Y, Yagi K. Preparation of highly branched graft copolymers by the cericion method [J]. Journal of Polymer Science Part A-1, 1968,6: 801-807.
    [117] Sun C W, Sun J, Xiao G L, et al. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres [J]. Journal of Physical Chemistry B, 2006, 110: 13445-13452.
    [118]赵文宽,孙育斌,马庆华,等.中孔二氧化钛的合成和表征[J].催化学报,1999,20(3):375-377.
    [119]包南,孙剑,谢晴,马志会.PEG辅助纳米TiO_2的可控制备及其光催化活性[J].传感技术学报,2006,19(5):2354-2358.
    [120]Firouzi A,Kumar D,Bull L M,et al.Cooperative organization of inorganic-surfactant and biomimetic assemblies[J].Science,1995,267:1138-1143.
    [121]Lai S Y,Qiu Y F,Wang S J.Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene[J].Journal of Catalysis,2006,237(2):303-313.
    [122]Akita T,Okumura M,Tanaka K,et al.Analytical TEM observation of Au nano-particles on cerium oxide[J].Catalysis Today,2006,117:62-68.
    [123]陈清波,罗来涛,王建鑫.载体对Au-Pd双金属催化剂甲醇部分氧化性能的影响[J].化工学报,2008,59(4):898-903.
    [124]Amorim C,Yuan G,Patterson P M,et al.Catalytic hydrodechlorination over Pd supported on amorphous and structured carbon[J].Journal of Catalysis,2005,234:268-281.
    [125]朱俊华,丁洁莲,曾崇余.载体对钯催化剂催化苯酚加氢制环己酮性能的影响[J].催化学报,2007,28(5):441-445.
    [126]Hidenobu A,Atsushi F,Yuzuru S.Template synthesis and characterization of gold nano-wires and-particles in mesoporous channels of FSM-16[J].Journal of Molecular Catalysis A:Chemical,2003,199:95-102.
    [127]Chen Y H,Tseng Y H and Yeh C S.Laser-induced alloying Au-Pd and Ag-Pd colloidal mixtures:the formation of dispersed Au/Pd and Ag/Pd nanoparticles[J].Journal of materials chemistry,2002,12:1419-1422.
    [128]Shastri A G,Schwank J.Metal dispersion of bimetallic catalysts via stepwise chemisorp -tion and surface titration I.Ru-Au/SiO_2[J].Journal of Catalysis,1985,95:271-283.
    [129]Boccttzzi F,Chiorino A,Manzoli M,et al.Au/TiO_2 nanosized samples:a catalytic,TEM,and FTIR study of the effect of calcination temperature on the CO Oxidation[J].Journal of Catalysis,2001,202:256-267.
    [130]Kang Y M,Wan B Z.Gold and iron supported on Y-type zeolite for carbon monoxide oxidation[J].Catalysis Today,1997,35:379-392.
    [131]Luo K,Wei T,Yi C W.Preparation and characterization of silica supported Au-Pd model catalysts[J].Journal of Physical Chemistry B,2005,109(49):23517-23522.
    [132]Haruta M,Tsubota S,Kobayshi T.Low-temperature oxidation of CO over gold supported on TiO_2,α-Fe_2O_3,and Co_3O_4[J].Journal of Catalysis,1993,144:175-192.
    [133]Choudhary T V,Sivadinarayana C,Chusuei C C,et al.CO oxidation on supported nano-Au catalysts synthesized from a[Au_6(PPh_3)_6](BF_4)_2 complex[J].Journal of Catalysis,2002,207:247-255.
    [134]杨成,任杰,孙予罕.焙烧温度对CeO_2改性Pd/Al_2O_3甲醇分解催化剂性能的影响[J].燃料化学学报,2001,29suppl,157-159.
    [135]Usami Y,Kagawa K,Kawazoe M,et al.Catalytic methanol decomposition at low temperatures over palladium supported on metal oxides[J].Applied Catalysis A:General,1998,171:123-130.
    [136]Eswaramoorthi I,Dalai A K.A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production[J].International Journal of Hydrogen Energy,2009,34(6):2580-2590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700