Klebsillae pneumoniae XJPD-Li重组甘油脱水酶特性及其复活动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3-丙二醇是一种重要的化工原料,以1,3-丙二醇为单体合成的新型聚酯材料具有良好的应用前景。甘油脱水酶是利用微生物发酵甘油生产1,3-丙二醇的限速酶,催化甘油脱水生成3-羟基丙醛。本论文针对课题组获得的甘油转化率高、生产强度大的1,3-丙二醇高效合成菌株Klebsiella pneumoniae XJPD-Li,研究其重组甘油脱水酶的催化特性、结构特征及其复活特性。
     从K. pneumoniae XJPD-Li总基因组中扩增得到了甘油脱水酶基因片段,与甘油脱水酶(U30903)序列进行比对,其α亚基的第193和407位,β亚基的第47和189位的非活性中心氨基酸残基存在差异。成功构建了E. coli BL21(DE3) (pET-28a(+)-dhaBCE)表达系统,诱导条件经优化(0.8 mmol·L-1IPTG,20℃,3h),可大量表达高活性的重组甘油脱水酶,其可溶/不溶形式的比例提高到1.432,比酶活达64.5 U?mg-1。通过亲和层析快速分离纯化得到了电泳纯的重组甘油脱水酶,比活力提高2倍,酶活回收率47.5%。重组甘油脱水酶具有良好的催化性能,最适催化温度为45℃,最适pH为8.0,最适底物为甘油,对辅酶的亲和能力较强,热稳定性较好,对氧环境不敏感,其热失活动力学符合一级失活动力学模型,在氧失活及辅酶类似物失活过程中,其活性随时间呈指数衰减。
     K. pneumoniae XJPD-Li重组甘油脱水酶为典型的α/β型结构,具有多个柔性结构区域,α亚基407位差异氨基酸位于柔性区域,疏水性有较大改变。针对该位点构建的突变体E407A,经研究发现其酶活性降低至突变前的30%左右,Km值相对突变前增大,最适催化温度降低,突变前后甘油脱水酶的二级结构没有明显变化,荧光光谱分析发现谱图有轻微扰动,说明该位点的氨基酸残基变化对甘油脱水酶的催化活性和构象有一定影响。利用分子动力学模拟进一步研究了甘油脱水酶非活性中心氨基酸残基对酶结构的影响,发现α和β亚基非活性中心氨基酸残基的变化对甘油脱水酶RMSD值和分子内及分子间氢键有较明显的影响,特别是对活性中心的稳定性有促进作用,使得酶结构更加紧密,稳定性提高。
     对重组甘油脱水酶复活特性研究发现,重组甘油脱水酶复活因子主要以包涵体形式存在,通过亲和柱上复性可一步获得高纯度活性蛋白,回收率为20.7 %,比活性为60.6 min-1·mg-1。复性液中添加比例为6: 1的氧化还原体系(GSH:GSSG),以及添加ATP有利于甘油脱水酶地快速复活。针对甘油脱水酶复活过程参考乒乓理论建立了复活动力学模型,并对参数进行了求解。考察了甘油脱水酶体外复活寿命的调控,通过对复活体系的调控将甘油脱水酶的复活寿命提高一倍。
1,3-propanediol(1,3-PDO) is one of the most important chemicals, used as a monomer to produce the desired polyester such as polytrimethylene terephthalate. Glycerol dehydratase (GDHt) is the rate limiting enzyme in the biosynthesis of 1,3- PDO, which could dehydrate glycerol into 3-hydroxylpropionaldehyde. In provious study, Klebsiella pneumoniae XJPD-Li, screened by our group, was found to consume glycerol fast and produce 1.3-PDO with high productivity and molar yield of (1, 3-PDO to glycerol) So the properties of catalysis, structure and reacticvation of glycerol dehydratase (GDHt) from K. pneumoniae XJPD-Li were investigated in this research..
     Firstly, the gene of GDHt was cloned from K. pneumoniae XJPD-Li genome and the following sequence alignment with GDHt (U30903) showed the differences of non-active site amino acid residue at No.193, 407 inαsubunit and No.47, 189 inβsubunit. To study the special properties of GDHt from K. pneumoniae XJPD-Li, the overexpression system was successfully constructed and the optimization of inducing process for recombinant GDHt were carried out. The optimum inducing conditions were the IPTG concentration of 0.8 mmol·L-1, the temperature of 20℃and inducing time of 3 h. The ratio of soluble form increased to 1.432 under the optimum condition.
     Purification was carried out by affinity chromatography. Homogeneity of recombinant GDHt was obtained conveniently resulted in 2.11-fold purification and an overall yield of 47.5%. The optimum pH and reaction temperature of putified recombinant GDHt were pH 8.0 and 45℃, respectively. The Km of GDHt for different substrates showed that glycerol was the optimum substance and the affinity was strong between coenzyme B12 and GDHt. It showed that the recombinant GDHt was relative thermostability, and a bit blunt to oxygen. The thermo inactivation kinetics fit the first order kinetics. Oxygen and coenzyme analogue inactivation kinetics was agreed with exponential regression.
     Analyzing results by biosoftware described the typicalα/βstructure of K. pneumoniae GDHt,including multiple soft regions. The No. 407 ofαsubunit was sited in soft region, whose hydrophobic character was different with that ofαsubunit in GDHt (U30903). The mutant E407A of GDHt showed lower special activity and higher Km than that of previous mutation. The circle dichromism (CD) spectra of GDHt showed the second structure of GDHt has little change, while fluorescence spectra some disturbances before and after mutation. That is the No 407 ofαsubunit could influence the conformation and activity of GDHt. Molecular Dynamic Simulation was applied to determine the relationship between structure and function. The RMSD,Hydrogen bonds inter and intro moleculars were changed obviously. It is proved that non-active site amino acid residues, No.193, 407 inαsubunit and No.47, 189 inβsubunit, were important to the stability of recombinant GDHt, especially its active site, which provided the structure of GDHt more compacted.
     The reactivation properties of recombinant GDHt was determined by GDHt reactivation factor (GDHt-Rf) from K. pneumoniae XJPD-Li, which was founded existing mainly in the form of inclusion body. Renaturation was carried out by the method of one step purification and renaturation. The renaturation ratios and special activity of GDHt-Rf were 20.7%, 60.6 min-1?mg-1. Addition of GSH to GSSG ( 6:1 ) and ATP in the renaturation solution was suitable to correctly renaturate the inclusion body of GDHt-Rf. The in vitro reactivation kinetic model was established according to Pingpang BiBi mechanism and the parameters were calculated. The simulated values can fit the experimental values. The reactivation life of GDHt in vitro was doubled when the reactivation system was modified.
引文
[1 ] Ueda T, Kasazaki T, Kunitake N et al., Polyurethane elastomer actuator, Synthetic Metals, 1997, 85, (1-3): 1415-1416.
    [2 ] Diakoumakos CD, Jones FN, Studies on the chemical, physical and mechanical properties of high-solids clearcoats prepared from hydroxyl-terminated isophthalate-based oligoesters and a melamine resin, Surface and Coatings Technology, 2001, 140, (3): 183-194.
    [3 ] Qin J-J, Cao Y-M, Li Y-Q et al., Hollow fiber ultrafiltration membranes made from blends of PAN and PVP, Separation and Purification Technology, 2004, 36, (2): 149-155.
    [4 ] Pearson AJ, Roush WR. Handbook of Reagents for Organic Synthesis. 1 Edition John Wiley & Sons: 1999.
    [5 ] Haas T, Jaeger B, Weber R et al., New diol processes: 1,3-propanediol and 1,4-butanediol, Applied Catalysis A: General, 2005, 280, (1): 83-88.
    [6 ] Mendes F, Gonzalez-Pajuelo M, Cordier H et al., 1,3-Propanediol production from renewable resources in a two-step process, Journal of Biotechnology, 2007, 131, (2, Supplement 1): S202-S203.
    [7 ] Hao J, Lin RH, Zheng ZM et al., 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae, Journal of Industrial Microbiology & Biotechnology, 2008, 35, (12): 1615-1624.
    [8 ] Kurosaka T, Maruyama H, Naribayashi I et al., Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2, Catalysis Communications, 2008, 9, (6): 1360-1363.
    [9 ] Wang FH, Qu HJ, Zhang DW et al., Production of 1,3-propanediol from glycerol by recombinant E-coli using incompatible plasmids system, Molecular Biotechnology, 2007, 37, (112-119.
    [10 ] Zeng A-P, Biebl H, Bulk Chemicals from Biotechnology: The Case of 1,3-Propanediol Production and the New Trends, Advances in Biochemical Engineering/Biotechnology, 2002, 74, (1): 240-259.
    [11 ]冉华松,王崇辉,杨翔华et al., 1,3-丙二醇的应用与市场广东化工, 2006, 33, (10): 29-33.
    [12 ]姚会明,朱级花,聚对苯二甲酸丙二醇酯的发展前景和技术经济分析, 化工技术经济, 1999, 17, (4): 30-33.
    [13 ] Urban RA, Bakshi BR, 1,3-Propanediol from Fossils versus Biomass: A LifeCycle Evaluation of Emissions and Ecological Resources, Industrial & Engineering Chemistry Research, 2009, 48, (17): 8068-8082.
    [14 ] Biebl H, Menzel K, Zeng AP et al., Microbial production of 1,3-propanediol, Applied Microbiology and Biotechnology, 1999, 52, (3): 289-297.
    [15 ] van Haveren J, Scott EL, Sanders J, Bulk chemicals from biomass, Biofuels Bioproducts & Biorefining-Biofpr, 2008, 2, (1): 41-57.
    [16 ] Zheng Z-m, Guo N-n, Hao J et al., Scale-up of micro-aerobic 1,3-propanediol production with Klebsiella pneumonia CGMCC 1.6366, Process Biochemistry, 2009, 44, (8): 944-948.
    [17 ]周昱,姚洁,王公应, 1,3-丙二醇合成工艺研究进展,天然气化工(C1化学与化工), 2006, 31, (1): 66-74.
    [18 ]刘艳杰,赵庆国,蒋巍et al., 1,3-丙二醇的生产技术分析,化学工程师, 2002, 88, (1): 45-47.
    [19 ] Powell JB, Pledger WR, Matzakos AN et al., Process for preparation of 1,3-propanediol via hydrogenation of 3-hydroxypropanal U.S. Patent 5,786,524, 1998, July 28th
    [20 ] Nemeth A, Sevella B, Development of a new bioprocess for production of 1,3-propanediol I. Modeling of glycerol bioconversion to 1,3-propanediol with Klebsiella pneumoniae enzymes, Applied Biochemistry and Biotechnology, 2008, 144, (1): 47-58.
    [21 ]白雪峰, 1,3-丙二醇的生产技术,现代化工, 2003, 23, (6): 10-13.
    [22 ] Deckwer WD, Microbial Conversion of Glycerol to 1,3-Propanediol, Fems Microbiology Reviews, 1995, 16, (2-3): 143-149.
    [23 ] Tong IT, Liao HH, Cameron DC, 1,3-Propanediol Production by Escherichia Coli Expressing Genes from the Klebsiella-Pneumoniae-Dha Regulon, Applied and Environmental Microbiology, 1991, 57, (12): 3541-3546.
    [24 ] Dunn-Coleman NS, Gatenby AA, Valle F, Bioproduction of 1,3-propanediol by contacting a host, comprising genes encoding aquacobalamin reductase, cob(II)alamin reductase, and cob(I)alamin adenosyltransferase, with fermentable carbon source and coenzyme B12 precursor,
    [25 ] GatenbY A, Arthur; (US)., Haynie S, Loretta; (US)., Nagarajan VU et al., Method for the Production of 1,3-Propaniediol by Recombinant Organism US, WO/1998/021339, 1998-05-22
    [26 ]刘海军,发酵法生产1,3-丙二醇过程及中试研究, 2007
    [27 ] Zheng Z-m, Guo N-n, Hao J et al., Scale-up of micro-aerobic 1,3-propanediol production with Klebsiella pneumonia CGMCC 1.6366, Process Biochemistry, 2009, 44, (8): 944-948.
    [28 ] Barbirato F, Himmi EH, Conte T et al., 1,3-propanediol production byfermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Industrial Crops and Products, 1998, 7, (2-3): 281-289.
    [29 ] Brandner A, Lehnert K, Bienholz A et al., Production of Biomass-Derived Chemicals and Energy: Chemocatalytic Conversions of Glycerol, Topics in Catalysis, 2009, 52, (3): 278-287.
    [30 ] Willke T, Vorlop K, Biotransformation of glycerol into 1,3-propanediol, European Journal of Lipid Science and Technology, 2008, 110, (9): 831-840.
    [31 ] Luers F, Seyfried M, Daniel R et al., Glycerol conversion to 1,3-propanediol by Clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase, Fems Microbiology Letters, 1997, 154, (2): 337-345.
    [32 ] Biebl H, Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies, Journal of Industrial Microbiology & Biotechnology, 2001, 27, (1): 18-26.
    [33 ] Seifert C, Bowien S, Gottschalk G et al., Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii, European Journal of Biochemistry, 2001, 268, (8): 2369-2378.
    [34 ] Mu Y, Teng H, Zhang DJ et al., Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations, Biotechnology Letters, 2006, 28, (21): 1755-1759.
    [35 ] Lin RH, Liu HJ, Hao J et al., Enhancement of 1,3-propanediol production by Klebsiella pneumoniae with fumarate addition, Biotechnology Letters, 2005, 27, (22): 1755-1759.
    [36 ] Hongwen C, Baishan F, Zongding H, Optimization of process parameters for key enzymes accumulation of 1,3-propanediol prouction from Klebsiella pneumoniae, Biochemical Engineering Journal, 2005, 25, (1): 47-53.
    [37 ] Yang G, Tian JS, Li JL, Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions, Applied Microbiology and Biotechnology, 2007, 73, (5): 1017-1024.
    [38 ] Tobimatsu T, Hara T, Sakaguchi M et al., Molecular Cloning, Sequencing, and Expression of the Genes Encoding Adenosylcobalamin-dependent Diol Dehydrase of Klebsiella oxytoca, J. Biol. Chem., 1995, 270, (13): 7142-7148.
    [39 ] Hao J, Lin RH, Zheng ZM et al., Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions, World Journal of Microbiology & Biotechnology, 2008, 24, (9): 1731-1740.
    [40 ] Boenigk R, Bowien S, Gottschalk G, Fermentation of Glycerol to 1,3-Propanediol in Continuous Cultures of Citrobacter Freundii, Applied Microbiology and Biotechnology, 1993, 38, (4): 453-457.
    [41 ] Barbirato F, Astruc S, Soucaille P et al., Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: Limitations and regulations, Microbiology-Uk, 1997, 143, (2423-2432.
    [42 ] Octave S, Thomas D, Biorefinery: Toward an industrial metabolism, Biochimie, 2009, 91, (659-664.
    [43 ] Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F et al., Microbial conversion of glycerol to 1,3-propanediol: Physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5), Applied and Environmental Microbiology, 2006, 72, (1): 96-101.
    [44 ] Schneide.Z, Pawelkie.J, Properties of Glycerol Dehydratase Isolated from Aerobacter Aerogenes and Properties of Apoenzyme Subunits, Acta Biochimica Polonica, 1966, 13, (4): 311-&.
    [45 ] Robinson WG, Willis AW. Propanediol dehydrogenase. Methods in Enzymology Academic Press: 1966:332-336.
    [46 ] Ahrens K, Menzel K, Zeng AP et al., Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation, Biotechnology and Bioengineering, 1998, 59, (5): 544-552.
    [47 ] Forage RG, Lin EC, DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418, J. Bacteriol., 1982, 151, (2): 591-599.
    [48 ] Forage RG, Foster MA, Glycerol Fermentation in Klebsiella Pneumoniae - Functions of the Coenzyme-B12-Dependent Glycerol and Diol Dehydratases, Journal of Bacteriology, 1982, 149, (2): 413-419.
    [49 ] Sun JB, van den Heuvel J, Soucaille P et al., Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria, Biotechnology Progress, 2003, 19, (2): 263-272.
    [50 ] Menzel K, Ahrens K, Zeng AP et al., Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism, Biotechnology and Bioengineering, 1998, 60, (5): 617-626.
    [51 ] Sprenger GA, Hammer BA, Johnson EA et al., Anaerobic Growth of Escherichia Coli on Glycerol by Importing Genes of the Dha Regulon from Klebsiella Pneumoniae, Journal of General Microbiology, 1989, 135, (1): 1255-1262.
    [52 ] Seyfried M, Daniel R, Gottschalk G, Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii, Journal of Bacteriology, 1996, 178, (19): 5793-5796.
    [53 ] Daniel R, Boenigk R, Gottschalk G, Purification of 1,3-Propanediol Dehydrogenase from Citrobacter Freundii and Cloning, Sequencing, and Overexpression of the Corresponding Gene in Escherichia Coli, Journal of Bacteriology, 1995, 177, (8): 2151-2156.
    [54 ] Daniel R, Gottschalk G, Growth Temperature-Dependent Activity of Glycerol Dehydratase in Escherichia Coli Expressing the Citrobacter Freundii Dha Regulon, Fems Microbiology Letters, 1992, 100, (1-3): 281-285.
    [55 ] Tobimatsu T, Azuma M, Matsubara H et al., Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae, Journal of Biological Chemistry, 1996, 271, (37): 22352-22357.
    [56 ] Gr?slund S, Nordlund P, Weigelt J et al., Protein production and purification, Nautre Methods, 2008, 5, (2): 135-146.
    [57 ] Schneide.Z, Pawelkie.J, Properties of Glycerol Dehydratase Isolated from Aerobacter Aerogenes and Properties of Apoenzyme Subunits, Acta Biochimica Polonica, 1966, 13, (4): 311-316.
    [58 ] Schneider Z, Larsen EG, Jacobson G et al., Purification and Properties of Glycerol Dehydrase, J. Biol. Chem., 1970, 245, (13): 3388-3396.
    [59 ] Xu XL, Zhang GL, Wang LW et al., Quantitative analysis on inactivation and reactivation of recombinant glycerol dehydratase from Klebsiella pneumoniae XJPD-Li, Journal of Molecular Catalysis B-Enzymatic, 2009, 56, (2-3): 108-114.
    [60 ] Liao DI, Dotson G, Turner I et al., Crystal structure of substrate free form of glycerol dehydratase, Journal of Inorganic Biochemistry, 2003, 93, (1-2): 84-91.
    [61 ] O'Brien JR, Raynaud C, Croux C et al., Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: Preliminary biochemical and structural characterization, Biochemistry, 2004, 43, (16): 4635-4645.
    [62 ] Raynaud C, Sarcabal P, Meynial-Salles I et al., Molecular characterization of the 1,3-propanediol operon of Clostridium butyricum, Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, (9): 5010-5015.
    [63 ] Truniger V, Boos W, Mapping and cloning of gldA, the structural gene of the Escherichia coli glycerol dehydrogenase, J Bacteriol. 1994, 176, (6): 1796-1800.
    [64 ] Malaoui H, Marczak R, Purification and characterization of the 1-3-propanediol dehydrogenase of Clostridium butyricum E5, Enzyme and Microbial Technology, 2000, 27, (6): 399-405.
    [65 ] Johnson EA, Lin ECC, Klebsiella-Pneumoniae 1,3-Propanediol-NAD+ Oxidoreductase, Journal of Bacteriology, 1987, 169, (5): 2050-2054.
    [66 ] Schwarzenbacher R, von Delft F, Canaves JM et al., Crystal structure of an iron-containing 1,3-propanediol dehydrogenase (TM0920) from Thermotogamaritima at 1.3 angstrom resolution, Proteins-Structure Function and Genetics, 2004, 54, (1): 174-177.
    [67 ]林锦霞,张光亚,方柏山, 1,3-丙二醇氧化还原酶结构与功能关系的探讨, 生物信息学, 2005, 3, (3): 101-103.
    [68 ] Tang XM, Tan YS, Zhu H et al., Microbial Conversion of Glycerol to 1,3-Propanediol by an Engineered Strain of Escherichia coli, Applied and Environmental Microbiology, 2009, 75, (6): 1628-1634.
    [69 ]张晓梅,诸葛斌,谢涛et al.,产1,3-丙二醇新型重组大肠杆菌JM109(pHsh-dhaB-yqhD)的构建及其转化甘油,化工学报, 2006, 12).
    [70 ]田平芳,谭天伟,遗传改造Klebsiella pneumoniae提高1,3-丙二醇产量的研究进展化工进展, 2008, 27, (3): 322-325.
    [71 ]田平芳,谭天伟,甘油歧化为1,3-丙二醇的代谢及关键酶研究进展,生物工程学报, 2007, 23, (2): 201-205.
    [72 ] Zhang YP, Li Y, Du CY et al., Inactivation of aldehyde dehydrogenase: A key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae, Metabolic Engineering, 2006, 8, (6): 578-586.
    [73 ] Zhu JG, Li S, Ji XJ et al., Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme, World Journal of Microbiology & Biotechnology, 2009, 25, (7): 1217-1223.
    [74 ] Wang X-D, Zhang X-E, Guo Y-C et al., Characterization of glycerol dehydratase expressed by fusing itsα- andβ-subunits Biotechnology Letters, 2009, 31, (5): 711-717.
    [75 ]李红梅,李英华,徐斐et al. dhaBCE基因与yqhD基因串联表达载体的构建及其生物转化甘油. 2008.
    [76 ] Hartlep M, Hussmann W, Prayitno N et al., Study of two-stage processes for the microbial production of 1,3-propanediol from glucose, Applied Microbiology and Biotechnology, 2002, 60, (1-2): 60-66.
    [77 ] Soucaille P, Emptage MH, Metabolic pathway engineering for the production of 1,3-propanediol from glucose, Abstracts of Papers of the American Chemical Society, 2002, 224, (U220-U220.
    [78 ] Poznanskaja AA, Tanizawa K, Soda K et al., Coenzyme B12-dependent diol dehydrase: Purification, subunit heterogeneity, and reversible association, Archives of Biochemistry and Biophysics, 1979, 194, (2): 379-386.
    [79 ] Talarico TL, Dobrogosz WJ, Purification and Characterization of Glycerol Dehydratase from Lactobacillus-Reuteri, Applied and Environmental Microbiology, 1990, 56, (4): 1195-1197.
    [80 ] Tobimatsu T, Sakai T, Hashida Y et al., Heterologous expression, purification,and properties of diol dehydratase, an adenosylcobalamin-dependent enzyme of Klebsiella oxytoca, Archives of Biochemistry and Biophysics, 1997, 347, (1): 132-140.
    [81 ] Sauvageot N, Pichereau V, Louarme L et al., Purification, characterization and subunits identification of the diol dehydratase of Lactobacillus collinoides, European Journal of Biochemistry, 2002, 269, (22): 5731-5737.
    [82 ] Wang F, Qu H, Tian P et al., Heterologous expression and characterization of recombinant glycerol dehydratase from Klebsiella pneumoniae in Escherichia coli, Biotechnology Journal, 2007, 2, (6): 736-742.
    [83 ]唐悦,孟晓蕾,齐向辉et al.,巴斯德梭菌甘油脱水酶基因的克隆表达、纯化及酶学性质的研究,精细化工, 2006, 23, (11): 1056-1059.
    [84 ] Talarico TL, Dobrogosz WJ, Purification and Characterization of Glycerol Dehydratase from Lactobacillus Reuteri, Applied and Environmental Microbiology, 1990, 56, (4): 1195-1197.
    [85 ] Yamanishi M, Yunoki M, Tobimatsu T et al., The crystal structure of coenzyme B12-dependent glycerol dehydratase in complex with cobalamin and propane1,2-diol, European Journal of Biochemistry, 2002, 269, (18): 4484-4494.
    [86 ] Sun L, Warncke K, Comparative model of EutB from coenzyme B12-dependent ethanolamine ammonia-lyase reveals a beta(8)alpha(8), TIM-barrel fold and radical catalytic site structural features, Proteins-Structure Function and Bioinformatics, 2006, 64, (2): 308-319.
    [87 ] Sun L, Warncke K, Comparative model of EutB from coenzyme B12-dependent ethanolamine ammonia-lyase reveals a beta(8)alpha(8), TIM-barrel fold and radical catalytic site structural features, Proteins-Structure Function and Bioinformatics, 2006, 64, (2): 308-319.
    [88 ] Shibata N, Mori K, Hieda N et al., Release of a Damaged Cofactor from a Coenzyme B12-Dependent Enzyme: X-Ray Structures of Diol Dehydratase-Reactivating Factor, Structure, 2005, 13, (12): 1745-1754.
    [89 ] Toraya T, Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases, Cellular and Molecular Life Sciences, 2000, 57, (1): 106-127.
    [90 ] Toraya T, Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions, Chemical Reviews, 2003, 103, (6): 2095-2127.
    [91 ] Daniel R, Bobik TA, Gottschalk G, Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes, Fems Microbiology Reviews, 1999, 22, (5): 553-566.
    [92 ] Gr(?)slund S, Nordlund P, Weigelt J et al., Protein production and purification, Nature Methods, 2008, 5, (2): 135-146.
    [93 ] Zhang C, Kim S-H, Overview of structural genomics: from structure to function, Current Opinion in Chemical Biology, 2003, 7, (1): 28-32.
    [94 ] Ngu TT, Sturzenbaum SR, Stillman MJ, Cadmium binding studies to the earthworm Lumbricus rubellus metallothionein by electrospray mass spectrometry and circular dichroism spectroscopy, Biochemical and Biophysical Research Communications, 2006, 351, (1): 229-233.
    [95 ] Whitmore L, Wallace BA, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases, Biopolymers, 2008, 89, (5): 392-400.
    [96 ]刘东波,李丹,陈珊et al.,黑曲霉木聚糖酶同工酶的性质及圆二色谱分析,分子科学学报, 2004, 20, (4): 40~43.
    [97 ] Lees JG, Miles AJ, Wien F et al., A reference database for circular dichroism spectroscopy covering fold and secondary structure space, Bioinformatics, 2006, 22, (16): 1955-1962.
    [98 ]郑婷,王卓渊,侯若冰et al.,圆二色光谱研究Ni2+诱导血清白蛋白构象变化,广西师范大学学报:自然科学版, 2008, 26, (3): 57~60.
    [99 ]徐广贤,赵德明,周向梅et al.,牛分枝杆菌哺乳动物细胞侵袭蛋白4E的原核表达、纯化及其圆二色谱分析,畜牧兽医学报, 2007, 38, (1): 84~88.
    [100 ]付丽棠,融合His Tag重组蛋白的基因克隆、表达及亲和纯化,天津大学, 2007
    [101 ] Vass E, Besson F, Majer Z et al., Ca2+-Induced Changes of Surfactin Conformation: A FTIR and Circular Dichroism Study, Biochemical and Biophysical Research Communications, 2001, 282, (1): 361-367.
    [102 ] Kelly SM, Jess TJ, Price NC, How to study proteins by circular dichroism, Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 2005, 1751, (2): 119-139.
    [103 ]史广泉,李琳,董晓燕et al.,流加操作与稀释添加耦合辅助高浓度变性蛋白质复性动力学,化工学报, 2004, 55, (8): 1313-1318.
    [104 ]张怀,袁其朋,朱亚平et al.,重组Hepcidin融合蛋白的金属螯合亲和层析纯化,北京化工大学学报, 2005, 32, (6): 15-19.
    [105 ] Sreerama N, U. SY, Robert V et al., Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy, Nature protocols, 1999, 8, (2): 370-380.
    [106 ]张静,荧光光谱法研究盐酸胍浓度不同时变性胰蛋白酶的构象变化,光谱学与光谱分析, 2004, 24, (4): 455-458.
    [107 ]王守业,徐小龙,刘清亮et al.,荧光光谱在蛋白质分子构象研究中的应用,化学进展, 2001, 13, (4): 257-260.
    [108 ]马林,刘东群,杨华et al.,正丙醇和异丙醇对水溶液中牛血清白蛋白的构象及其荧光光谱的影响,化学通报, 2008, 1): 56-61.
    [109 ] Whisstock JC, Lesk AM, Prediction of protein function from protein sequence and structure, Quarterly Reviews of Biophysics, 2003, 36, (03): 307-340.
    [110 ] Schwede T, Kopp J, Guex N et al., SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Research, 2003, 31, (13): 3381-3385.
    [111 ] Arnold K, Bordoli L, Kopp J et al., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics, 2006, 22, (2): 195-201.
    [112 ]刘海燕,蛋白质结构与动力学的计算机模拟:从方法到应用,中国科学技术大学学报, 2008, 38, (8): 961-966.
    [113 ] Schroeder EK, Basso LA, Santos DS et al., Molecular Dynamics Simulation Studies of the Wild-Type, I21V, and I16T Mutants of Isoniazid-Resistant Mycobacterium tuberculosis Enoyl Reductase (InhA) in Complex with NADH: Toward the Understanding of NADH-InhA Different Affinities, Biophysical Journal, 2005, 89, (2): 876-884.
    [114 ] Kundu S, Roy D, Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation, Journal of Molecular Graphics and Modelling, 2009, 27, (8): 871-880.
    [115 ] Isralewitz B, Baudry J, Gullingsrud J et al., Steered molecular dynamics investigations of protein function, Journal of Molecular Graphics and Modelling, 2001, 19, (1): 13-25.
    [116 ]欧阳芳平,徐慧,郭爱敏et al.,分子模拟方法及其在分子生物学中的应用,生物信息学, 2005, 3, (1): 33-36.
    [117 ]张麟,水溶液中蛋白质构象转换的分子模拟研究, [博士学位论文],北京, 清华大学, 2008
    [118 ] Ode H, Matsuyama S, Hata M et al., Computational Characterization of Structural Role of the Non-active Site Mutation M36I of Human Immunodeficiency Virus Type 1 Protease, Journal of Molecular Biology, 2007, 370, (3): 598-607.
    [119 ] Pvist J, Wennerstre P, Nervall M et al., Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm, Chemical Physics Letters, 2004, 384, (4-6): 288-294.
    [120 ] Xiaohua H, Xiangyu Z, Qing J et al., Molecular mechanics(MM)study on the surface adsorption energy, Computers and Applied Chemistry, 2007, 24, (3): 375-379.
    [121 ] Takashi Kamachi TTKY, Computational Mutation Analysis of Hydrogen Abstraction and Radical Rearrangement Steps in the Catalysis of Coenzyme B12-Dependent Diol Dehydratase, Chemistry - A European Journal, 2007, 13, (28): 7864-7873.
    [122 ] Rong MY-, Alhambra C, Li GJ-, Recent Development and Applications ofCombined QM/MM Methods, Acta Chimica Sinica, 2000, 58, (12): 1504-1510.
    [123 ] Toxvaerd S, Dynamics of complex molecular systems: Molecular dynamics simulations of enzyme catalysis, polymer growth and phase separations, Journal of Molecular Liquids, 2000, 84, (1): 99-110.
    [124 ] Dal Peraro M, Ruggerone P, Raugei S et al., Investigating biological systems using first principles Car-Parrinello molecular dynamics simulations, Current Opinion in Structural Biology, 2007, 17, (2): 149-156.
    [125 ] Zuo Z, Chen G, Luo X et al., Pharmacophore-directed Homology Modeling and Molecular Dynamics Simulation of G Protein-coupled Receptor: Study of Possible Binding Modes of 5-HT2C Receptor Agonists, Acta Biochimica et Biophysica Sinica, 2007, 39, (6): 413-422.
    [126 ]汤孛,巩克,王靖方et al.,受磷蛋白的空间结构及其分子动力学模拟, 科学通报, 2010, 55, (9): 773-778
    [127 ]廖川,蛋白质吸附——分子模拟中势能计算的优化算法, [硕士学位论文],天津,天津大学, 2007
    [128 ] Mansoorabadi SO, Magnusson OT, Poyner RR et al., Analysis of the cob(II)alamin-5 '-deoxy-3 ',4 '-anhydroadenosyl radical triplet spin system in the active site of diol dehydrase, Biochemistry, 2006, 45, (48): 14362-14370.
    [129 ] Liao DI, Zheng YJ, Viitanen PV et al., Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase, Biochemistry, 2002, 41, (6): 1795-1806.
    [130 ] Fukuoka M, Nakanishi Y, Hannak RB et al., Homoadenosylcobalamins as probes for exploring the active sites of coenzyme B12-dependent diol dehydratase and ethanolamine ammonia-lyase, Febs Journal, 2005, 272, (18): 4787-4796.
    [131 ] Toraya T, Abeles RH, Inactivation of dioldehydrase in the presence of a coenzyme-B12 analog, Archives of Biochemistry and Biophysics, 1980, 203, (1): 174-180.
    [132 ] Kinoshita K, Kawata M, Ogura KI et al., Histidine-alpha 143 assists 1,2-hydroxyl group migration and protects radical intermediates in coenzyme B12-dependent diol dehydratase, Biochemistry, 2008, 47, (10): 3162-3173.
    [133 ] Morley KL, Kazlauskas RJ, Improving enzyme properties: when are closer mutations better? Trends in Biotechnology, 2005, 23, (5): 231-237.
    [134 ] Shimotohno A, Oue S, Yano T et al., Demonstration of the Importance and Usefulness of Manipulating Non-Active-Site Residues in Protein Design, The Journal of Biochemistry, 2001, 129, (6): 943-948.
    [135 ] Olsen DB, Stahlhut MW, Rutkowski CA et al., Non-active site changes elicit broad-based cross-resistance of the HIV-1 protease to inhibitors, Journal of Biological Chemistry, 1999, 274, (34): 23699-23701.
    [136 ]杨晟,黄鹤,李士云et al.,定点突变提高青霉素G酰化酶的稳定性,生物化学与生物物理学报, 2000, 32 (6): 581 - 585.
    [137 ]徐卉芳,张先恩,张治平et al.,大肠杆菌碱性磷酸酶的体外定向进化研究,生物化学与生物物理进展, 2003, 30, (1): 89-94.
    [138 ] Wongtrakul J, Udomsinprasert R, Ketterman AJ, Non-active site residues Cys69 and Asp150 affected the enzymatic properties of glutathione S-transferase AdGSTD3-3, Insect Biochemistry and Molecular Biology, 2003, 33, (10): 971-979.
    [139 ] Siehl DL, Castle LA, Gorton R et al., Themolecular basis of glyphosphate resistance by an optimized microbial acetyltransferase, J. Biol. Chem., 2007, 282, (11446-11455.
    [140 ] Qi X, Chen Y, Jiang K et al., Saturation-mutagenesis in two positions distant from active site of a Klebsiella pneumoniae glycerol dehydratase identifies some highly active mutants, Journal of Biotechnology, 2009, 144, (1): 43-50.
    [141 ] Sandala GM, Smith DM, Coote ML et al., Insights into the hydrogen-abstraction reactions of diol dehydratase: Relevance to the catalytic mechanism and suicide inactivation, Journal of the American Chemical Society, 2006, 128, (10): 3433-3444.
    [142 ] Kajiura H, Mori K, Tobimatsu T et al., Characterization and mechanism of action of a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase, Journal of Biological Chemistry, 2001, 276, (39): 36514-36519.
    [143 ] Ushio K, Honda S, Toraya T et al., Coenzyme-B12-Dependent Dehydratases . the Mechanism of Insitu Reactivation of Glycerol-Inactivated Coenzyme-B12-Dependent Enzymes, Glycerol Dehydratase and Diol Dehydratase, Journal of Nutritional Science and Vitaminology, 1982, 28, (3): 225-236.
    [144 ] Honda S, Toraya T, Fukui S, In-situ Reactivation of Glycerol-Inactivated Coenzyme-B12-Dependent Enzymes, Glycerol Dehydratase and Diol Dehydratase, Journal of Bacteriology, 1980, 143, (3): 1458-1465.
    [145 ] Mori K, Tobimatsu T, Toraya T, A protein factor is essential for in situ reactivation of glycerol-inactivated adenosylcobalamin-dependent diol dehydratase, Bioscience Biotechnology and Biochemistry, 1997, 61, (10): 1729-1733.
    [146 ] Mori K, Toraya T, Mechanism of reactivation of coenzyme B12-dependent diol dehydratase by a molecular chaperone-like reactivating factor, Biochemistry, 1999, 38, (40): 13170-13178.
    [147 ] Yasuda S, Mukoyama M, Horikawa H et al., Transformant for producing e.g. 1,3-propanediol, comprises genes encoding glycerol dehydratase and/or diol dehydratase, glycerol dehydratase reactivation factor and 1,3-propanediol oxidoreductase,
    [148 ] Liao DI, Reiss L, Turner I et al., Structure of glycerol dehydratase reactivase:A new type of molecular chaperone, Structure, 2003, 11, (1): 109-119.
    [149 ] Mori K, Hieda N, Yamanishi M et al., Crystallization and preliminary X-ray analysis of molecular chaperone-like diol dehydratase-reactivating factor in ADP-bound and nucleotide-free forms, Acta Crystallographica Section F-Structural Biology and Crystallization Communications, 2005, 61, (603-605.
    [150 ] Mori K, Tobimatsu T, Hara T et al., Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin-dependent diol dehydratase, Journal of Biological Chemistry, 1997, 272, (51): 32034-32041.
    [151 ] Knietsch A, Bowien S, Whited G et al., Identification and Characterization of Coenzyme B12-Dependent Glycerol Dehydratase- and Diol Dehydratase-Encoding Genes from Metagenomic DNA Libraries Derived from Enrichment Cultures, Applied and Environmental Microbiology, 2003, 69, (6): 3048-3060.
    [152 ] Toraya T, Mori K, A reactivating factor for coenzyme B12-dependent diol dehydratase, Journal of Biological Chemistry, 1999, 274, (6): 3372-3377.
    [153 ] Kajiura H, Mori K, Shibata N et al., Molecular basis for specificities of reactivating factors for adenosylcobalamin-dependent diol and glycerol dehydratases, Febs Journal, 2007, 274, (5556-5566.
    [154 ] Zhang GL, Ma BB, Xu XL et al., Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumoniae, Biochemical Engineering Journal, 2007, 37, (4): 256-260.
    [155 ] Ma BB, Xu XL, Zhang GL et al., Microbial production of 1,3-propanediol by Klebsiella pneumoniae XJPD-Li under different aeration strategies, Appl Biochem Biotechnol, 2009, 152, (1): 127-134.
    [156 ] Tang Wei-Hua, Zhang J-L, Wang Zong-Yang et al., The Cause of Deviation Made in Determining the Molecular Weight of His-tag Fusion Proteins by SDS-PAGE, Acta Phytophysiologica Sinica, 2000, 26, (1): 64-68.
    [157 ] Schein CH, Production of Soluble Recombinant Proteins in Bacteria, Nat Biotech, 1989, 7, (11): 1141-1149.
    [158 ]周文广,韦宇拓,黄鲲et al.,克雷伯氏菌甘油脱水酶基因在大肠杆菌中的克隆与表达,工业微生物, 2004, 34, (2): 1-4.
    [159 ]邵敬伟,肺炎克氏杆菌甘油脱水酶基因克隆、序列分析及表达载体构建研究, [博士学位论文],沈阳农业大学, 2004
    [160 ]邵敬伟,刘长江, Klebsiella pneumoniae甘油脱水酶α亚基基因的克隆与序列分析,食品与生物技术, 2004, 23, (2): 27-30.
    [161 ]吕波, K. pneumoniae XJPD-Li甘油脱水酶高效催化特性的研究, [硕士毕业论文],石河子,石河子大学, 2009
    [162 ] Poppe L, Rétey J, Kinetic Investigations with Inhibitors that Mimic thePostomolysis Intermediate in the Reactions of Coenzyme B12-Dependent Glycerol Dehydratase and Diol Dehydratase, European Journal of Biochemistry, 1997, 245, (2): 398-401.
    [163 ]高强,郝建华,王跃军et al.,海洋芽孢杆菌酯酶的催化动力学和热失活动力学研究,分子催化, 2008, 22, (4): 351-355.
    [164 ]陶慰孙,李惟,姜涌明.蛋白质分子基础.北京高等教育出版社: 1981.
    [165 ]阎隆飞,孙之荣.蛋白质分子结构.北京清华大学出版社: 1999.
    [166 ] Kawata M, Kinoshita K, Takahashi S et al., Survey of Catalytic Residues and Essential Roles of Glutamate-{alpha}170 and Aspartate-{alpha}335 in Coenzyme B12-dependent Diol Dehydratase, J. Biol. Chem., 2006, 281, (27): 18327-18334.
    [167 ]赵文娜, 6-羟甲基-7,8-二氢喋呤磷酸化酶的分子对接和分子动力学模拟研究, [博士学位论文],杭州,浙江大学, 2005
    [168 ] Meinhold L, Clement D, Tehei M et al., Protein Dynamics and Stability: The Distribution of Atomic Fluctuations in Thermophilic and Mesophilic Dihydrofolate Reductase Derived Using Elastic Incoherent Neutron Scattering, Biophysical Journal, 2008, 94, (12): 4812-4818.
    [169 ] Dyer KM, Perkyns JS, Stell G et al., Site-Renormalized molecular fluid theory: on the utility of a two-site model of water, Mol. Phys., 2009, 107, (423-431.
    [170 ]陈长军,蛋白质折叠和稳定性的全原子模拟研究, [博士学位论文],武汉, 华中科技大学, 2006
    [171 ]申兴桂,肝再生磷酸酶3的活性研究[博士学位论文],长春,吉林大学, 2007
    [172 ]邵敬伟,郭养浩,吴志香et al.,克氏杆菌gldA基因亚克隆及其原核表达载体构建,农业生物技术学报, 2005, 13, (2): 260-261.
    [173 ] Zhang GL, Xu XL, Li C et al., Cloning, expression and reactivating characterization of glycerol dehydratase reactivation factor from Klebsiella pneumoniae XJPD-Li, World J Microbiol Biotechnol, 2009, 25, (1947-1953.
    [174 ]张根林, K.pneumoniae XJPD-Li甘油脱水酶与复活因子的克隆表达及其复活关系研究, [硕士学位论文],石河子,石河子大学, 2007
    [175 ] Cherish Babu PV, Srinivas VK, Krishna Mohan V et al., Renaturation, purification and characterization of streptokinase expressed as inclusion body in recombinant E. coli, Journal of Chromatography B, 2008, 861, (2): 218-226.
    [176 ] Remmert K, Vullhorst D, Hinssen H, In vitro refolding of heterodimeric CapZ expressed in E coli as inclusion body protein, Protein Expression and Purification, 2000, 18, (1): 11-19.
    [177 ] Xu L-H, Hong A, He X-H, On-column refolding and purification of human EGF receptor L2 domain inclusion body overexpressed in Escherichia coli, Sheng Wu Gong Cheng Xue Bao, 2005, 21, (4): 597-603.
    [178 ]董晓燕,辅助因子促进蛋白质复性的研究, [博士学位论文],天津,天津大学, 2005
    [179 ]张培源,单链抗体ScFv2F3的表达纯化及复性研究, [硕士学位论文],吉林,吉林大学, 2006
    [180 ]陈阳,陈劲春,重组人胰岛素的体外复性纯化,北京化工大学学报(自然科学版), 2009, 36, (1): 77-80.
    [181 ] Xu J, Hu Y, Gong M et al., An improved method for refolding recombinant decay accelerating factor for therapeutic studies, Protein Expression and Purification, 2009, 66, (1): 102-106.
    [182 ] Toraya T, Honda S, Kuno S et al., Coenzyme B12-Dependent Diol Dehydratase : Regulation of Apoenzyme Synthesis in Klebsiella-Pneumoniae (Aerobacter-Aerogenes) ATCC-8727, Journal of Bacteriology, 1978, 135, (2): 726-729.
    [183 ] Vincentelli R, Canaan S, Campanacci V et al., High-throughput automated refolding screening of inclusion bodies, Protein Science, 2004, 13, (10): 2782-2792.
    [184 ] Lee SH, Carpenter JF, Chang BS et al., Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure, Protein Science, 2006, 15, (2): 304-313.
    [185 ] Xue XC, Wang ZG, Yan Z et al., Production and purification of recombinant human BLyS mutant from inclusion bodies, Protein Expression and Purification, 2005, 42, (1): 194-199.
    [186 ] Fujii T, Ohkuri T, Onodera R et al., Stable supply of large amounts of human fab from the inclusion bodies in E. coli, Journal of Biochemistry, 2007, 141, (5): 699-707.
    [187 ] Toraya T, Tamura N, Watanabe T et al., Mechanism-based Inactivation of Coenzyme B12-dependent Diol Dehydratase by 3-Unsaturated 1,2-Diols and Thioglycerol, J Biochem, 2008, 144, (4): 437-446.
    [188 ] Toraya T. Diol dehydratase and Glycerol dehydratase. In: Banerjee R. ed. Chemistry and biochemistry of B12 John Wiley & Sons, Inc: 1999:783-811.
    [189 ] Tobimatsu T, Kajiura H, Yunoki M et al., Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase, Journal of Bacteriology, 1999, 181, (13): 4110-4113.
    [190 ] Toraya T, Mori K, A reactivating factor for coenzyme B12-dependent diol dehydratase, Journal of Biological Chemistry, 1999, 274, (6): 3372-3377.
    [191 ]孟晓蕾,唐悦,齐向辉et al., Lactobacillus diolivorans二醇脱水酶激活因子基因的克隆、测序与功能鉴定,生物化学与生物物理进展, 2007, 34, (1): 1-6.
    [192 ] Romero MD, Calvo L, Alba C et al., A kinetic study of isoamyl acetate synthesis by immobilized lipase-catalyzed acetylation in n-hexane, Journal ofbiotechnology, 2007, 127, (2): 269-277.
    [193 ] Kraai GN, Winkelman JGM, de Vries JG et al., Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system, Biochemical Engineering, 2008, 41, (1): 87-94.
    [194 ]熊健,化学—酶法合成(S)-α-氰基苄醇乙酸酯及其动力学研究, [博士学位论文],杭州,浙江大学, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700