基于动力特性的高桩码头基桩损伤识别方法及承载力检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高桩码头是应用广泛的码头结构型式之一,我国港口工程领域存在大量的使用了几十年的老旧高桩码头。这些老码头在船舶撞击、使用荷载、环境侵蚀作用下,基桩普遍存在损伤破坏的问题;同时对高桩码头现役基桩进行承载力检测是进行老码头检测评估、升级改造等的必要前提条件。高桩码头基桩上部存在复杂的结构型式,对于桩顶为非自由端这样的结构,现阶段没有有效可行的基桩损伤诊断和承载力检测方法。因此,如何对现役的高桩码头基桩进行损伤识别和承载力检测是亟需研究解决的课题。
     本文采用理论分析、数值模拟、物理模型试验、现场实测相结合的方法研究基于动力特性的高桩码头基桩损伤诊断方法及现役高桩码头基桩承载力检测方法。涉及的主要科学技术问题包括:环境激励下高桩码头模态参数识别方法、高桩码头基桩损伤识别方法、高桩码头现役基桩承载力检测方法等。
     (一)环境激励下高桩码头模态参数识别方法研究。针对高桩码头原型动力试验激励难的问题,研究根据正常工作时通过环境荷载激励下的动力响应去识别高桩码头模态参数的方法。(1)提出了一种适用于环境激励下高桩码头模态参数识别的ERA方法。依据自然激励技术和系统最小实现的基本原理,详细推导ERA算法,编制了NExT-ERA高桩码头模态识别程序。(2)制作了考虑桩-土作用的大比尺高桩码头物理模型(1:10),并将本文提出的基于环境激励的模态参数识别理论方法应用到物理模型模态试验中,结合动力特性的数值计算分析,揭示了高桩码头模型在环境荷载激励下的模态阶次和模态特性。
     (二)高桩码头基桩损伤识别方法。针对高桩码头基桩本身的结构特点,首次提出了基于模态应变能的高桩码头基桩损伤诊断方法。依据振动微分方程,详细推导了模态应变能表达式,并对模态应变能损伤定位原理进行证明。给出MSE损伤定位的实施步骤,编制了基于模态应变能的高桩码头基桩损伤识别程序。以高桩码头一个排架为研究对象,通过数值算例分析,对不同工况下高桩码头基桩的损伤进行诊断。研究显示,模态应变能变化率对损伤单元有较强的敏感性,能够识别出高桩码头基桩不同工况下的损伤。研究结果可为基于动力特性的高桩码头动力无损检测提供有益参考。
     (三)高桩码头现役基桩承载力检测方法。首次提出区域堆载法检测高桩码头现役基桩承载力技术,解决了堆载区域、测试内容、加载卸载终止条件等关键技术问题。首次实施高桩码头基桩承载力原型试验,测试在分级荷载作用下码头整体变形变位、基桩沉降、结构构件应变等,结合数值计算分析,确定了基桩的竖向承载力。依据原型试验检测结果,对依托工程提出灌注桩加纵梁的改造方案,提高了码头整体竖向承载力,同时保持结构整体性、受力合理及变形协调。
High-piled wharf is one of the widely used harbor structure type, there are a lotof decades old high-piled wharfs in the field of port projects in China. These oldhigh-piled wharf piles were widespread damaged by ship impact loadings,environmental erosion and so on; meanwhile the detections of pile bearing capacityare the necessary preconditions of detection, evaluation and upgrading for the oldterminal. There are complex structures on the foundation piles, at this stage, for thesenon-free end piles, there are no effective and feasible damage diagnosis methods andbearing capacity detection methods. Therefore, how to identify the damages activehigh-piled wharf pile and honw to test the bearing capacity is an urgent need to studyand resolve.
     In this paper, theoretical analysis, numerical simulation, physical model tests andfield measurement methods were combined used to study damage diagnosis methodsbase on the dynamic characteristics, and bearing capacity detection methods of thehigh-piled wharf piles. Such scientific and technical issues were included: modalparameter identification method of the high-piled wharf under ambient excitation,damage identification and capacity detection methods of high-piled wharf piles.
     Firstly, research on the modal parameter identification methods of high-piledwharf under ambient excitation. Aimed at the difficult problem of exciting thehigh-piled wharf to dynamic test, the modal parameters identification methods ofhigh-piled wharf were studied based on ambient excitation load response in thenormal working hours.(1) ERA method is proposed to identify modal parameters ofhigh-piled wharf under ambient excitation. ERA algorithm is detailed derived, basedon the basic principles of the system minimal realization and natural incentivetechnologies, also the Next-ERA procedures for high-pile wharf modal identificationwere compiled.(2) The large scale high-piled wharf physical model (1:10) wasproducted considering pile-soil interaction, and the proposed theory of modalparameter identification method based on ambient excitation was applied to thephysical model testing, combined with the dynamic characteristics calculated bynumerical analysis, he high-piled wharf model modal order and dynamiccharacteristics by environmental load excitation were revealed.
     Secondly, research on damage diagnosis methods of the high-piled wharf piles.Aimed at characteristics of the high-piled wharf pile, the damage diagnostic methodsbased on modal strain energy was firstly proposed. Depending on the vibrationdifferential equations, the strain energy expression modal was derived in detail, andthe principle of strain energy damage localization was proved. The implementationsteps were given based on MSE and the procedures for damage diagnosis of thehigh-piled wharf piles were programmed. The damages of high-piled wharf piles indifferent conditions were diagnosed through a bent numerical analysis. The resultsalso demonstrated that modal strain energy as damage diagnosis parameter was verysensitive to damage element and could identify the high-piled wharf damages underdifferent operating conditions. The research results would provide a useful referencefor non-destructive dynamic testing based on the dynamic characteristics of high-pilewharf.
     Thirdly, the bearing capacity detection methods of high-piled wharf piles wereresearched. The regional heap load method to detect high-piled wharf piles capacitywas firstly proposed, also the load area, loading and unloading termination conditionsand other key technical issues were proposed and solved. The high-piled wharf pilescapacity prototype testing was firstly carried out, the deformation displacement ofwhile high-piled wharf, the displacement of piles, and the strain of structural elementswere tested under grading loads. Finally, the vertical bearing capacity of foundationpile was determined combined with numerical calculation. Based on the test results ofthe prototype test, the longitudinal beam and bored pile modification scheme wasproposed for the support project. The modification scheme can improve the overallvertical bearing capacity, while maintaining the structural integrity and deformationcompatibility.
引文
[1]柴华友.应力波在承台-桩系统中传播数值分析[J].岩土工程学报,2003,(5):624-628.
    [2]姜卫方.桩顶非自由端低应变动测法应用研究[J].工程地球物理学报,2006,3(1):16-21.
    [3]孙熙平、王元战等,应力波在高桩码头基桩中传播数值模拟研究[J].港工技术,2010,4:26-28.
    [4]孙熙平、王元战、徐满意、彭志豪,高桩码头基桩完整性检测技术研究综述[J].港工技术,2010,2:pp50-53.
    [5]李火坤.泄流结构耦合动力分析与工作性状识别方法研究[D].天津:天津大学,2008.
    [6]杨和振.环境激励下海洋平台结构模态参数识别与损伤诊断研究[D].青岛:中国海洋大学,2004.
    [7]Clarkson B L, Mereer C A. Use of Cross Correction in Studying the Response ofLightly Damped Structures to Random Forces [J].Journal of AIAA.1965,3(12):2287-2291.
    [8]Ibrahim S R. Random decrement technique for modal identification of structures[J]. Journal of Spacecraft and Rockets,1977,14(11):696-700.
    [9]刘齐茂.用随机减量技术及ITD法识别工作模态参数[J].广西工学院学报,2002,13(4):23-26.
    [10]Box GEP, Jenkins G M. Times Series Analysis, Forecasting and Control [M].2ndEditor,1976.
    [11]Asmussen J C, Ibrahim S R. Random Decrement: Identification of StructuresSubjected to Ambient Excitation [C].Proc. of IMAC16,Santa Barbara Florida,USA,1998,914-921.
    [12] Andersen P,Brincker R, Peelers B, Roeck G De, Hermans L. Comparison ofSystem Identification Methods Using Ambient Bridge Test Data [C], Proc. ofIMAC17, Orlando, Florida, USA,1999,1035-1041.
    [13] Petsounls K A, Fassois S D. Critical Comparison of Parametric Time-DomainStructural Identification Methods; the Wideband Noise Case [C], Proc. of IMAC19,Kissimmee, Florida,USA,2001,1036-1042.
    [14] Bolton R, Stubbs N. A Comparison of Modal Properties Derived from Forcedand Output-Only Measurements for a Reinforced Concrete Highway Bridge [C],Proc. of IMAC19,Kissimmee, Florida,USA,2001,857-863.
    [15] Abdelghani M, Goursat M, Biolchini T, Performance of Output-OnlyIdentification Algorithms for Modal Analysis of Aircraft Structures [C] Proc. ofIMAC17, Kissimmee, Florida,USA,1999,224-230.
    [16] Huibin Li, Quan Qin, Liangzhong Qian, Lau C K. Time Domain ModalIdentification of Tsing Ma Suspension Bridge [C].Proc. of IMAC19,Kissimmee,Florida, USA,2001,1585-1591.
    [17] Mevel L, Hermans L. Health Monitoring of a Concrete Three-Span Bridge
    [C].Proc. of IMAC18, Kissimmee, Florida, USA,1999,690-694.
    [18] Parloo E, Guillaume P, Overmeire M V. Damage Detection and LocalizationUsing a Maximum Likelihood Estimator [C].Proc. of IMAC18’San Antonio*Texas, USA,1999,1340-1346.
    [19] Jiann-Shiun Lew. Effects of Identificated Parameter Uncertainty on StructuralDamage Detection [C].Proceedings of International Modal AnalysisConference’IMAC XVII, Kissimmee, FL, USA,1999,1991-1997.
    [20] Dierckx B,Deweer J. Extraction of Modal Parameters from Ambient VibrationData of Civil Structures: Case Studies Using the Balanced Realization Method
    [C]. Proc. of IMAC17, Kissimmee, Florida, USA,1999,1852-1857.
    [21] Abdelghani M,Tung Chou C, Michel Verhaegen. Using Subspace Methods inthe Identification and Modal Analysis of Structures [C].Proc. of IMAC15,Orlando, Florida, USA,1997,1392-1398.
    [22] Benveniste A,Basseville M. Polyreference Version of Subspace Algorithms forOutput only Structural Identification [C].Proc. of IMAC18, San Antonio, Texas,USA,2000,620-624.
    [23] Jyrki Kullaa,Timo Tirkkonen. System Identification of a Bridge from ResponseData Comprising Spurious Harmonics [C]. Proc. of IMAC19,Kissimmee, Florida,USA,2001,1112-1117.
    [24] Yang J C S, Qi G Z, Kan C D. Mathematical Base of Random DecrementTechnique [C]. Proc. of IMAC8, Orlando, Florida, USA,1990,2834.
    [25] Cioara T G, Alampalli S. Signal Processing Methods for Bridge MonitoringSystems [C].Proc. of IMAC17, Kissimmee,Florida. USA,1999,1334-1340.
    [26] Todd Simmermacher, Mohamed Kaouk, David C. Zimmerman. ExploitingAliasing Effects in the Eigensystem Realization Algorithm [C].Proc. of IMAC15,Orlando, Florida, USA.1997,914-921.
    [27] Ahmadian H, Gladwell G M L,F. Ismail. Extracting Real Modes from ComplexMeasured Modes [C].Proc. of IMAC13,Kissimmee, Florida. USA.1995,507-510.
    [28] Cherng A P, Abodelhamid M K. A Discussion of Separation of Signal fromNoise Modes in Time Domain Modal Parameter Estimation Techniques [C], Proc.of IMAC11,Kissimmee, Florida, USA,1993,225-222.
    [29] Brincker R, Stefano A D, Piombo B. Ambient Data to Analyze the DynamicBehaviour of Bridges:A First Comparison Between Different Techniques [C].Proc. of IMAC14Kissimmee,Florida,USA,1996,477-482.
    [30] Rune Brincker, Palle Anderson, Nis Moller. Output Only Modal Testing of a CarBody Subject to Engine Excitation [C]. Proc.Of the18th IMAC,2000,763-769.
    [31] Goursat INRIA, Basseville M, Benveniste A, Mevel L. Output-only ModalAnalysis of Ariane5Launcher [C], Proc. of IMAC-XIX: A Conference onStructural Dynamics?2001HYATT, ORLANDO KISSIMMEE, FLORIDA,1483-1490
    [32] Mergeay M. Least Squares Complex Exponential Method and Global SystemParameter Estimations used by Modal Analysis [C].Proc. Of the5thIMAC.1983,3.
    [33] Leuriem J M, Void H. A Time Domain Linear Modal Estimation Technique forGlobal Modal Parameter Identification [C].Proc of the2nd IMAC,1984.
    [34] Juang J N, Pappa R S. An Eigensystem Realization Algorithm for ModalParameter Identification and Model Reduction [j]. Journal of Guidance,1985,8(5):620-627.
    [35] Junang J N,Pappa R S. Effects of Noise on Modal Parameters Identified by theEigensystem Realization Algorithm [J]. Journal of Guidance,1986,9(3):294-303.
    [36] Juang J N’ Cooper J E, Wright J R. An Eigensystem Realization AlgorithmUsing Data Correlations (ERA/DC) for Modal Parameter Identification[J].Control Theory and Advanced Technology,1988,4(1):5-14.
    [37]Braun S G. Mechanical Signature Analysis Theory and Applications [M],Academic Press.1986.
    [38] Ljung L. System Identification:Theory for the user [M],Prentice-Hall,1987.
    [39] Fassois,S D, Lee, J E. On the Problem of Stochastic Experimental ModalAnalysis Based on Multipe-Excitation Multiple-Response Data, Part I and II [J],Journal of Sound and Vibration,1993,161:33-56
    [40] Hyoung M Kim. Vanhorn D A, Doiron H H. Free decay time-domain modalidentification for large space structures [J].Guidance.1994,17(3):513529
    [41] Hyoung M Kim, Mohamed Kaouk. Modal Analysis and Model Correlation of theMir Space Station [C].Proc. Of the18th EMAC,2000,1724-1730
    [42] Mohamed Kaouk,Shya2Ling Shein, Hyoung M Kim. Modal Analysis andCorrelation of International Space Station Early Configuration [C].Proc, Of the18th IMAC,2000,1028-1035
    [43] Levine West, Marie B, Melody, James W. Proceedings, of the1995ASMEDesign Engineering Technical Conference, Part C [C].15th Biennial Conferenceon Mechanical Vibration and Noise,1496,
    [44]Hermans L, Vander Auweraer H, Abdelghani M. A Critical Evaluation of ModalParameter Extraction Schemes for OUTPUT-ONLY Data [C],15th IMAC,682-688.
    [45]John Christian Asmussen. Modal Analysis Based on the Random DecrementTechnique [D].Aalborg University,1997.
    [46]Lawrence C F, Rick L, Martin J B. Correlation filtering of modal dynamics usingthe Laplace wavelet [C].Proc. Of International Modal Analysis Conference,1999,868-877
    [47]Kramer C,Desmet C A M, Peeters B. Comparlsion of Ambient and ForcedVibration Testingf of Civil Engineering Structures [C],17th IMAC,1030-1034.
    [48]Jyrki Kullaa. System Identification of Heritae Court Tower Using StochasticSubspace Method [C].Proc. Of the18th IMAC,2000,1088-1097
    [49] Rune Brincker, Lingmi Zhang, Palle Anderson, Modal Identification fromAmbient Responses Using Frequency Domain Decomposition [C]. Proc. of theIBth IMAC,2000,625-629
    [50]Fasana A,Garibaldi L,Giorceili E, Sabia D,Politecnico di Torino. Z24BridgeDynamic Data Analysis by Time Domain Methods. Proceedings Of IMAC-XIX:A Conference on Structural Dynamics [C],2001HYATT ORLANDOKISSIMMEE, FLORIDA,852-856
    [51]Bolton R, Stubbs N, Sikorsky C, Choi S. A Comparison of Modal PropertiesDerived from Forced and Output-Only Measurements for a Reinforced ConcreteHighway Bridge [C]. Proceedings Of IMAC-XIX:A Conference on StructuralDynamics,2001HYATT ORLANDO KISSIMMEE, FLORIDA,857-863
    [52]李中付,宋汉文,华宏星等.基于环境激励的模态参数识别方法综述[J].振动工程学报,2000,13(S):578-585.
    [53]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000,144-211
    [54]周传荣,赵淳生.机械振动参数识别及其应用[M].北京:科学出版社,1989,273-340.
    [55]张宜华.大型复杂结构的参数识别[D].北京:清华大学硕士论文,1999.
    [56]钱良忠.青马大桥模态参数识别[D].北京:清华大学学位论文,2000.
    [57]李德葆.振动模态分析及其应用[M].北京:宇航出版社,1989,160-172.
    [58]陈奎孚,焦群英.某型飞机颤振试飞数据的模态参数识别[J].航空学报,2003,24(6):526-530
    [59]Shelley S,Freudinger L and Allemang R. Development of an on-line parameterestimation system using the discrete modal filter [C].Proc.International ModalAnalysis Conference.1992,173-183
    [60]吕志民,徐金梧.大型构件动态固有频率和阻尼系数辨识方法[J].机械工程学报,2001,37(6):72-80
    [61]李中付,华宏星,宋汉文,郑栋梁,陈之炎.基于环境激励的工作模态参数识别[J].上海交通大学学报,2001,35(8):1167-1171
    [62]吴亚锋,姜节胜.结构模态参数的子空间辨识方法[J].应用力学学报增刊,2001,18(1):31-35
    [63]史东锋,郑敏,申凡,鲍明.工程结构工作模态的子空间辨识方法.振动工程学报,2000,13(3):406-412
    [64]秦仙蓉,张令弥.对模态参数识别的整体正交多项式算法的评述[J].强度与环境,2000,4:30-38
    [65]秦仙蓉,王彤,张令弥.参数识别的特征系统实现算法研究与比较[J].航空学报,2001,22(4):340-342
    [66]杨和振,李华军,黄维平.海洋平台结构环境激励的实验模态分析[J].振动与冲击,2005,24(2):129-133
    [67]于开平.时变结构动力学数值方法及其模态参数识别方法研究[D].哈尔滨:哈尔滨工业大学,2000
    [68]宝志雯.建筑物的脉动信号分析[J].地质工程与工程振动,1981,1(2):71-87
    [69]宝志雯,陈志鹏.从建筑物的脉动响应确定其动力特性[J].深圳大学学报(理工版),1986,1:36-49.
    [70]曾庆华,张令弥,张春宁.飞行顱振试验数据处理方法及软件研制[J].航空学报,1994,15(12):76-79.
    [71]于开平,邹经湘,杨炳渊,模态参数识别的小波变换方法[J].宇航学报,1999,20(4):72-76
    [72]刘福强,张令弥.一种改进的特征系统实现算法及其在智能结构中的应用[J].振动工程学报,1999,12(3):316-322.
    [73]邹经湘,于开平,杨炳渊.结构系统的时变参数识别方法[J].力学进展,2000,30(3):370-377
    [74]赵永辉,于开平,邹经湘.利用输出误差时间序列模型识别结构时变模态参数[J]航空学报,2001,22(3):277-280
    [75]Q. Qin, H. Li, L, Qian. C.K. Lau. Modal Identification of Tsing Ma Bridge byUsing Improved Eigensystem Realization Algorithm [J].Journal of Sound andVibration,2001,247(2):325-341.
    [76]陈鹏程,郑惠强,石来德.集装箱装卸桥的模态参数识别[J].同济大学学报(自然科学版),2001,29(9):1114-1117
    [77]金新灿,孙守光,邢鸿麟,邓爱建.环境随机激励下高速客车的工作模态分析[J].铁道学报,2003,25(5):24-28
    [78]陈隽,徐幼麟.HHT方法在结构模态参数识别中的应用[J].振动工程学报,2003,16(3):383-388
    [79]Yu Dan Jiang,Ren Wei Xin. EMD-based stochastic subspace identification ofstructures from operational vibration measurements [J]. Engineering Structures,2005,27(12):1741-1751
    [80]庞世伟,于开平,邹经湘.识别时变结构模态参数的改进子空间方法[J].应用力学学报,2005,22(2):184-188
    [81] P. Cawley, R.D. Admas. The Location of Defects in Structures fromMeasurements of the Natural Frequencies[J]. Journal of Strain Analysis.1979,14(2):49-57.
    [82] O.S. Salawu. Detection of Structural Damage Through Changes in Frequency[J]..Engineering Structures.1997,19(9):718-723.
    [83] P. Cornwell, C.R. Farrar, S.W. Doebling et al. Environmental Variability ofModal Properties[J].Experimental Techniques.1999,23(6):45-48.
    [84] D.P. Patil, S.K. Maiti. Detection of Multiple Cracks Using FrequencyMeasurements[J].Engineering Fracture Mechanics.2003,(70):1553-1572.
    [85] C.R. Farrar, D.A. Jauragui. Comparative Study of Damage IdentificationAlgorithms Applied to a Bridge[J].Experiment. Smart Materials andStructures.1998,7(5):704-719.
    [86] C.R. Farrar, D.A. Jauragui. Comparative Study of Damage IdentificationAlgorithms Applied to a Bridge[J].Numerical Study. Smart Materials andStructures.1998,7(5):720-731.
    [87] B.S. Wang, X.B. Liang, Y.Q. Ni et al. Comparative Study of Damage Indices inApplication to a Long-span Suspension Bridge[J]. Proceeding of the InternationalConference on Advances in Structural Dynamics. Hong Kong: the Hong KongPolytechnic University.2000,12:1085-1092.
    [88] F.N. Catbas, A.E. Aktan. Condition and Damage Assessment: Issues and SomePromising Indices[J].Journal of Structural Engineering.2002,128(8):1026-1036.
    [89] Z. Sun. Wavelet Packet Based Structural Health Monitoring and DamageAssessment[D].Ph. D. Dissertation, Hong Kong University of Science andTechnology.2003.
    [90] H. Xu, J. Humar. Damage Detection in a Girder Bridge by Artificial NeuralNetwork Technique[J].Computer-Aided Civil and Infrastructure Engineering.2006,21(6):450-464.
    [91] J.J. Lee, C.B Yun. Two-Step Approaches for Effective Bridge HealthMonitoring[J]. Structural Engineering and Mechanics.2006,23(1):75-95.
    [92]基于模态应变能比变化率的结构损伤识别研究[D].青岛:中国海洋大学,2007.
    [93]基于模态应变能的梁桥损伤识别[D].成都:西南交通大学,2007.
    [94]基于模态应变能改变的桥梁损伤统计识别方法研究[D].上海:同济大学,2003.
    [95]利用单元模态应变能法的地下框架结构损伤诊断[J].振动、测试与诊断,2010,30(6):642-645.
    [96]基于模态应变能的水工泄流结构损伤识别研究[J].人民黄河,2012,34(1):113-116.
    [97] S.W. Doebling, C.R.Farrar, M.B. Prime et al. Damage Identification and HealthMonitoring of Structural and Mechanical Systems from Changes in TheirVibration Characteristics: A Literature Review[J].USA: LosAlamos nationallaboratory. LA-10370-MS,1996.
    [98]张德文,魏阜旋.模型修正与破损诊断[M].科学出版社.1999:1-3.
    [99] D.C. Zimmerman, M. Kaouk. Structural Damage Detection Using a MinimumRank Update Theory[J].Journal of Vibration and Acoustics.1994,116:222-230.
    [100] D.C. Kammer. Optimal Approximation for Residual Stiffness in Linear SystemIdentification[J].AIAA Journal.1988,26(1):104-112.
    [101] M. Kaouk. D.C. Zimmerman. Structural Damage Assessment Using aGeneralized Minimum Rank Perturbation Theory[J]. AIAA Journal.1994,32(4):836-842.
    [102] S.W. Doebling. Minimum-Rank Optimal Update of Elemental StiffnessParameters for Structural Damage Identification[J].AIAA Journal.1996,34(12):2615-2621.
    [103] D.C. Zimmerman, M. Kaouk. Eigenstructure Assignment Approach forStructural Damage Detection[J].AIAA Journal.1992,30(7):1848-1855.
    [104] T.W. Lim, T.A.L. Kashangaki. Structural Damage Detection of Space TrussStructure Using Best Achievable Eigenvectors[J].AIAA Journal.1994,32(5):1049-1057.
    [105] R.G. Cobb, B.S. Liebst. Structural Damage Identification Using AssignedPartial Eigenstructure[J].AIAA Journal.1997,35(1):152-158.
    [106] Z.X.Li, X.M. Yang. Damage identification for Beams Using ANN Based onStatistical Property of Structural Responses[J].Computers and Structures.2008,86(1-2):64-71.
    [107] Y. Qian, A. Mita. Acceleration-Based Damage Indicators for BuildingStructures Using Neural Network Emulators[J].Structural Control and HealthMonitoring.2008,15(6):901-920.
    [108] K. Worden, A J. Lane. Damage Identification Using Support VectorMachines[J].Smart Materials and Structures.2001,10(3):540-547.
    [109] H. Hagiwara, A. Mita. Damage Assessment of Bending Structures UsingSupport Vector Machine[J].Proceedings of SPIE-The International Society forOptical Engineering. San Diego, CA, United States.2005:923-930.
    [110] A. Bulut, A. Singh, P. Shin et al. Real-time Nondestructive Structural HealthMonitoring Using Support Vector Machines and Wavelets[J].Advanced SensorTechnologies for Nondestructive Evaluation and Structural Health Monitoring.Proceedings of SPIE-The International Society for Optical Engineering. SanDiego, CA, United States.2005:180-189.
    [111]刘龙,黄海,孟光.基于支持向量机的结构损伤分步识别研究[J].工程学.2007,24(2):313-317.
    [112] M.M.R. Taha, J. Lucero. Damage Identification for Structural HealthMonitoring Using Fuzzy Pattern Recognition. EngineeringStructures[J].2005,27(12):1774-1783.
    [113] P.M. Pawar, R. Ganquli. Matrix Crack Detection in Thin-Walled CompositeBeam Using Genetic Fuzzy System [J].Journal of Intelligent Material Systems andStructures.2005,16(5):395-409.
    [114] K. Hijikata, A. Mita. Damage Detection of Wooden Building Using ChaosAnalysis and System Identification[J]. Proceedings of SPIE-The InternationalSociety for Optical Engineering. San Diego, CA, United States.2006:617410.
    [115] K.S.C. Kuang, M. Maalej, S.T. Quek. An Application of a Plastic Optical FiberSensor and Genetic Algorithm for Structural Health Monitoring[J].Journal ofIntelligent Material Systems and Structures.2006,17(5),361-379.
    [116]交通部第三航务工程勘察设计院,港口工程桩基规范(JTJ254-98)[S].北京:人民交通出版社,1999.
    [117]武汉港湾工程设计研究院,港口工程基桩静载荷试验规程(JTJ255-2002)[S].北京:人民交通出版社,2003.
    [118]武汉港湾工程设计研究院,港口工程桩基动力检测规程(JTJ249-2001)[S].北京:人民交通出版社,2002.
    [119] Jori.Ostetberg.New device for load testing driven Piles and drilled shaftseparates frication and end bearing.Piling and Deep Foundations [M]A.A.Balkema Rotterdam,Netherlands,1989
    [120]周鹏海,大型桩基承载力自平衡测试技术工程应用研究,武汉:武汉理工大学硕士学位论文,2009.
    [121]程宝辉,基桩竖向承载能力的自平衡试桩法理论研究,武汉:武汉理工大学硕士学位论文,2003.
    [122]马远刚,基桩承载能力自平衡测试技术及其工程应用,武汉:中国科学院武汉岩土力学研究所,博士学位论文,2010.
    [123]王东阳,桥梁桩基承载特性的模拟试验法研究,长安:长安大学,博士学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700