基于多机器人的开放式智能控制系统关键技术研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析现有机器人控制系统和开放式系统特点的基础上,从实际工程应用角度出发,提出了基于多机器人的开放式智能控制系统设计思想。本文紧密结合系统实用化和产业化发展的实际需要,系统研究了多机器人开放式控制系统搭建中的若干关键技术,包括机器人高精度运动控制、工件形位误差检测、加工路径动态误差补偿、多机器人最优路径规划、参数化任务编程、开放式系统的软硬件设计理论和开发方法等内容。论文取得了如下结论:
     提出了多机器人控制系统的机器人主动精度控制和加工件被动精度控制概念。针对机器人主动精度控制,提出了基于不确定性模型RBF-NN辨识的机器人自适应动力学速度前馈补偿控制方法。针对加工件被动精度控制,提出了基于结构光特征数据提取的工件形位误差检测方法,利用数据库技术实现加工轨迹的实时动态误差补偿。研究结果表明,主被动精度控制方案能有效提高系统的加工精度。
     结合多机器人系统的运动特点,利用C-Space理论和最优路径搜索算法,提出了一种基于动态速度修正的多机器人无碰撞最优路径规划算法。研究结果表明,该方法能获得比较实用的机械臂之间的最优无碰撞运动路径。
     提出了一种基于三维模型构件特征参数提取的参数驱动任务编程技术。利用三维模型直接获得加工参数信息,进而利用参数驱动任务编程技术自动获得加工程序代码,实现了加工任务的自动表达和实现。
     针对多机器人开放式控制系统的功能要求,提出了一种多层等级式控制体系结构方案。以工控机作为主控单元,以“DMC运动控制卡+图像处理卡+PLC”为从控单元,实现系统硬件平台搭建。根据从控单元硬件的不同功能,设计了相应的通讯方式实现信息交互。提出了基于系统任务实时性能分配和管理的多媒体定时器的软中断实时数据更新技术,采用双缓存顺序指令运行控制方案实现运动控制指令的安全高效处理。
     以海洋平台型钢构件加工为试验平台验证了本文提出的多机器人开放式智能控制系统的性能。试验结果表明,该系统在满足加工自动化要求的同时,明显提高加工精度和加工效率,验证了系统的良好性能。
The design concept of open and intelligent control system based on the multiplerobots is proposed by this dissertation from the practical application point of view, byanalyzing the present robotic system and open control system. Some key issues in thedevelopment of open and intelligent multi-robot control system, includinghigh-precision control of robot, dynamic error compensation, optimal path planning,parameterized programming and the design method of hardware and software of opensystem, are investigated. The following contributions and conclusions have beenmade:
     The concept of robot active and workpiece passive precision control isformulated. On the respect of robot active precision control, the dynamic velocityfeed-forward compensation control (DVFCC) based on the radical basis functionneural network (RBF-NN) identification of robot uncertain model is proposed.On the respect of workpiece passive precision control, the structure lightdetection (SLD) of workpiece shape and positioning errors is adopted to extractthe characteristic parameters of machining process. The dynamic errorcompensation is achieved by database technology. The results indicate that theproposed precision control approach can improve the machining accuracyefficiently.
     An optimal path planning approaching using dynamic velocity modification isinvestigated to achieve the collision-free motion of multi-robot based on thetheory of Configuration Space (C-Space) and A*path search algorithm. Thesimulation results demonstrate that the proposed method can obtain practicalcollision-free path between multiple arms.
     A novel program method of parameter-driven technology based on parameterextraction from three-dimensional model of workpiece is investigated. Theprocessing codes can be generated automatically by parameter-drivenprogramming approach, where the machining parameters is obtained fromstandard database, error data of SLD and the proposed extraction ofthree-dimensional model of workpiece.
     An open hierarchical architecture design scenario for system hardware update and software redevelopment is conveniently adopted in the proposed system. TheIPC as master controller and “DMC controller+Image Collection Card+PLC”as slave controllers are employed in the development of the hardware platform ofopen system. The proper communication mode is adopted to exchange theinformation between master and slave controllers. The real-time data updatebased multi-media timer technology is proposed by assignment and managementof real-time property of various control tasks, which utilizes dual-buffer controlapproach to achieve the safe and efficient execution of control instructions.
     The performance of the proposed open and intelligent multi-robot control systemis validated on the cutting task of H-beam steel on the offshore platform. Theexperimental results illustrate that the proposed system can significantly improvethe machining precision and efficiency with high automation level.
引文
[1]蔡自兴,机器人学.北京:清华大学出版社,2000:2~15.
    [2]金茂菁,曲忠萍,张桂华,国外工业机器人发展态势分析.机器人技术与应用,2001.2:6~8.
    [3]徐方,工业机器人产业现状与发展.机器人技术与应用,2007.5:2~4.
    [4] Brog rdh, Torgny, Present and future robot control development—Anindustrial perspective. Annual Reviews in Control,2007.31(1):69-79.
    [5] M. Saad G. M. Khoury, H. Y. Kanaan, Fuzzy PID control of a five DOF robotarm. Journal of Intelligent and Robotic System: Theory and Applications,2004.40(3):299~320.
    [6]曾祥进,黄心汉,王敏,基于改进Smith预估器的显微视觉伺服.华中科技大学学报,2008.36(增刊):8~11.
    [7] Mills C. Chen Peter, K. James, Synthesis of nerual networks and PID controlfor performance improvment of industrial robots. Journal of Intelligent andRobotic System: Theory and Applications,1997.20(2-4):157~180.
    [8]昝鹏,颜国正,于莲芝,基于神经网络PID控制的柔性微机器人系统.机器人,2007.29(3):219~223.
    [9] Han Song-Yu hwang Chih-Lyang, Yu Yuan-Sheng, A network-based fuzzydecentralized silding mode congrol for car-like mobile robots IEEEInternational Conference on Fuzzy Systems, Piscataway, NJ, USA,2005:61~66.
    [10] L. Gheorghe T. Mirela, An adaptive PID learning controller for periodic robotmotion. Proceeding of IEEE International Conference on Control Application,Piscataway, NJ, USA,2003:686~689.
    [11] S. Arimoto V. Parra-Vega, Y. H. Liu, Dynamic sliding PID control for trackingof robot manipulators: Theory and experiments. IEEE Trans. Robot Automat.,2003.19(6):967~976.
    [12] M. N. A. Parlakci E. M. Jararov, Y. Istefanopulos, A new variable structurePID-controller design for robot manipulators. IEEE Transactions on Controland System Technology,2005.13(1):122~130.
    [13] J. T. Ji J. Z. Wang, H. R. Wang, Grey prediction fuzzy control of the targettracking system in a robot weapon. Journal of Beijing Institute of Technology,2007.16(4):424~429.
    [14] Lee Wang Heon Oh Tae Seok, Parameter optimization of2-DOF PID controllerusing genetic algorithm International Journal of Applied Electromagnetics andMechanics,2006.24(4):131~145.
    [15] M. W. Walker J. Y. S. Lub, On-line computation schemes for mechanicalmanipulation. Transaction ASME Journal of Dynamic System: Measurementand Control,1980.102(2):69~76.
    [16]石炜,基于凯恩方法的机器人动力学建模与仿真.机器人技术,2008.24(20):221~223.
    [17] M. Grotjahn and B. Heimann, Model-based Feedforward Control in IndustrialRobotics. The International Journal of Robotics Research,2002.21(1):45-60.
    [18] T. Kakizaki K. Otani, K. Kogure, Dynamic parameter identifiation of anindustrial robot and its application to trajectory controls. Proceeding ofIEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh,USA,1992:990~997.
    [19] O. Yamano M. Togaim, Learning control and its optimality: Analysis and itsapplication to controlling industrial robots. Proceeding of IEEE InternationalConference on Robotics and Automation, San Francisco, USA,1986:1737~1742.
    [20] M. W. Spong R. Ortegar, Adaptive motion control of rigid robots: A tutorial.Automatica,1989.25(6):877~888.
    [21] Denis Garagi and Krishnaswamy Srinivasan, Adaptive friction compensationfor precision machine tool drive. Control Engineering Practice,2004.12(11):1451-1464.
    [22] G. Legnani F. Jatta, A. Visioli, Friction compensation in hybrid force velocitycontrol of industrial manipulators. IEEE Transactions on Industrial Electronics,2006.53(2):604~611.
    [23] Francisco G. Rossomando, Carlos Soria and Ricardo Carelli, Autonomousmobile robots navigation using RBF neural compensator. Control EngineeringPractice,2011.19(3):215-222.
    [24]栾楠,机器人逆动力学神经网络建模.电机与控制学报,2008.12(2):174~178.
    [25]聂娟,邵诚,基于神经网络的机器人轨迹鲁棒跟踪控制.自动化技术与应用,2002.21(6):13~17.
    [26] Felipe N. Martins, et al., An adaptive dynamic controller for autonomousmobile robot trajectory tracking. Control Engineering Practice,2008.16(11):1354-1363.
    [27] Hanlei Wang and Yongchun Xie, Adaptive inverse dynamics control of robotswith uncertain kinematics and dynamics. Automatica,2009.45(9):2114-2119.
    [28]弓洪伟,郑维,机器人轨迹跟踪的自适应模糊神经网络控制.计算机仿真,2010.27(8):145~149.
    [29] M. Taylan Das and L. Canan Dülger, Mathematical modelling, simulation andexperimental verification of a scara robot. Simulation Modelling Practice andTheory,2005.13(3):257-271.
    [30] Satoru Goto, et al., Forcefree control with independent compensation forindustrial articulated robot arms. Control Engineering Practice,2007.15(6):627-638.
    [31] Jan Swevers Walter Verdonck, Improving the Dynamic Accuracy of IndustrialRobots by Trajectory Pre-compensation. Proceeding of the2002IEEEInternational Conference on Robotics and Automation,2002:3423~3428.
    [32] G. Wang, Approach to improvement of robot trajectory accuracy by dynamiccompensation. Chinese Journal of Mechanical Engineering,2004.17(3):446~449.
    [33]陈恩伟,机器人动态特性及动力学参数辨识研究.合肥:合肥工业大学出版社,2008:128~129.
    [34]孙富春,孙增圻,张钹,机械手神经网络稳定自适应控制的理论与方法.北京:高等教育出版社,2005:16~24.
    [35] M. Stinchcomb K. Hornik, Multilayer feedforward networks are universalapproximators. Neural Networks,1989.2:359~366.
    [36] G. Bafas A. H. Sarim, A new algorithm for online structure and parameteradaptation of RBF networks. Neural Networks,2003.21(16):1003~1017.
    [37] J. L. Elman, Finding structure in time. Cognitive Science,1990.14(179~211).
    [38] W. Yu A. S. Poznyak, E. N. Sanchez, J. P. Perez, Nonlinear adaptive trajectorytracking using dynamical neural networks. IEEE Transactions on neuralnetworks,1999.10(6):1402~1411.
    [39] L. A. Feldamp G. V. Puskorius, Dynamic neural network nethods applied toon-vehicle idle speed control Proceeding of IEEE International Conference onNeural Network,1996.84(1407~1420).
    [40] Gang Feng, A compensating scheme for robot tracking based on neuralnetworks. Robotics and Autonomous Systems,1995.15:199~206.
    [41] Rossomando G. Francisco, Autonomous mobile robots navigation using RBFneural compensator. Control Engineering Practice,2011.19(3):215~222.
    [42] B. MacDonald G. Biggs, A survey of robot programming systems. Proceedingof the Australasian Conference on Robotics and Automation,2003.
    [43] B. Dufay, J. C. Latombe, An approach to automatic robot programming basedon inductive learing. The International Journal of Robotics Research,1984.3:3~20.
    [44] Y. L. Zhang H. F. Wang, CAD/CAM integrated system in collaborativedevelopment environment. Robotics and Computer-Integrated Manufacturing,2002.18(2):135~145.
    [45] M. Hitoshi, Motion generation in an off-line programming system for anarc-welding robot. Sensors and Control Systems in Arc Welding,1994.5:333~341.
    [46]冯胜强,胡绳荪,基于UG的呼喊机器人离线编程系统的设备建模.焊接学报,2008.29(4):89~92.
    [47]唐新华,Paul Drews,机器人三维可视化离线编程和仿真系统.焊接学报,2005.26(2):64~68.
    [48]武传松,许磊,基于ROTSY的弧焊机器人离线编程.电焊机,2009.39(1):45~48.
    [49]谭民,王硕,曹志强,多机器人系统.北京:清华大学出版社,2005.
    [50] Shital S. Chiddarwar and N. Ramesh Babu, Conflict free coordinated pathplanning for multiple robots using a dynamic path modification sequence.Robotics and Autonomous Systems,2011.59(7-8):508-518.
    [51] A. G. Gonzalez-Rodriguez and A. Gonzalez-Rodriguez, Collision-free motionplanning and scheduling. Robotics and Computer-Integrated Manufacturing,2011.27(3):657-665.
    [52] X. J. Wu, et al., Development of a configuration space motion planner for robotin dynamic environment. Robotics and Computer-Integrated Manufacturing,2009.25(1):13-31.
    [53] S. Dubowsky J. E. Bobrow, J. S. Gibson, Time-optimal control of roboticmanipulators along specified path. International Journal of Robotics Research,1985.4(3):3~17.
    [54] J. Lee Z. Bien, A minimum-time trajectory planning method for two robotsIEEE Transactions on Robotics and Automation,1992.8(3):414~419.
    [55] Shingo Ando, A fast collision-free path planning method for a general robotmanipulator. Proceeding of the2003IEEE International Conference onRobotics and Automation,2003:2871~2877.
    [56] B. Curto, Vidal Moreno,, F. J. Blanco, A general method for c-space evaluationand its application to articulated robots. IEEE Transactions on Robotics andAutomation,2002.18(1):24~31.
    [57] P. C. Muller J. S. Yu, An online cartesian space obstacle avoidance scheme forrobot arms. Mathematics and Computers in Simulation1996.41:627~637.
    [58] M. Guo J. H. Wang, Collision-free Path Planning of Dual-arm Robots Based onImproved Ant Colony Algorithm. China Control Decision Conference,2009:1438~1442.
    [59] K. Kiwamu M. Koichi, T. Yoshimi, collison-free tool path generation using2DC-space for5-axis control machining. Advanced Manufacturing Technology,1997.13:393~400.
    [60] X. Q. Cheng D. Henrich, Fast distance computation for online collisiondetection with multi-arm robots. Proceeding of the1992InternationalConference on Robotics and Automation,1992:2514~2519.
    [61] Yasuo Nasu Makoto Kudo, Multi-arm robot control system for manipulation offlexible materials in sewing operation. Mechatronics,2000.10:371~402.
    [62] Shital S. Chiddarwar and N. Ramesh Babu, Offline decoupled path planningapproach for effective coordination of multiple robots. Robotica,2009.28(04):477-491.
    [63]黄献龙,梁斌,吴宏鑫,机器人避碰规划综述.航天控制,2002.1:34~46.
    [64]徐潼,唐振民,多机器人系统中的动态避碰规划.计算机工程,2003.29(17):79~82.
    [65] Y. K. Hwang, Boundary equations of configuration obstacles for manipulators.The Proceedings of the IEEE Conference on Robotics and Automation,1990.1:298~303.
    [66] S. Arimoto F. Miyazaki, Sensory feedback based on the artificial potential forrobots The Proceedings of the9th Annual ACM Symposium on ComputationalGeometry,1984:63~72.
    [67] C. W. Warren, Multiple robot path coordination using artificial potential fieldsProceeding of IEEE International Conference on Robotics and Automation,1990:500~505.
    [68] B. Langlois J. Barraquand, J. C. Latombe, Numerical potential filed techniquesfor robot path planning. IEEE Transactions on Systems, Man and Cybernetics,1992.22(2):224~241.
    [69] S. Quinlan O. Khatib, D. Williams, Robot planning and control. Robotics andAutonomous Systems,1997.21(3):249~261.
    [70]孙华林,基于C空间和人工势场的4R机器人路径规划.合肥工业大学:[硕士学位论文],2007.
    [71] Lozano-perez T, Spatial planning: a configuration space approach. IEEE Trans.Comp.,1983.32(2):108~120.
    [72] J. Latombe D. Zhu, New Heuristic Algorithm for Efficient Hierarchical PathPlanning IEEE Transactions on Robotics and Automation,1991.7(1):9~20.
    [73] N. J. Nilsson P. E. Hart, B. Raphael, A formal basis for the heuristicdetermination of minimum cost paths in graphs. IEEE Transactions on Systems,Man and Cybernetics,1968.4(2):100~107.
    [74] C. Wurll D. Henrich, H. Worn, on line path planning with optimal c-spacediscretization. Proceeding of the1998IEEE/RSJ International Conference onIntelligent Robots and System,1998:1479~1484.
    [75] W. S. Owen, E. A. Croft and B. Benhabib, A multi-arm robotic system foroptimal sculpting. Robotics and Computer-Integrated Manufacturing,2008.24(1):92-104.
    [76]丁富强,韩卫军,赵锡芳,基于C空间的双臂机器人无碰撞运动规划.上海交通大学学报,2001.35(1):54~58.
    [77]李大生,刘欣,吴明华,周济,基于动力学约束的机器人无碰撞运动规划.机器人,1990.12(5):14~19.
    [78]孟庆浩,彭商贤,刘大伟,基于Q-M图启发式搜索的移动机器人全局路径规划.机器人,1998.20(4):273~279.
    [79] G. M. Herb C. A. Shaffer, A real-time robot arm collision avoidance system.IEEE Transactions on Robotics and Automation,1992.8(2):149~160.
    [80] Z. Shiller P. Fiorini, Motion planning in dynamic environments using therelative velocity paradigm. Proceeding of IEEE International Conference onRobotics and Automation,1993.2:560~566.
    [81] C. W. Yang B. N. Demazo, J. Robert, Open architecture controls for precisionmachine tools. Proceeding of Mechanism and Controls for UltraprecisionMotion,1994.4:6~8.
    [82] C. J. Schilb P. J. Fiedler, Open architecture systems for robotic workcells.Robotics Today,1998.11(4):1~4.
    [83] C. Danirl G. Prischow, G. Junghans, W. Speling, Open system controllers: Achallenge for the future the machine tool industry. Annals of the CIRP,1993.42(1):15~26.
    [84]周学才等,开放式机器人通用控制系统.机器人,1998.20(1):25~30.
    [85]马琼雄,基于IPC的开放式工业机器人控制系统研究.机电产品开发与创新,2008.21(1):15~17.
    [86]吴传宇,基于PC+DSP模式的开放式机器人控制系统及其应用研究.浙江大学博士学位论文,2002:13~15.
    [87]舒志兵,交流伺服运动控制系统.北京:清华大学出版社,2006.
    [88]霍伟,机器人动力学与控制.北京:高等教育出版社,2005.
    [89]宋伟刚,机器人学-运动学、动力学与控制.北京:科学出版社,2007.
    [90] D. Lowe D. S. Broomhead, Multivariable functional interpolation and adaptivenetworks. Complex System,1988.2:321~355.
    [91]刘金琨,机器人控制系统的设计与Matlab仿真.北京:清华大学出版社,2008.
    [92]休斯顿,刘又午,多体系统动力学.天津:天津大学出版社,1991.
    [93]罗维克,非接触式激光测量系统原理与应用.人造通讯,2004.11(7):26~28.
    [94]孙长库,叶声华,激光检测技术.天津:天津大学出版社,2001.
    [95]张广军,机器视觉.北京:科学出版社,2005:131~144.
    [96] C. Kimb J. Parka, J. Nac, Using structured light for efficient depth edgedetection. Image and Vision Computing,2008.26(11):1449~1465.
    [97] B. Curless L. Zhang, S. M. Seitz, Rapid shape acquisition using colorstructured light and multi-pass dynamic programming Symposium on3D DataProcessing Visualization and Transmission,2002:311~324.
    [98] J. Thayyoor N. G. Durdle, V. J. Raso, An improved structured light techniquefor surface reconstruction of the human trunk. IEEE Canadian Conference onElectrical and Computer Engineering,1998.2:874~877.
    [99] You Qiang Sun Changku, Online machine vision method for measuring thediameter and straightness of seamless steel pipes. Optical Engineering,2001.40(11):2565~2571.
    [100] D. H. Zou, Structured-lighting surface sensor and its calibration. OpticalEngineering,1995.34(10):3040~3043.
    [101] P. T. Yu T. C. Lin, Thresholding noise-free ordered mean filter based ondempster-shafer theory for image restoration. IEEE Transactions on Circuitsand Systems Ⅰ-Regular Papers,2006.53(5):1057~1064.
    [102]龚洁晖,张慧,基于工程图的三维重建研究.软件学报,2008.19(7):1794~1805.
    [103]胡志勇,张秀芬,蔚刚,基于灰度图像的三维曲面重建系统设计.计算机技术与发展,2007.17(10):61~64.
    [104]王鹏,线结构光三维自动扫描系统关键技术的研究.天津大学:[博士学位论文],2008.
    [105]吴庆阳,苏显渝,李景镇,一种新的线结构光光带中心提取算法.四川大学学报,2007.39(4):151~155.
    [106]于烨,陆建华,郑君里,基于Hermite插值的彩色图像边缘检测技术.清华大学学报(自然科学版),2008.48(4):553~557.
    [107]霍龙,张爱军,刘伟军,基于线结构光的视觉3D测量中光刀中心提取方法的研究.计算机应用与软件,2006.23(10):100~102.
    [108]梁治国,徐科,结构光三维测量中的亚像素级特征提取与边缘检测.机械工程学报,2004.40(12):96~99.
    [109]宗恒,在VisualC_6_0中通过ODBC实现SQL.青岛大学学报(自然科学版),2004.17(4):85~89.
    [110]代伟,刘敏,冯文武, ODBC技术解析与MFCODBC实例应用.内江师范学院学报,2007.23(2):37~39.
    [111]陈夕松,李均,基于MFC的ODBC数据库访问与编程.微计算机信息,1999.15(1):28~30.
    [112]徐济仁,基于ODBC的数据库接口应用程序的开发.系统工程与电子技术,2002.24(6):87~90.
    [113]徐慧, Visual C++数字图像实用工程案例精选.北京:人民邮电出版社,2004.
    [114]杨晖,三割炬H型钢机器人切割装备系统软件研究.天津大学硕士学位论文,2010:25~27.
    [115] J. M. McCarthy G.Ge, Equations for boundaries of joints obstacles for planarrobots.pdf.1989:164.
    [116]邹亮,徐建闽,朱玲湘, A*算法改进及其在动态最短路径问题中的应用.深圳大学学报,2007.24(1):32~36.
    [117] Pengfei Li, et al., Open architecture of CNC system research based on CADgraph-driven technology. Robotics and Computer-Integrated Manufacturing,2010.26(6):720-724.
    [118] Yadong Liu, et al., An intelligent NC program processor for CNC system ofmachine tool. Robotics and Computer-Integrated Manufacturing,2007.23(2):160-169.
    [119] W. H. Sheng H. P. Chen, Transformative CAD based industrial robotprogramme generation. Robotics and Computer-Integrated Manufacturing,2011.5(27):942~948.
    [120]樊明跃,三维模型驱动的机器人离线自动编程型材切割系统.天津大学硕士学位论文,2011:10~14.
    [121] Y. Nakada T. Wada, P. Morrow, M. L. Lu, IGES-An intelligent graphicalengineering system Computers&Chemical Engineering,1997.21(20):89~94.
    [122]徐昕,刘书桂, CMM/CAD集成系统中IGES后处理器的开发.天津大学学报,2003.36(1):28~32.
    [123]吴春燕,刘向阳, IGES文件的研究和转换.工程建筑与设计,1999.3:26~28.
    [124]孙德茂,机床数控系统编程能力的现状与展望. CAD/CAM与制造业信息化,2003.4:1~2.
    [125] G. Wang W. K. Song, Research on multi-robot open architecture of anintelligent CNC system based on parameter-driven technology. Robotics andComputer-integrated Manufacturing,2012.28(3):326~333.
    [126] étienne Fortin, Jean-Fran ois Chatelain and Louis Rivest, An innovativesoftware architecture to improve information flow from CAM to CNC.Computers&Industrial Engineering,2004.46(4):655-667.
    [127] J. S. Gu and C. W. de Silva, Development and implementation of a real-timeopen-architecture control system for industrial robot systems. EngineeringApplications of Artificial Intelligence,2004.17(5):469-483.
    [128]北京宝伦数控技术有限公司, DMC18x6新一代高速系列运动控制器.
    [129]帅梅,王爱囡,王广炎,基于Windows数控系统的多线程实现.机床与液压,2003.852~854.
    [130]范朝阳,张良驹,多线程程序设计的概念与应用.小型微型计算机系统,1996.17(4):1~6.
    [131]帅梅,基于Windows数控系统的多线程实现.机床与液压,2003.6:852~855.
    [132]王小婷,韩方,基于多线程的制造数据分析和可视化.微电子学与计算机,2007.24(10):102~105.
    [133]张程,汪秉文,多线程技术在工业控制中的应用.工业控制计算机,2002.15(3):28~30.
    [134]李净,杨俊武,钱旭,用多媒体定时器精确控制采样频率.计算机应用,2000.20(12):85~86.
    [135]郑存红,胡荣强,赵瑞峰,用VisualC_实现实时数据采集.计算机应用研究,2002.4:103~108.
    [136]王俊国,周建中, VisualC_6_0环境下的过程控制系统软件设计与实现.工业仪表与自动化装置,2005.6:54~56.
    [137]邵维忠,杨芙清,面向对象的系统分析.北京:清华大学出版社,2006:290~292.
    [138]申国栋,基于多机器人的H型钢火焰切割系统的路径规划研究.天津大学硕士学位论文,2010:8~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700