不同倍性黄瓜(Cucumis sativus L.)材料的创制及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.,2n=14)隶属于葫芦科,黄瓜属,是一种重要的世界性蔬菜作物。通过单倍体诱导技术可以快速获得纯系(单倍体和双单倍体),进而加快黄瓜的育种进程。同时,通过选育不同倍性(整倍体和非整倍体)的新种质资源材料,不仅可以增加黄瓜的商业价值,而且对促进它的分子细胞遗传学研究也具有重要价值。为此,本论文利用不同基因型的黄瓜品种为试材进行未授粉子房培养,以期获得单倍体和双单倍体材料,建立其诱导单倍体的技术体系;利用未授粉子房培养获得的同源四倍体材料进行杂交、回交,筛选出了一系列同源三倍体、初级三体及早世代稳定遗传的二倍体黄瓜材料;此外,采用细胞遗传学和分子标记技术对这些获得的新种质材料进行了鉴定与评价,以期为黄瓜的倍性育种打下基础。具体结果如下:
     1.黄瓜未授粉子房培养诱导单倍体/双单倍体技术体系的建立
     研究了热激处理时间、TDZ和AgNO3浓度对黄瓜未授粉子房培养过程中胚状体发生率的影响。结果表明,子房培养开始阶段进行35℃热激处理的胚发生率显著高于对照(0 d),其中处理2 d的效果较好;TDZ对提高胚状体发生率具有显著效果,添加0.04 mg·L-1TDZ的诱导培养基培养的最大胚状体发生率可达72.7%;在诱导培养基中添加AgN03可以提高胚状体发生率,同时能缩短胚状体出现的时间并提高胚状体产量。最后,在3种不同基因型黄瓜材料中共获得了40个再生植株,经染色体计数后发现2株为单倍体,5株为同源四倍体,剩下33株为二倍体。利用SSR手段对获得的二倍体植株进行同质性分析后发现,17株为双单倍体。
     2.同源四倍体黄瓜的培育及分子细胞遗传学研究
     利用SSR手段对未授粉子房培养获得的同源四倍体植株进行同质性分析后,发现它们均为纯合子。利用形态学观察和染色体计数法对同源四倍体单株自交后代的遗传稳定性进行了研究,结果表明自交后代倍性没有发生变异。对同源四倍体植株花粉可染率、花粉萌发率及自交结籽数分别进行观察后发现,所获得的同源四倍体具有较高的育性。
     对同源四倍体黄瓜(Tetra-Jinlv)花粉母细胞减数分裂与雄配子体发育观察结果表明,同源四倍体黄瓜花粉母细胞减数分裂过程与二倍体基本相同但有其特殊性。主要表现为:中期Ⅰ染色体的构型复杂,有多价体、四价体、三价体、二价体和单价体;中期Ⅰ和中期Ⅱ有赤道板外染色体;后期Ⅰ和后期Ⅱ出现落后染色体、染色体桥;后’期Ⅱ和末期Ⅱ还出现染色体分离不同步及不均等分裂的现象;四分体时期出现二分体、三分体、含微核的异常四分体及多分体。花粉母细胞减数分裂平均异常频率为37.2%。正常四分体中的小孢子,大多数可以发育成具有三孔、两细胞的可育雄配子,小孢子的发育主要经过以下几个阶段:单核早期、单核晚期、两核期。花粉萌发试验发现同源四倍体的花粉萌发率仅为46.9%。
     此外,利用分子细胞学研究手段对两种不同来源途径四倍体(Tetra-5来自未授粉子房培养;Tetra-Jinlv来自秋水仙素处理)以及原始二倍体进行了遗传分析。细胞学研究结果发现,同源四倍体Tetra-5在减数分裂各个阶段染色体异常行为频率明显较Tetra-Jinlv要低,尤其在后期落后染色体数目上。对比两种同源四倍体在中期Ⅰ的染色体构型发现,同源四倍体Tetra-5较Tetra-Jinlv含有较多的四价体、较少的单价体和三价体。同时,采用AFLP技术对这两类同源四倍体及原始二倍体进行基因组DNA多态性分析后发现,从38对引物扩增获得的2214条60-500bp条带中,多态性位点仅有50个,占2.26%。在多态性位点表现中,二、四倍体特异性条带分别为0.50%和0.18%。比较两种不同来源途径同源四倍体扩增条带后发现,同源四倍体Tetra-5较Tetra-Jinlv表现出更多的遗传变异,共扩增出新增条带26条。研究结果表明,不同倍性及不同来源途径黄瓜在分子细胞遗传学水平上存在广泛的遗传变异。体细胞无性系变异引起了同源四倍体在DNA水平上更广泛的变异。
     3.同源三倍体黄瓜的培育及其细胞遗传学研究
     采用常规杂交法探讨了黄瓜二、四倍体杂交过程中亲本育性、授粉组合及亲本基因型对杂交结实率的影响。结果表明:同源四倍体自交结实率比较低(13.0%-14.5%),可能与其花药内所包含的正常花粉粒比例小及花粉管萌发长度较短有关;二、四倍体杂交组合的结实率很低(0.26%-1.02%),但在两种配组方式之间存在着明显差异,即以同源四倍体黄瓜为父本、二倍体黄瓜为母本的杂交结实率比较高,反之则杂交结实率比较低;在二、四倍体杂交过程中,二、四倍体的基因型对杂交结实率的影响较大,以杂交双亲同属一个基因型的杂交效果较好。
     对同源三倍体黄瓜花粉母细胞减数分裂行为及雄配子体发育进行观察后发现,同源三倍体黄瓜花粉母细胞减数分裂过程与二倍体基本相同但有特殊性。主要表现在:中期Ⅰ染色体的构型复杂,有多价体、四价体、三价体、二价体和单价体;中期Ⅰ和中期Ⅱ有赤道板外染色体;后期Ⅰ和后期Ⅱ出现落后染色体和染色体桥;后期Ⅱ和末期Ⅱ还出现染色体分离不同步及不均等分裂的现象;四分体时期出现二分体、三分体、含微核的异常四分体及多份体。正常四分体中的小孢子,有约91.2%的能发育为具有三孔两细胞的可育配子,小孢子的发育主要经过以下几个阶段:单核早期、单核晚期、两核期。花粉育性检测发现,同源三倍体的可染率和萌发率分别为18.8%和13.5%,表明其育性较低。
     4.黄瓜初级三体系的培育及其细胞遗传学研究
     为促进黄瓜的分子细胞遗传学研究,本研究利用黄瓜同源三倍体与二倍体正反交来培育初级三体。同时,对同源三倍体黄瓜减数分裂后期Ⅰ染色体分离情况进行了观察,以期为二、三倍体杂交培育初级三体提供细胞学证据。研究结果表明:二、三倍体正反交后获得了大量的种子,存活下来的56个子代的染色体数从14到28不等,其中染色体数为15的植株占了较大的比例(51.8%)。本研究首次获得了4种不同类型的黄瓜初级三体材料,并能各自相互区分出来。对同源三倍体花粉母细胞减数分裂染色体行为观察后发现,后期Ⅰ染色体分离符合正态分布规律,其中8/13型染色体分离的比例为6.25%。同源三倍体减数分裂,特别是8配子的形成为二、三倍体正反交后产生2x+1配子及初级三体的获得提供了细胞学证据。
     5.不同倍性黄瓜材料遗传差异的AFLP分析
     采用AFLP技术对黄瓜品种‘津绿四号’的单倍体、二倍体、三体、三倍体和四倍体进行基因组DNA多态性比较。从51对引物扩增获得2922条60-500bp的条带,检测出多态性位点152个,占5.2%,其中13对引物组合在不同倍性材料扩增条带没有差异。在多态性位点表现中,以三体和四倍体同时扩增出条带为主,占2.293%。与相应二倍体相比,三倍体、初级三体和四倍体都有特异片段的增加。结果表明,不同倍性黄瓜材料之间在DNA水平上存在广泛的遗传变异。
     6.二、三倍体杂交获得早世代稳定遗传的F2群体
     早世代稳定遗传群体的获得可以加速育种进程。利用由未授粉子房培养获得的同源四倍体(Tetra-1)与双单倍体(DH-Jinlv)杂交得到的同源三倍体(Tri-Jinlv),与双单倍体黄瓜翠玉(DH-Cuiyu)进行正反交,在杂种Fl代中发现有非整倍体和二倍体个体产生,其中一个二倍体的自交后代(F2)在田间农艺性状表现稳定。对这个稳定F2群体进行微卫星验证,结果表明:F1和F2群体30个单株的扩增带型整齐一致,在各个SSR多态位点只出现一条同父或同母带,丢失了来自另一亲本的等位位点,说明该F2群体确系由二、三倍体杂交得到的一个早世代稳定群体。
Cucumber, which is one species of cucurbitaceous, is an important vegetable crops worldwide. It can accelerate process of breeding through using haploid or doubled haploid. Meanwhile, its commercial value could be enhanced, and further molecular-cytology studies could be promoted by selecting different ploidy germplasm in cucumber. In this study, unpollinated ovary from different genotypic materials were cultured to produce haploid or doubled haploid, further to esbtalish an efficient protocol for haploid induction. Autotriploid were obtained from reciprocal crosses between diploid and autotetraploid, which obtained from ovary culture. Further, primary trisomic and a non-segregation F2 population derived from reciprocal crosses between autotriploid and diploid. In additional, cytogenetic and molecular analyses have investigated and confirmed precisely these unique germplasms, in order to support basic for ploidy breeding in cucumber. The details results as following:
     1. Production haploid and doubled haploid from unpollinated ovary culture in cucumber
     Several factors, i.e. the duration of thermal shock pretreatment at 35℃, the concentrations of TDZ and the silver nitrate were investigated for their effects on embryo formation in cucumber ovary culture. The results showed that embryo formation after thermal shock treatment at 35℃was significantly higher than control (0 d), and highest embryo formation was found in treating two days. TDZ had a positive effect on the embryo formation. Highest embryo formation frequency (72.7%) was recorded by adding 0.04 mg/L TDZ into the induction medium. The results found that addition of AgNO3 to induction medium had significant effect on frequency of embryo formation, and shortened embryo sprouting period and improved number of embryos formed in each ovary slice. In total, forty plantlets were regenerated from three genotype cucumber. Two were observed as haploid (2n=x=7), five were autotetraploid (2n=4x=28) and other thirty-three were diploid after chromosome counts. Homozygous of these diploid plants were identified using simple sequence repeat (SSR) analysis, and seventeen were considered as doubled haploid.
     2. Production and molecular cytogenetical analyses on autotetraploid in cucumber
     Autotetraploid plants originated from unpollinated ovary culture were identified as homozygote after simple sequence repeat (SSR) analysis. Genetic stability of the progenies from self-crossing of these autotetraploid was studied, no ploidy variation occurred among these progenies after morphology and chromosome observation. These autotetraploid plants have relatively higher pollen fertility after observation stainability of pollen grains, viability of pollen grains and number of seeds per fruit.
     Meiosis of pollen mother cells (PMCs) and male gametophyte development in autotetaploid cucumber was studied, and results showed that the PMCs meiosis of the autotetraploid was similar to the diploid. Various chromosome configurations, e.g. multivalent, quadrivalents, trivalents, bivalents and univalent were observed in most PMCs of the autotetraploid at metaphase I. Chromosomes'lagging was frequently observed at anaphase in both meiotic divisions. In addition, chromosomes segregations were not synchronous and equal in some PMCs during anaphase II and telophase II. Dyad, triad, tetrad with micronucleus and polyad could be observed at tetrad stage. The frequency of abnormal behavior in each stage of meiosis was counted, and the average percentage was 37.2%. Most microspores could develop into fertile gametophytes with 2 cells and 3 germ pores through the following stages:single-nucleus early stage, single-nucleus late stage,2-celled stage after pollen mitosis. The germination rate of pollen grains was noted, and it was 46.9% in autotetraploid.
     In additional, genetic variation among two kinds of autotetraploid with different origin (Tetra-5 and Tetra-Jinlv originated from unpollinated ovary culture and cochicine treatment) and their original diploid were studied using molecular cytogenetical analyses. From the cytogenetics analysis, we found the frequency of abnormalities at the different stage from metaphase to tetrad of meiosis was lower in autotetraploid Tetra-5 than that of in Tetra-Jinlv, especially the number of lagging' chromosome at anaphase. Comparing the chromosome configuration at metaphaseⅠin these two kinds of autotetraploid, there are relatively more quadrivalents, and relatively less univalents and trivalents in Tetra-Jinlv. On the other hand, AFLP analysis detected the genetic differences among two kinds of autotetraploid with different origin and these original diploid.2214 bands ranging with 60-500bp were amplified with 38 pairs of primers. Only 50 polymorphic loci were identified which accounted for 2.26%. The expression of polymorphic loci showed that the differential bands remained present in the diploid and autotetraploid, which account for 0.50% and 0.18%, respectively. We also detected 26 novel bands present in Tetra-5, which has much more genetic variation than Tetra-Jinlv. These findings indicated that extensive genetic variation occurred during ploidy change or origin in cucumber. Meanwhile, autotetraploid Tetra-5 showed extensive genetic variation at level of DNA which caused by somaclone variation.
     3. Production and cytogenetical analyses on autotriploid in cucumber
     The effects of fertility of parents, pollination combination and genotype of parents on seed-setting in hybridization between autotetraploid and diploid were analyzed with conventional cross method in this study. The results showed:(1) The low seed-sets (13.0%-14.5%) of the autotetraploidy combinations may be attributed to the presence of more abnormal pollen in the anthers or length of pollen tube. (2) The seed-sets of cross combinations between autotetraploid and diploid were very low (0.26%-1.02%), but there were obvious different seed-settings between the two mating methods. If the autotetraploid cucumber was used as the male parents and the diploid as the female parents, higher seed-sets were found in the hybridized combination. However, the seed-sets in the combinations were lower if the diploid cucumber was used as male parents. (3) Besides, the effect of genotype of parents on production of autotriploid was biggish; the average percentage of autotriploid production was higher when autotetraploid and diploid were belonging to same genotype.
     Meiosis of pollen mother cells (PMCs) and male gametophyte development in autotriploid cucumber (Cucumis sativus L.) was studied, and results showed that the PMCs meiosis of the autotriaploid was similar to the diploid with particularities. Variable chromosome configurations, e.g. multivalents, quadrivalents, trivalents, bivalents and univalent were observed in the most PMCs of the autotriploid at metaphaseⅠ. Chromosome lagging and bridges at anaphase in both meiotic divisions resulted from irregular chromosome separation and asynchronization were frequently observed as well, which led to formation of micronucleus and inviable gametes. The frequency of normal PMCs in autotriploid at stage of tetrad was only 40.6%. Among those normal microspores, most of them (91.2%) could develop into normal gametophytes with 2 cells and 3 germ pores. The stainability and germination rate of pollen grains were noted, and they were only 18.8% and 13.5%, respectively.
     4. Production and cytogenetical analyses on primary trisomics in cucumber
     The reciprocal crosses were made between autotriploid and diploid for selecting the primary trisomics. Many viable F1 seeds were obtained from reciprocal crosses between autotriploid and diploid. The number of chromosomes of 56 surviving progenies varied from 14 to 28, with plants having 2n=15 occurring at the highest frequency (51.8%). Primary trisomics were firstly obtained in this study. Four types of primary trisomics were isolated and they could be distinguished from each other, as well as diploid. Variable chromosome configurations, e.g. univalent, bivalent and trivalent were observed in many pollen mother cells (PMCs) of the autotriploid at metaphaseⅠ. Binomial chromosome distribution was observed at anaphaseⅠand frequency of 8/13 was 6.25%. The meiosis of autotriploid, especially the class of gametes with eight chromosomes, gave the cytological evidence of producing 2x+1 type gamete and could be induced into primary trisomic plants from progeny of autotriploid-diploid crosses. These studies have established a ground work for selecting a series of primary trisomics, and further using them for associating linkage groups with specific chromosomes in cucumber.
     5. AFLP analysis of genetic differences among cucumber materials with different ploidies
     Genetic variation for the response to ploidy change, haploid, diploid, triploid, tetraploid and trisomic polymorphisms of cucumber variety'Jinlv No.4'were compared by AFLP. Fifty-one pairs of primer combination were employed on cucumber materials with different ploidy and a total of 2922 bands between 60-500 bp were observed. Results showed only 152 polymorphic loci were found which accounted 5.2% and AFLP fingerprints amplified from the materials with different ploidies with 13 of the primer pairs did not remarkably differ. The expression of the polymorphic loci showed that the bands remained present in trisomic and tetraploid and absent in other materials in most case, which accounted for 2.293%. In contrast with diploid material, the trisomic, triploid and tetraploid materials got their specific bands. These results indicated that extensive genetic variation occurred among these cucumber materials with different ploidy.
     6. Identification and analysis of F2 stable population derived from the cross of autotriploid diploid in cucumber
     Autotriploid (Tri-Jinlv) obtained from cross between autotetraploid (Tetra-1) and DH-Jinlv, which regenerated from unpollinated ovary culture. It was then used as parent reciprocal crossing with a doubled haploid DH-Cuiyu. From its F2 generation we obtained a genetic-stable population. To prove the uniformity of such a population, SSR markers were used to survey the F2 individual plants. The results showed that F2 individuals carried only one parental molecular marker at each polymorphic locus, and their genotypes were identical with F1 progeny. Based on the above experiments, we consider that this F2 population is definitely an early-generation stable population.
引文
1. 安巍,李云翔,焦恩宁,李润淮.三倍体无籽枸杞新品种的选育研究.宁夏农学院学报,1998,19(3):41-43.
    2. 卞桂杰,张景楼,郑毅,黄淑兰.甜菜多倍体新品种吉甜304的选育.中国糖料,2007,3:17-19.
    3. 蔡得田,袁隆平,卢兴桂.二十一世纪水稻新战略Ⅱ.利用远缘杂交和多倍体双重优势进行超级稻育种.作物育种,2001,27:110-116.
    4. 曹鸣庆,李岩,蒋涛.大白菜和小白菜游离小孢子培养试验简报.植物学通报,1992,2:120-121.
    5. 曹清河,陈劲枫,钱春桃,郭军洋.黄瓜花粉母细胞减数分裂及其雄配子体发育的细胞学研究.西北植物学报,2004,24(9):1721-1726.
    6. 丛佩华,吴禄平,景士西.2n配子的发生及在果树育种中的应用.果树科学,15(4):347-353.
    7. 常金华,罗耀武.同源四倍体高粱与约翰逊草杂交后代的生物学特性与细胞遗传学行为.中国农学通报,2003,19(2):31-32.
    8. 陈彩艳,张文利,王爱菊,夏志辉,李晓兵,程祝宽,朱立煌.以花药愈伤组织为受体的水稻转化和RNA干扰研究.中国科学c辑,2006,36(4):289-301.
    9. 陈劲枫,钱春桃.利用几种园艺作物卷须制片鉴定染色体数目的研究.园艺学报,2002,29(4):378-380.
    10.陈劲枫,雷春,钱春桃.黄瓜多倍体育种中同源四倍体的合成和鉴定.植物生理学通讯,2004,40(2):149-153.
    11.陈小鹏,刘栓桃,孙小镭.黄瓜未授粉子房的胚状体诱导研究初报.西北农业学报,2005,14(2): 148-151.
    12.陈志勇,吴德瑜,宋文昌,张玉华.同源四倍体水稻育种研究的近期进展.中国农业科学,1987,20(1):20-24.
    13.程祝宽,李欣,于恒秀,顾铭洪.一套新的籼稻初级三体的选育和细胞学鉴定.遗传学报,1996,23(5):363-371.
    14.杜胜利,魏爱民,魏惠军.利用生物技术创造黄瓜育种新材料方法研究.天津科技,2001,2:627.
    15.高俊华,王润奇,毛丽萍,刁现民.安矮3号谷子矮杆基因的染色体定位.作物学报,2003,1:152-154.
    16.顾兴芳,张圣平,王烨.“十五”期间我国黄瓜育种研究进展.中国蔬菜,2005(12):1-7.
    17.关世武.水稻花培新品种龙粳10号的选育及高产栽培模式.中国农学通报,2000,16(3):75-76.
    18.韩毅科,杜胜利,王鸣.黄瓜染色体加倍研究.天津农业科学,2002,8(2):1-4.
    19.胡保民,张天真,潘家驹.陆地棉三体的诱发、鉴定、研究和利用.Ⅱ.额外染色体和传递及四体的分离.作物学报,1996,22(3):283-287.
    20.胡金良,徐汉卿,刘惠吉.小白菜二、四倍体杂交的胚胎学研究.南京农业大学学报,1994,19(4):1-4.
    21.黄群策.同源四倍体水稻与狼尾草杂交的效果.中国水稻科学,2000,14(1):48-50.
    22.黄群策,代西梅,梁芳.同源四倍体水稻与非洲栽培稻杂交的后效性研究.杂交水稻,2005,20(4):66-68.
    23.黄群策,孙敬三.植物多倍性在作物育种中的展望.科技导报,1997(7):53-56.
    24.黄群策,孙敬三.通过异倍性水稻间杂交获得同源三倍体植株.植物学报,1999,41(7):741-746.
    25.黄学林,李筱菊.乙烯和多胺的生物合成与植物体细胞胚胎发生.植物生理学通讯,1995,31(2): 81-85.
    26.侯锋,李淑菊.我国黄瓜育种研究进展与展望.中国农业科学,2000,33(3):100-102.
    27.焦锋,楼程富,张有做,韩明斋.桑树变异株系基因组DNA扩增多态性(RAPD)研究.蚕业科学,2001,27(3):165-169.
    28.景媛.黄瓜保护地栽培中常见的病虫害及防治措施.农业科技与信息,2003,12:20.
    29.康庆华,许修宏,李柱钢,徐涵,关凤芝,刘文萍,张利国.亚麻单倍体抗逆基因的转化中国麻业科学,2006,28(6):291-296.
    30.雷春,陈劲枫,钱春桃,张晓青,张永兵.辐射花粉授粉培育单倍体黄瓜研究.2006,39(7):1428-1436.
    31.雷春,陈劲枫,张晓青,陈丽娟,张永兵.不同倍性黄瓜的形态和一些生理生化比较.植物生理学通讯,2005,41(4):471-474.
    32.李爱华,何立珍.同源四倍体黄花菜减数分裂行为以及育性的探讨.湖南农业大学学报,1998,24(1): 14-17.
    33.李怀智.我国黄瓜栽培的现状及其发展趋势.蔬菜,2003,8:3-4.
    34.李加旺,张文珠,何忠魁.黄瓜资源筛选与育种研究及其发展趋势.天津农业科学,1999,5(4):36-38.
    35.李健,王锦秀,王立英,黄占明.无籽枸杞新品种选育研究.西北植物学报,2001,21(3):445-450.
    36.李俊周,刘艳阳,何宁,崔党群.小麦DH群体数量性状的遗传分析.麦类作物学报,2005,
    25(3): 16-19.
    37.李树贤.植物同源多倍体育种的几个问题.西北植物学报,2003,23(10):1829-1841.
    38.李树贤.植物染色体与遗传育种.2008,北京:科学出版社.
    39.李树贤,吴志娟,杨志刚,李明珠.同源四倍体茄子品种新茄一号的选育.中国农业科学,2002,35(6):686-689.
    40.李欣,徐金凤,王兴稳,严长杰,梁国华,顾铭洪.水稻半矮杆基因sd-n的染色体定位研究.扬州大学学报,2002,1:40-44.
    41.李云,张红宇,汪秀志,张鹏,汪旭东,吴先军.水稻同源三倍体(149-B)×二倍体F2代稳定群体的验证及分析.2004,31(6):604-608.
    42.刘朝芝.日本巨峰葡萄.世界农业,1993,11:16.
    43.刘惠吉,曹寿椿,王华,肖守华.南农矮脚黄四倍体不结球白菜新品种的选育.南京农业大学学报,1990,13(2):33-40.
    44.刘文革,王鸣,阎志红.西瓜二倍体及同源多倍体遗传差异的AFLP分析.果树学报,2004,21(1):46-49.
    45.刘学岷,李贵夕,孙日飞,王玉海,王子欣.华北农学报.1998,13(2):102-105.
    46.刘永庆.葫芦科蔬菜花粉萌发特性的研究.武汉植物学研究,1994,12(3):213-216.
    47.刘宗贤,秦瑞珍.四倍体水稻花药培养筛选初级三体的研究.植物学报,1995,37(2):125-133.
    48.娄群峰,陈劲枫,Molly Jahn,陈龙正,耿红,罗向东.黄瓜全雌性基因的AFLP和SCAR分子标记.园艺学报,2005,32(2):256-261.
    49.马国斌,王鸣,郑学勤.西瓜体细胞无性系变异初探.上海农业学报,2003,19(3):9-12.
    50.满红,张成合,柳霖坡.结球甘蓝二、四倍体间杂交三倍体的获得及细胞学鉴定.植物资源遗传学报,2005,6(4),405-408.
    51.毛丽萍,高俊华,王润奇,孙丽敏.谷子胚乳糯性(wx)基因的染色体定位研究.华北农学报,2000,15(4):10-14.
    52.牟金贵,王明秋,刘学岷,刘晓东,王玉海.优质四倍体大白菜新品种‘多维462’.园艺学报,2006,33(6):1409.
    53.穆平,张洪亮,姜德峰,刘立峰,李自超.利用水、旱稻DH系定位产量性状的QTL及其环境互作分析,中国农业科学,2005,38(9):1725-1733.
    54.钱春桃,陈劲枫,娄群峰,曹清河,罗向东.黄瓜花粉母细胞减数分裂行为的研究.武汉植物学研究,2003,21(3):193-197.
    55.秦瑞珍,宋文昌,郭秀平.同源四倍体水稻花药培养在育种中的应用.中国农业科学,1992, 25(1): 6-13.
    56.瞿绍洪,张文俊,景建康,李银心,朱至清,胡含.玉米转座因子Ac在单倍体烟草中转座的研究.遗传学报,1998,25(2):150-154.
    57.申娟,梁秋霞,曹刚强,李峰,应芳卿.蔬菜类作物游离小孢子培养中的影响因素.北方园艺,2008,6:59-62.
    58.申书兴,陈苏,李振秋,张成合,梁会芬.四倍体大白菜小孢子培养获得初级三体的细胞学观察.园艺学报,2000,27(2):145-147.
    59.申书兴,候喜林,罗双霞.大白菜初级三体的配子形成及传递率研究.园艺学报,2008,35(9):1285-1290.
    60.申书兴,李振秋,张成合,王彦华,陈雪平.大白菜3号、6号染色体双三体及其初级三体的鉴定.园艺学报,2002,29(5):438-442.
    61.孙玉河,李文琴,马德华.我国黄瓜生产的现状、问题和发展趋势.天津农业科学,2003,9(3):54-56.
    62.孙小镭,王永强,王冰,顾三军,王志峰,曹齐卫.黄瓜嫩果果皮叶绿素含量的遗传.园艺学报,2004,31(3):327-331.
    63.谭耀鹏,李兰芝,李平,王玲霞,胡中立.利用DH群体定位水稻谷粒外观性状的QTL.分子植物育种,2005,3(3):314-322.
    64.王华忠,韩英,吴则东,王丛玲.甜菜多倍体新品种甜研310的选育.中国糖料,2007,1:18-21.
    65.王平,张韶岩.日本芦笋多倍体育种的进展.山东农业科学,1989,4:50-51.
    66.王润奇,高俊华,王志兴,王志民.谷子三体系列的建立.植物学报,1994,36(9):690-695.
    67.王同坤,张京政,齐永顺,庞海珍.我国果树多倍体育种研究进展.果树学报,2004,21(6):592-597.
    68.王小霞,樊新民,崔辉梅.芸薹属蔬菜花药培养研究进展.北方园艺,2007,1:35-37.
    69.王志敏,牛义,宋明,李渝.多倍体诱导在蔬菜育种上的应用.生物学杂志,2004,21(6):35-38.
    70.吴福川,胡秀,郑思乡.不同倍性金鱼草基因组DNA随机扩增多态性研究.云南农业大学学报,2005,20(4):482-485.
    71.吴先军,汪旭东,周开达,朱立煌.从农业性状和分子标记鉴定一个水稻三倍体×二倍体F2群体的遗传稳定性.植物学报,1999,41(10):1067-1071.
    72.吴先军,周开达,汪旭东.同源三倍体水稻SAR-3的形态学和细胞学观察.西南农业学报,2001,14(3):13-16.
    73.谢国生,张端品,谢岳峰.利用初级三体定位水稻光敏核不育基因.武汉植物学研究,2001,
    19(3):255-258.
    74.谢兆辉,吴先军.水稻早世代稳定特性的遗传研究.分子植物育种,2005,3(4):469-472.
    75.刑少辰,周开达,朱立煌.用微卫星标记验证水稻4N×2N早世代群体的稳定性.农业生物技术学报,2000,8(4):365-367.
    76.徐晓峰,黄学林.TDZ:一种有效的植物生长调节剂.植物学通报,2003,20(2):227-237.
    77.阎志红,刘文革,赵胜杰,何楠.利用二硝基苯胺类除草剂离体诱导西瓜四倍体.园艺学报,2008,35(11),1621-1626.
    78.杨长登,唐克轩,吴连斌,李瑶,赵成章,刘关杰,沈大棱.农杆菌介导将雪莲凝集素(GNA)基因转入籼稻单倍体微芽的初步研究.中国水稻科学,1998,12(3):129-133.
    79.杨瑞芳,郑思乡,郭清泉.莲多倍体研究Ⅱ.莲花粉母细胞减数分裂行为观察.湖南农业大学学报,1998,24(2):95-98.
    80.杨新华,杨今后,骆承军.桑树多倍体育种的回顾与展望.浙江农业科学,2000,6:304-308.
    81.杨万立.生物多倍体及其在农业上的应用.生物学通报,2006,41(3):23-24.
    82.杨泽俊.瓜类枯萎病的防治.中国西瓜甜瓜,2003,6:40.
    83.余凤群,金明源,肖才升,王蕾.甘蓝型油菜DH群体几个数量性状的遗传分析.中国农业科学,1998,31(3):1-4.
    84.詹艳,陈劲枫,Ahmed Abbas Malik.黄瓜游离小孢子培养诱导成胚和植物再生.园艺学报,2009,36(2):221-226.
    85.张成合,王东平,申书兴,陈雪平,轩淑欣.菜薹部分初级三体的选育与细胞学鉴定.中国农业科学,2003,36(6):681-684.
    86.张成合,祝海燕,申书兴,陈雪平,王会英,满红.结球甘蓝一套初级三体的选育及细胞学鉴定.中国农业科学,2006,39(7):1437-1442.
    87.张成合,祝海燕,王梅,申书兴,王新娥,黄亚群.结球甘蓝不同初级三体n+l配子的形成及传递率研究.中国农业科学,2008,41(3):766-771.
    88.张福泉,郑思乡,刘逊,齐绍武.遗传工程水稻未传粉子房的培养.湖南农业大学学报,1999,25(4):275-278.
    89.张海英,葛风伟,王永健,许勇,陈青君.黄瓜分子遗传图谱的构建.园艺学报,2004,31(5):617-622.
    90.张继益,蒋观敏,罗耀武.高粱同源四倍体及其杂交种的细胞遗传学研究.华北农学报,1997,12(3):1-3.
    91.张静,吴先军,汪旭东,周开达,彭海.特异同源三倍体水稻材料SAR-3细胞学研究.作物学报,2002,28(5):704-708.
    92.张全美,张明方.园艺植物多倍体诱导研究进展.细胞生物学杂志.2003,25(4):223-237.
    93.张蜀宁,万双粉,张伟,候喜林.同源四倍体青花菜花粉母细胞的减数分裂.园艺学报,2007,34(2):387-390.
    94.张献龙.植物生物技术.北京:科学出版社.2004.
    95.张晓青,陈劲枫,雷春,陈龙正,钱春桃,刁卫平.不同倍性黄瓜遗传差异的AFLP分析.西北植物学报.2006,26(11):2265-2269.
    96.张有做,楼程富,周洗妹.不同倍性桑品种基因组DNA多态性比较.浙江农业大学学报,1998,24(1):79-81.
    97.张正.农作物单倍体育种研究概况与思考.山东农业科学,2007,5:122-125.
    98.张志雄,张安中.利用花培纯系培育中杂交稻新组合Ⅱ优802.杂交水稻,1995(6):36.
    99.张仲鸣,苏都莫日根,李正理.银杏小孢子中的微核形成及其进行过程中的意义.植物学报,1997,39(2):97-101.
    100.赵隽.黄瓜单倍体培养再生体系的建立.上海交通大学,硕士学位论文,2004.
    101.赵卫国,苗雪霞,黄勇平,潘一乐.桑树二倍体以及同源四倍体遗传差异的ISSR分析.蚕业科学,2005,31(4):393-397.
    102.宗红,陈运起,王秀峰,高莉敏.蔬菜多倍体育种研究进展.山东农业科学,2007,1:17-21.
    103.周广芳,王成强.果树多倍体育种.落叶果树(增刊),1997,50-53.
    104.周朴华,何立珍,刘选明.组织培养中用秋水仙素诱发黄花菜同源四倍体的研究.中国农业科学,1995,28(1):49-55.
    105.周秀艳,秦智伟,王新国.黄瓜品种资源商品性的评价.东北农业大学学报,2005,36(6):707-713.
    106.朱必才,高立荣.同源四倍体荞麦相关研究.遗传,1988,10(6):6-8.
    107. Al-Zahim M A, Ford-Lloyd B V, Newbury H J. Detection of somaclonal variation in garlin (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Reports,1999,18:473-477.
    108. Anne Laperche, Maryse Brancourt-Hulmel, Emmanuel Heumez, Olivier Gardet. Estimation of genetic parameters of a DH wheat population grown at different N stress levels characterized by probe genotypes. Theor Appl Genet,2006,112:797-807.
    109. Auger D L, Gray A D, Ream T S, Kato A. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics,2005,169:389-397.
    110. Atlagic J, Dozet B, Skoric D. Meiosis and pollen viability in Helianthus tuberosus L. and its hybrids with cultivated sunflower. Plant Breeding,1993,111:318-324.
    111. Barret P, Brinkmann M, Beckert M. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor Appl Genet,2008,117: 581-594.
    112. Beaujean A, Sangwan R S, Hodges M, Sangwan-Norred B S. Effects of ploidy and homozygosity on transgene expression in primary tobacco transformants and their androgenetic progenies. Mol Gen Genet,1998,260:362-371.
    113. Blakeslee A F. Effect of induced polyploidy in plants. Am Nat,1941,117-135.
    114. Blakeslss A F & Avery A G. Methods of inducing doubling of chromosomes in plants. J. Hered. 1937,28:393-411.
    115. Bradenn J M, Staub J E, Wye C, Antonise R. To wads an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome,2001,44:111-119.
    116. Bretagnolle F, Lumaret R. Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: occurrence, morphological and genetic characteristics of first polyploids. Euphytica,1995,84: 197-207.
    117. Bordes J, Charment G, Lapierre A, Pollacsek M, Beckert M. Doubled-haploid versus single-seed descent and S1-family variation for testcross performance in a maize population. Euphytica,2007, 154:41-51.
    118. Bourlaye Fofana, D.Gavin Humphreys, Sylvie Cloutier, Curt A McCartney. Mapping quantitative trait loci controlling common bunt resistance in a doubled haploid population derived from the spring wheat cross RL4452 x AC Domain. Mol Breeding,2008,21:317-325.
    119. Carputo D, Barone A, Frusciante L.2n gametes in the potato:essential ingredients for breeding and germplasm transfer. Theor Appl Genet,2000,101:805-813.
    120. Chambonnet D & Dumas V R. Obtention of embryos and plants from in vitro culture of unfertilizered ovules of Cucurbita pepo. Cucurbit Genetics Cooperative,1985,8:66
    121. Chan John & Peter P K. Brassica napus Rop GTPases and their expression in microspore cultures. Planta,2007,225:469-484.
    122. Chen J F, Luo X D, Qian C T, Zhuang F Y, Lou Q F. Cucumis monosomic alien addition lines: morphological, cytological, and genotypic analyses. Theor Appl Genet,2004,108:1343-1348.
    123. Chen L ZH, Lou Q F, Zhuang Y, Chen J F. Cytogical diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis × hytivus. Planta,2007,225:603-614.
    124. Chen Q F, Wang C L, Lu Y M, Shen M, Afza R, Duren M V, Brunner H. Anther culture in connection with induced mutations for rice improvement. Euphytica,2001,120:401-408.
    125.Claveria E, Garcia-Mas J, Dolcet-Sanjuan R. Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. Journal of the American Society for Horticultural Science,2005,130(4):555-560.
    126. Comia L, Tyagi A P, Winter K. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell,2000,12:1551-1567.
    127. Costa J Y & Forni-Martins Eliana R. A triploid cytotype of Echinodorus tennellus. Aquatic Botany, 2004,79:325-332.
    128. Dane F. Cytogenetics in genus Cucumis. In:T. Tsuchiya & P. K. Gupta (Eds) Chromosome engineering in plants. Genetics, Breeding, and Evolution. Amsterdam, Elsevier,1992, Part B:pp. 201-204.
    129. Dane F & Tsuchiya T. Chromosome studies in the genus Cucumis. Euphytica,1976,25:367-374.
    130. Danin-Poleg Y, Reis N, Tzuri G, Katzir N. Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet,2001,102:61-72.
    131. Dias J S & Martins M G. Effect of silver nitrate on anther culture embryo production of different Brassica oleracea morphotypes. Scientia Horticulturae,1999,82:299-307.
    132. Dong Yanjun, Tsuzuki Eiji, Terao Hiroyuki. Trisomic genetic analysis of aroma in three Japanese native rice varieties (Oryza sativa L.). Euphytica,2001,117:191-196.
    133. Douglas E S & Loren H R. Autopolyploidy in tolmiea menziesii (Saxifragaceae):Genetic insights from enzyme electrophoresis. Amer J Bot,1986,73(2):310-318.
    134. Doyle G. The allotetraploidization of maize.4. Cytological and genetic evidence indicative of substantial progress. Theor Appl and Genet,1986,71:585-594.
    135. Dumas V R & Chambonnet D. Obtention of embryos and plants from in vitro culture of unfertilizered ovules of Cucubita pepo. Genetic Manipulation in Plant Breed,1986,295-297.
    136. Eduard C, Richard E V, Tatiana B M. Improved androgenesis of interspecific potato and efficiency of SSR markers to identify homozygous regenerants. Plant Cell Tissue and Organ Culture,2000,60: 101-112.
    137. Elkonin L A, Gudova T N, Ishin A G. Inheritance of male sterility mutations induced in haploid sorghum tissue culture. Euphytica,1994,80:111-118.
    138. Endang S, Youhei A, Yosuke T. Flower bud culture of shallot with cytogenetic analysis of resulting gynogenic plants and somaclones. Plant Cell Tissue and Organ Culture,2006,86:249-255.
    139. Fatta D B S, Siragusa M, Abbate L. Production and characterization of new triploid seedless progenies for mandarin improvement. Scientia Horticulturae,2007,114:258-262.
    140. Ficcadenti N, Sestili S, Annibali S. In vitro gynogenesis to induce haploid plants in melon (Cucumis melo L.). J. Genet.& Breed,1999,53:255-257.
    141.Fobes J F. Trisomic analysis of isozymic loci in tomato species-segregation and dosage effects. Biochem Genet,1980,18:401-421.
    142. Forster B P. Mutation genetics of salt tolerance in barley:An assessment of golden promise and other semi-dwarf mutants. Euphytica,2001,120:317-328.
    143. Gaonkar R V & Tome S G. Induced autotetraploidy in Ageratum conyzitdes L. Cytologia,1991, 56(3):327-331.
    144. Gemes J A, Balogh P, Ferenzy A. Effect of optimum stage of female gametophyre and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Reports, 2002,21(2):105-111.
    145. Gemes J A, Venczel G, Balogh P. Haploid plant induction in zucchini (Cucurbita pepo L.convar. giromontiina DUCH) and in cucumber (Cucumis sativus L.) lines through in vitro gynogenesis. Acta Hort,1997,447:623-624.
    146. Germana M A & Chiancone B. Improvement of Citrus clementina Hort. ex Tan. microspore-derived embryoid induction and regeneration. Plant Cell Reports,2003,22:181-187.
    147. Geoffriau E & Kahane R. Varition of gynogenesis ability in onion(Allium cepa L.). Euphytica, 1997,94:37-44.
    148. Guha S & Maheshwari S C. In vitro production of embryo from anthers of Datura. Nature,1964, 204:497-498.
    149. Guo J Y, Chen J F, Cao Q H. Cytological studies on microsporogenesis and male gametophyte development in a Cucumis allotriploid derived from Cucumis hytivus x C.sativus. Cytologia,2004, 69(3):335-340.
    150. Hamada K, Inoue M, Tanaka A, Watanabe H. Potato virus Y-resistant mutation induced by the combination treatment of ion beam exposure and anther culture in Nicotiana tabacum L. Plant Biotechnol,1999,16(4):285-289.
    151. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA,1996,93:7783-7788.
    152. Hedges B R, Palmer R G. Tests of linkage of isozyme loci with five primary trisomies in soybean, Glycine max (L.). Merr. J Hered,1991,82:494-496.
    153.Hermsen J G Th. Basic information for the use of primary trisomies in genetic and breeding research. Euphytica,1970,19:125-140.
    154. Indra K V.A short history of plant biotechnology. Phytochem Rev,2008,7:387-394.
    155. Ishiki K. Cytogenetical studies on African rice, Oryza glaberrima Steud.3. Primary trisomics produced by pollinating autotriploid with diploid. Euphytica,1991,55:7-13.
    156. Ishizaka H. Cytogenetic studies in Cyclamen persicum, C. graecum (Primulaceae) and their hybrids. Plant Syst Evol,2003,239:1-14.
    157. Janse J & Sybenga J. Generative transmission of the extra chromosome in a rye tertiary trisomic and its relation with inbreeding depression and pollen quality. Theor Appl Genet,1992,84: 487-493.
    158. Jaskani M J, Kwon S W, Kim D H. Comparative study on vegetable, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica,2005,145:259-268.
    159. Jin SH X, Mushke R, Zhu H G,Tu L L, Lin ZH X, Zhang X L. Detection of somaclonal variation of cotten (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Reports,2008,27:1303-1316.
    160. Kaeppler S M, Kaeppler H F, Rhee Y. Epigenetic aspects of somaclonal variation in plants. Plant Mol Bio,2000,43:179-188.
    161. Katzir N, Danin Y, Tzuri G. Length polymorphism and homologies of microsatellites in several Cucurbitacese species. Theor Appl Genet,1996,93:1282-1290.
    162. Keith L A & Jonathan F W. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology,2005,8:135-141.
    163. Keller M J & Gerhardt H C. Polyploidy alters advertisement call structure in gray treefrogs. Proc Biol Sci,2001,268:341-345.
    164. Kennard W C, Potter K, Dijkhuizen A, Meglic V, Staub J E. Linkages among RFLP, RAPD, isozyme, disease resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet,1994,89:42-48.
    165. Khazanehdari K A & Jones G H. The causes and consequences of meiotic irregularity in the leek (Allium ampeloprasum spp.porrum); implication for fertility, quality and uniformity. Euphytica, 1997,93:313-319.
    166. Khush G S. Cytogenetics of aneuploids. Academic Press, New York,1973,301.
    167. Khush G S & Rick C M. Novel compensating trisomics of the tomato:cytogenetics, monosomic analysis, and gene location. Genetics,1967,54:297-307.
    168. Koshun G S & Ishiki. Cytogenetical studies on african rice, Oryza glaberrima Steud.3. Primary trisomic produced by pollinating autotriploid with diploid. Euphytica,1991,55:7-13.
    169. Koshun G S & Singh R J. Primary trisomic of rice:origin, morphology, cytology, and use in Iingage mapping. Genetics,1984,107:141-163.
    170. Laane M M, Croff B E, Wahlstrom R. Cytotype distribution in the Campanula rotundifolia complex in Norway, and cyto-morphological characteristics of diploid and tetraploid groups. Hereditas,1983,99:21-48.
    171. Lange W & Wagenvoort M. Meiosis in triploid Solanum Tuberosum L. Euphytica,1973,22:8-18
    172. Lange W, Oleo M, Jacobs M. Chromosomal assignment of three enzyme coding loci (Icdl, Nad-Mdhl, and Acol) using primary trisomics in beet (Beta vulgaris L.). Plant breeding,1993, 111(3):177-184.
    173. Levin D A. Polyploid and novelty in flowering plants. Am Nat,1983,122:1-25.
    174. Li Zichao, Mu Ping, Li Chunping, Zhang Hongliang, Wang Xiankun. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet,2005,110:1244-1252.
    175. Liu S, Wang H, Zhang J, Fitt B D L, Yang W, Guo X. In vitro mutation and selection of doubled-haploid Brassca napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Reports,2005,24:133-144.
    176. Lowcock L A. Biotype, genomotype, and genotype:variable effects of polyploidy and hybridity on ecological partitioning in a bisexual-unisexual community of salamanders. Can J Zool,1994,72: 104-117.
    177. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y. Comparative mapping of QTLs agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet,1996,93:1211-1217.
    178. Luan L, Tu S B, Long W B, Wang X, Yu M Q. Cytogenetic studies on two F1 hybrids of autotetraploid rice varieties showing extremely high level of heterosis. Plant Syst Evol,2007,267: 205-213.
    179. Ma X F & Gustafson J P. Genome evolution of allopolyploids:a process of cytological and genetic diploidization. Cytogenet Genome Res,2005,109:1-3.
    180. Mackiewicz H O & Malepszy S. Obtaining and characterization of tetraploid froms in cucumber Cucumis sativus L. var. sativus and var.hardwickii Alef. Folia-Horticul,1996,8(1):3-10.
    181. Malepszy S, Sarreb D A, Mackiewicz H O, Narkiewicz M. Triploids in cucumber. I. Factors I influencing embryo rescue efficiency. Gartenbauwissenschaf,1998,63:34-37.
    182. Maria S, Tadeusz A, Zygmunt K, Stanislaw C. Phenotypic distribution of barley SSD lines and doubled haploids derived from F1 and F2 hybrids. Euphytica,2006,149:19-25.
    183. Martinez-Zapater & Oliver J L. Isozyme gene duplication in diploid and tetraploid potatoes. Theor Appl Genet,1985,70:172-177.
    184. Masahiro Nishihara, Motoaki Seki, Masaharu Kyo, Kohei Irifune, Hiromichi Morikawa. Transgenic haploid plants of Nicotiana rustica produced by bombardment-mediated transformation of pollen. Transgenic Research,1995,4:341-348.
    185. Masanori K, Yoshiji N. Production of triploid plants of Japanese pear (Pyrus pyrifolia Nakai) by anther culture. Euphytica,2004,138:141-147.
    186. Masterson J. Stomatal size in fossil plants:evidence for polyploidy in majority of angiosperms. Science,1994,264:421-424.
    187. Metwally E I, Moustafa S A, EI-Sawy B I. Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant Cell Tissue and Organ Culture,1998,52:117-121.
    188. Muhammad J J, Sung W K, Dae H K. Comparative study on vegetative, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica,2005,145:259-268.
    189. Murray H G & Thompson W F. Rapid isolation of higher weight DNA. Nucleic Acids Res,1980,8: 4321.
    190. Nguyen T T T, Klueva N, Chamareck V, Pathan M S, Nguyen H T. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genomics,2004,272:35-46.
    191. Ohno S. Evolution by gene duplication. Speinger, Berlin Heidelberg New York.1970.
    192. Oliver J L & Martinez-Zapater J M. Allozyme variability and phylogenetic relationships in the cultivated potato. Plant Syst Evol,1984,148:1-18.
    193. Oleo M, Lange W, Haeseleer M D, Jacobs M. Isozyme analysis of primary trisomics in beet (Beta vulagaris L.). Genetical characterization and techniques for chromosomal assignment of two enzyme-coding loci:leucine aminopeptidase and glutamate oxaloacetate transaminase. Theor Appl Genet,1993,86:761-768.
    194. Oueraogo J T, St-Pierre C A, Collin J. Effect of amino acids grow regulators and genotype on androgenesis in barley. Plant Cell Tissue and Organ Culture,1998,53:59-66.
    195. Ozaki Y, Narikiyo K, Fujata C, Okubo-H. Ploidy variation of progenies from intra-and inter-ploidy crosses with regard to trisomic production in asparagus (Asparagus officinalis L.). Sex Plant Reprod,2004,17:157-164.
    196. Panaud O, Chen X, McCouch S D. Development of microsatellite markers and characterization of sample sequence lengthern polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet,1996, 252:597-607.
    197. Pietsch G M & Anderson N O. Epigenetic variation in tissue cultured Gaura lindheimeri. Plant Cell Tissue and Organ Culture,2007,89:91-103.
    198. Puddephat I J, Robinson H T, Smith B M. Influence of stock plant pretreatment on gynogenic embryo induction from buds of onion. Plant Cell Tissue and Organ Culture,1999,57:145-148.
    199. Ramsey J & Schemske D W. Neopolyploidy in flowering plants. Annu Rev Ecol Syst,2002, 33:589-639.
    200. Rick C M & Barton D W. Cytological and genetical identification of the primary trisomics of the tomato. Genetics,1954,39:640-666.
    201. Romagosa L, Hecker R J, Tsuchiya T, Lasa J M. Primary trisomics in sugarbeet. I. Isolation and morphological characterization. Crop Sci,1986,26:243-248.
    202. San Noeum. In vitro induction of gynogenesis in higher plants. Proc. Conf. Broadening Genet. Base Crops, Wageningen,1978, pp.327-329.
    203. Satovia Z, Torres A M, Cubero J I. Estamation of linkage in trisomic inheritance. Theor Appl Genet, 1998,96:513-518.
    204. Song H, Lou Q F, Luo X D, Wolukau J N, Diao W P, Qian C T, Chen J F. Regeneration of doubled haploid plants by androgenesis of cucumber(Cucumis sativus L.) Plant Cell Tissue and Organ Culture,2007,90:245-254.
    205. Song K, Lu P, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA,1995,92:7719-7723.
    206. Stebbins G L. Chromosomal evolution in higher plants. Addison-Wesley, New York,1971.
    207. Storchova Z, Breneman A, Cande J, Dunn J, Burbank K. Genome-wide genetic analysis of polyploidy in yeast. Nature,2006,443:541-547.
    208. Stupar R M, Bhaskar P B, Yandell B S, Rensink W A. Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics,2007,176:2055-2067.
    209. Sukhapinda K, Kozuch M E, Rubin-Wilson B, Ainley W M, Merlo D J. Transformation of maize (Zea mays L.) protoplasts and regeneration of haploid transgenic plants. Plant Cell Reports,1993, 13:63-68.
    210. Torres A M, Satovic Z, Canovas J, Cobos S, Cubero J I. Genetics and mapping of new isozyme loci in Vicia faba L. using trisomics. Theor Appl Genet,1995,91:783-789.
    211. Tsukazaki H, Kuginuki Y, Aida R, Suzuko T. Agrobacterium-mediated transformation of a doubled haploid line of cabbage. Plant Cell Reports,2002,21:257-262.
    212. Victor J M. Role of endogenous purine metabolism in thidiazuron-induced somatic embryogen-esis of peanut (Arachis hypogaea L.). Plant Growth Regulation,1996,28:41-47.
    213. Vrinten P L, Nakamura T, Kasha K J. Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barly (Hordeum vulgare) L. Plant Molecular Biology,1999,41: 455-463.
    214. Vos P, Hogers R, Bleeker M, Reljans M, Lee T, Homes M. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414.
    215. Wang R R, Li X M, Chatterton N J. A proposed mechanism for loss of heterozygosity in rice hybrids. Euphytica,2001,118:119-126.
    216. Wedzony M, Forster B P, Zur I, Golemiec E. Progress in doubled haploid technology in higher plants. Advances in haploid production in higher plants.2009, pp.13-14.
    217. Werlemark G, Nybom H. Skewed distribution of morphological character scores and molecular markers in three interspecific crosses in Rosa section Caninae. Hereditas,2001,134:1-13.
    218. Wu K SH, Glaszmann J Ch, Khush G S. Chromosomal locations of ten isozyme loci in rice(Oryza sativa L.) through trisomic analysis. Biochemical Genetics,1988,26:303-320.
    219. Xu S J, Singh R J, Kollipara K P, Hymowitz T. Primary trisomics in soybean:origin, identification, breeding behavior, and use in linkage mapping. Crop Sci,2000,40:1543-1551.
    220. Yamada T, Shojand T, Sinoto Y. Formation of calli and free cells in the tissue culture of Tradescantia reflexa. Bot. Mag. Tokyo.1963,76:332-339.
    221. Yang H Y. In vitro induction of haploid plants from unpollinated ovaries and ovules. Theor Appl Genet,1982,63:97-104.
    222. Young N D, Miller J C, Tanksley S D. Rapid chromosal assignment of multiple genomic clones in tomato using primary trisomics. Nucl Acides Res,1987,15:9339-9348.
    223. Yuan X J, Pan J S, Cai R, Guan Y, Liu L Z, Zhang W W. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica,2008,164(2):473-491.
    224. Yutaka Okumoto & Takatoshi Tanisaka. Trisomic analysis of a strong photoperiod-sensitivity gene E1 in rice (Oryza sativa L.). Euphytica,1997,95:301-307.
    225. Zou J J, Singh R J, Lee J, Xu S J, Cregan P B, Hymowitz T. Assignment of molecular linkage groups to soybean chromosomes by primary trisomic. Theor Appl Genet,2003,107:745-750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700