耦合法制备γ-丁内酯和2-甲基呋喃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单独的1,4-丁二醇脱氢制γ-丁内酯反应和糠醛加氢制2-甲基呋喃反应具有一些缺点,如:因单独过程的强吸、放热,易导致局部反应温度过冷或过热,降低目的产物选择性、低的能量和氢的利用率等。针对两反应的上述缺点,朱玉雷开发了常压脱氢加氢耦合一体化制γ-丁内酯和2-甲基呋喃的新工艺,在耦合过程中,糠醛加氢反应释放出来的热可以被1,4-丁二醇脱氢反应所用,而1,4-丁二醇脱出的氢可以被糠醛加氢所用。脱氢加氢耦合一体化体现了一个高效节能的过程,但目前仍然缺乏对这一过程的全面和深入的认识,因此对其进行详细地研究非常必要,本文从反应和催化剂两方面着手,对脱氢加氢耦合一体化制γ-丁内酯和2-甲基呋喃作了进一步的研究,以期能为其工业化提供一些基础参数。主要研究结果如下:
     1.利用应用广泛的Cu-Cr体系催化剂对1,4-丁二醇和糠醛单独脱氢加氢反应分别进行了详细地研究,得到了这两个反应的最佳操作条件,XRD和TG-DTG表征发现,Cu~0为催化剂的活性中心,Cr的存在促进了Cu的高度分散,助剂Ca和Ba的加入,降低了催化剂的还原温度,提高了目的产物的选择性,整体上提高了催化剂的性能。
     2.采用脱氢和加氢效果皆好的Cu-Cr-Ca-Ba催化剂对耦合反应进行了详细地研究。得到了耦合反应最佳的操作条件。
     3.采用不同铝源制备了一系列Cu-Zn-Al催化剂,考察了各自的耦合反应性能,结果表明:采用氧化铝溶胶作为Al源的催化剂,反应性能较好。考察了焙烧温度对此催化剂耦合反应性能的影响,结果表明:350℃焙烧的催化剂的催化性能最好。低温不利于催化剂前驱体的完全分解,温度过高将会降低催化剂的比表面积,最终导致目的产物选择性的降低。
     4.1,4-丁二醇脱氢、糠醛加氢的比活性随着焙烧温度的提高而增大,但是同时表面积的降低又抵消了催化剂的比活性的增加,导致催化剂总的活性的降低。
There are many deficiencies existing in the conventional individual dehydrogenation of 1,4-butanediol and hydrogenation of furfural, such as poor hydrogen utilization, hardly controlled reaction temperature, and low selectivity to desired products. In order to solve these problems, a novel coupling process of the dehydrogenation of 1,4-butanediol and the hydrogenation of furfural has been invented for the synthesis of y-butyrolactone and 2-methylfuran simultaneously by Zhu Yulei. In this coupling process, the heat released by the hydrogenation of furfural can be used for the dehydrogenation of 1,4-butanediol, and the H2 released by the dehydrogenation of 1,4-butanediol can be utilized by the hydrogenation of furfural, leading to much easier temperature control and more perfect hydrogen mass balance (with hydrogen recycle but no hydrogen supply and release). However, a full understanding of the process and the mechanism for this reaction is still lacking. Thus the detailed study of this coupling process shows
     great interest. In this paper, the coupling process is studied further in term of reaction and catalyst. The results and corresponding conclusion obtained in this work are summarized as follow:
    1. The dehydrogenation of 1,4-butanediol and the hydrogenation of furfural over the Cu-Cr catalysts are studied in detail respectively and the proper reaction conditions of the two reactions are achieved. The XRD and TG-DTG characterization results show that Cu?is the active site of reaction, and the presence of Cr is in favor of high dispersion of Cu, which results in increasing of the reaction activity and selectivity. The reduction temperature is lowed by the addition of calcium and barium promoters, leading to an increased yield of the desired products.
    2. Over a Cu-Cr-Ca-Ba catalyst with excellent dehydrogenation and hydrogenation performance, the coupling process is investigated in detail, and the proper reaction conditions are achieved.
    3. A series of Cu-Zn-Al catalysts are prepared by using different aluminium compounds, and the performance of them is studied through the coupling process.
    
    
    The results show that the Cu-Zn-Al catalyst which prepared by alumina gel has the better reaction performance. The effect of calcination temperatures on this optimal catalyst is investigated in detail, and the results show that the suitable calcination temperature for Cu-Zn-Al catalyst is about 350癈. Lower temperature cannot facilitate the precursor to complete decomposition and higher calcination temperature will decline the surface area of the catalyst, which finally declines the yield for desired products.
    4. The experimental results show that the specific activities for 1,4-butanediol and furfural conversion are improved at high temperature, but the simultaneous loss of surface area offsets the gain in specific activity and final causes the decline in the overall activity of catalyst.
引文
[1] Castiglion G. L., Fumagalli C., Process for the production of γ-butyrolactone, USP 6492535, 2002.
    [2] 童立山,李向伟,王海京,制备1,4-丁二醇和/或γ-丁内酯的催化剂,中国专利,申请号94105927.8,1995.
    [3] 王海京,张京生,冯薇荪,高国强,周怡然,1,4-丁二醇脱氢制γ-丁内酯的催化剂,中国专利,申请号97122092.1,1999.
    [4] 林衍华,骆有寿,γ-丁内酯的制备,现代化工,1997,(1):43.
    [5] Zhu Yulei, Xiang Hongwei, Wu Guisheng, Bai Liang, Li Yongwang, A novel route for synthesis of γ-butyrolactone through the coupling of hydrogenation and dehydrogenation, Chemical Communication, 2002, (3):254-255.
    [6] Ichiki T., Tatsumi K., Suzuki S., Ueno H., Kobayashi K., Process for the preparation of gamma-butyrolactone, USP 5210229, 1993.
    [7] 周寿祖,γ-丁内酯的生产现状和市场前景,化工技术经济,2000,18(6):25-27.
    [8] Chagnes A., Allouchi H., Carre B., γ-Butyrolactone-ethylene carbonate based electrolytes for lithium-ion batteries, Journal of Applied Electrochemistry, 2003, 33(7):589-595.
    [9] Hara Y., Takahashi K., A Novel Production of γ-Butyrolactone Catalyzed by Homogeneous Ruthenium Complexes, Catalysis Surveys from Japan, 2002, 6(1-2):73-78.
    [10] Zhu Yulei, Xiang Hongwei, Li Yongwang, Jiao Haijun, Wu Guisheng, Zhong Bing, Guo Guangqing, A new strategy for the efficient synthesis of 2-methylfuran and γ-butyrolactone, New Journal of Chemistry, 2003, 27, 208.
    [11] 刘仲能,朱德宝,金文清,沈琴,候闵勃,杨晓,糠醛气相加氢合成2-甲基呋喃催化剂,中国专利,申请号95111759.9,1997.
    [12] 朱玉雷,苏化连,相宏伟,徐元源,李永旺,用于糠醛气相加氢制2-甲基呋喃的催化剂及其用途,中国专利,申请号00120872.1,2001.
    [13] 徐西庆,申传忠,γ-丁内酯生产路线简介,山东化工,1998,(6):27-28.
    [14] 陈学刚,γ-丁内酯的合成及其催化剂的研究,复旦大学硕士学位论文,2000.
    [15] 杨骏,郑洪岩,张渊明,唐渝,朱玉雷,γ-丁内酯合成研究的新进展,现代化工,2004,
    
    24(3):24-25.
    [16] 李君,蒋毅,程极源,王华明,顺酐常压催化加氢制γ-丁内酯,应用化学,2000,17(4):379-382.
    [17] De Thomas Waldo, Hort Eugene V, Hydrogenation catalyst and method of producing same, USP 4083809, 1978.
    [18] Michaiczyk Georg, Gluzek Karl-Heinz, Catalysts for converting maleic anhydride to alpha-butyrolactone, USP 3948805, 1976.
    [19] Tong Lishan, Wang Haijing, Feng Weisun, Gao Guoqiang, Li Xiangwei, Deng Jinghui, Zhang Xinjie, Process for the preparation ofgamma-butyrolactone, USP 5637735, 1997.
    [20] Bergfeld Manfred, Wiesgickl Gunter, Process for producing gamma -butyrolactone, USP 5536849,1996.
    [21] Taylor Paul D, De Thomas Waldo, Buchanan Jr Donald W, Process of vapor phase catalytic hydrogenation of maleic anhydride to gamma-butyrolactone in high conversion and high selectivity using an activated catalyst, USP 5347021, 1994.
    [22] De Thomas Waldo, Taylor Paul D, Tomfohrde Ⅲ Heinn F, Process for the production of gamma-butyrolactone THF in predetermined amounts, USP 5149836, 1992.
    [23] Budge John R, Attig Thomas G, Vapor-phase hydrogenation of maleic anhydride to tetrahydrofuran and gamma -butyrolactone, USP 5072009, 1991.
    [24] 张书笈,赵维君,邓昌慧,赵蒙,黄唯平,王紫霞,顺酐加氢制四氢呋喃及γ-丁内酯铜系负载型催化剂的研究,精细石油化工,1996,(1):10-13.
    [25] Messori M., Vaccari A., Reaction Pathway in Vapor Phase Hydrogenation of Maleic Anhydride and Its Esters to γ-Butyrolactone, Journal of catalysis, 1994, 150:177-185.
    [26] Castiglioni G. L., Vaccari A., Fierro G., Inversi M., Lo Jacono M., Minelli G., Pettiti I., Porta P., Gazzano M., Structure and reactivity of copper-zinc-cadmium chromite catalysts, Applied Catalysis A:General, 1995, 123:123-144.
    [27] Bellis Harold E, Dehydrogenation of diols, USP 5110954, 1992.
    [28] 王海京,张京生,冯薇荪,高国强,周怡然,1,4-丁二醇脱氢制γ-丁内酯的方法,中国专利,申请号97112490.6.
    [29] 王海京,冯薇荪,1,4-丁二醇脱氢制备γ-丁内酯催化剂及工艺的研究,石油炼制与化
    
    工,1999,30(5):35-38.
    [30] Mercker Hans Jochen, Pape Frank-Friedrich, Simon Joachim, Henne Andreas, Hesse Michael, Kohler Ulrich, Dostalek Roman, Erdbrugger Cristina Freire, Kratz Detlef, Catalyst for dehydrogenating 1,4-butanediol to gamma-butyrolactone, USP 6093677, 2000.
    [31] 王海京,高国强,童立山,1,4-丁二醇气相脱氢制γ-丁内酯的催化剂,中国专利,申请号96106584.2.
    [32] Fischer Rolf, Pinkos Rolf, Method for producing gamma-butyrolactone, USP 6521763,2003.
    [33] 陈学刚,沈伟,徐华龙,项一非,CuO/Cr_2O_3/Al_2O_3催化剂上1,4-丁二醇脱氢合成γ-丁内酯,复旦学报,2000,39(4):388-393.
    [34] 陈学刚,沈伟,徐华龙,项一非,Cu/ZnO/Al_2O_3催化剂上1,4-丁二醇脱氢合成γ-丁内酯,催化学报,2000,21(3):259-263.
    [35] 徐立英,杨元一,朱云仙,1,4-丁二醇脱氢制γ-丁内酯的催化剂,中国专利,申请号94014448.3.1995.
    [36] ISP Investments Inc, Activiated catalyst for the vapor phase hydrogenation of maleic anhydride to γ-butyrolactone in high conversion and high selectivity, USP 5122495, 1992.
    [37] BASF AG, Process for the production of 1,4-butanediol, EP 447963, 1991.
    [38] Union Carbide Chemicals & Plastics Technology Corporation, Hydrogenation with Cu-AI-X catalysts, USP 5142067, 1992.
    [39] Standard Oil Co Ohio, Vapor-phase hydrogenation of maleic anhydride to tetrahydrofuran and γ-butyrolactone, EP 322140, 1989.
    [40] Davy McKee London, Catalyst, EP 0301853, 1989.
    [41] 武志刚,赵永祥,董海临,许临萍,刘滇生,顺酐加氢制备下游产品催化体系的研究进展,现代化工, 2003,23(3):22-24.
    [42] 王海京,顺酐直接加氢制备γ-丁内酯工艺研究,石油化工,2002,31(11):917-912.
    [43] Davy McKee Ltd, Process for the production of butane-1,4-diol, USP 4584419, 1986.
    [44] Schlander J. H., Turek T., Gas-Phase Hydrogenolysis of Dimethyl Maleate to 1,4-Butanediol and γ-Butyrolactone over Copper/Zinc Oxide Catalysts, Industrial &
    
    Engineering Chemistry Research, 1999, 38(4):1264-1270.
    [45] Pillar U. R., Sahle-Demessie E., Selective hydrogenation of maleic anhydride toγ-butyrolactone over Pd/Al_2O_3 catalyst using supercritical CO_2 as solvent, Chemical Communication, 2002, (5):422-423.
    [46] Pillar U. R., Sahle-Demessie E., Young D., Maleic anhydride hydrogenation over Pd/Al_2O_3 catalyst under supercritical CO_2 medium, Applied catalysis B: Environmental, 2003, 43(2):131-138.
    [47] Hara Y., Kusaka H., Inagaki H., Takahashi K., Wada K., A Novel Production ofγ-Butyrolactone Catalyzed by Ruthenium Complexes, Journal of Catalysis, 2000,194(2):188-197.
    [48] 王相杰,γ-丁内酯生产技术综述,河南化工,1998,(10):3.
    [49] Johnstone R. A. W., Wilby A. H., Entwistle I. D., Heterogeneous catalytic transter hydrogenation and its relation to other methods for reduction of organic coupounds, Chemical Review, 1985, 85:129-170.
    [50] Zassinovich G., Mestroni G., Gladiali S., Asymmetric hydrogen transter reaction promoted by homogeneous transition metal catalysis, Chemical Review, 1992, 92:1051-1069.
    [51] 朱玉雷,常杰,白亮,制备γ-内酯和2-甲基呋喃的催化剂及用途,中国专利,申请号02126613.1.2003.
    [52] 朱玉雷,李永旺,吴贵升,相宏伟,苏化连,一种耦合制备γ-丁内酯和2-甲基呋喃的方法,中国专利,申请号01141836.2,2003.
    [53] Garnett D. I., Peterson M. L., Preparation of furan compounds, USP 4268421, 1980.
    [54] Seemuth P. D., Hydrogenation process using cationic ruthenium-containing zeolite, USP 4459419, 1982.
    [55] 高玉晶,李国安,孟祥春,用于糠醛气相加氢制2-甲基呋喃的新型合金催化剂研制.吉林大学自然科学学报,2000,(1):102.
    [56] 吴世华,魏伟,李保庆,赵维君,黄唯平,张守民,不同方法制备的Cu-Cr/γ-Al_2O_3的结构及其对糠醛加氢制2-甲基呋喃反应的催化性能,催化学报,2003,24(1):27-28.
    [57] Bremner J. G. M., Keeys R. K. F., The hydrogenation of furfuraldehyde to furfuryl alcohol and sylvan (2-methylfuran), Journal of the American Chemical Society, 1947,
    
    (2): 1068-1080.
    [58] Holdren R. F., Manufacture of methylfurane, USP 2445714, 1948.
    [59] Johns I. B., Burnette L. W., Method of producing of methylfurane, USP 2458857, 1949.
    [60] Bremner J. G. M., Keeys R. K. F., Johns I. B., Inprovements in and relating to the production of sylvane, Great Britany P 634079, 1950.
    [61] Dunlop A. P., Manly D. G., Process for preparing 2-methylfurane, USP 3020291, 1962.
    [62] Haidegger E., Hodossy L., Kiza D., Reduction process in furan chemistry, Chem.and Proc. Eng., 1971, 52(8):39-42.
    [63] Boas M. S., Kvzmin Y. L., Ignatev V. M., Gurevicn G. S., Pavlychev V. M., Poteryakhin V. A., Pritsker A. A., Levitin B. M., Sedova I. G., Sylvan, USSR, SU941366,1982.
    [64] Adkins H., Conner R., The Catalytic Hydrogenation of Organic Compounds over Copper Chromite, Journal of the American Chemical Society, 1931, (5): 1091.
    [65] Conner. R., Fdrers K., Adkins H., The Preparation of Copper-Chromium Oxide Catalysis for Hydrogenation, Journal of the American Chemical Society, 1932, 54:1138.
    [66] Riener, T.M., An Improved Laboratory Preparation of Copper-Chromium Oxide Catalyst, Journal of the American Chemical Society, 1949, 71:1130.
    [67] Conner, R., Folkers, K., Adkins, H., The Preparation of Copper-Chromium Oxide Catalysis for Hydrogenation, Journal of the American Chemical Society, 1931, 53:2012.
    [68] Dunbar, R. E., Copper D., Copper R., Pumice as a Support for Copper-Chromium Oxide Catalysis in Dehydrogenation, Journal of the American Chemical Society, 1936, 58:1053.
    [69] 朱玉雷,糠醛气相催化加氢制糠醇,中国科学院山西煤炭化学研究所硕士学位论文,1990.20.
    [70] Morris Freifelder, 《Practical Catalytic hydrogenation》, U.S.A., 1971.
    [71] 吴玉塘,陈文凯,刘兴泉,罗仕忠,贾朝霞,于作龙,铜铬催化剂的制备方法,中国专利,申请号95111385.2,1996.
    [72] 郑纯智,张国华,李国安,糠醛气相加氢制2-甲基呋喃催化剂初步研究,辽宁化工2000,29(2):71.
    [73] 戎晶芳,黄维,用于氢化的铜铬氧化物催化剂的研究,精细石油化工,1994,(6):30-36.
    [74] 朱玉雷,李学宽,葛世培,糠醛气相加氢制糠醇催化反应的研究,石油化工,1992,
    
    21(7):466-469.
    [75] 刘荣勋,陈晓春,张小燕,糠醛气相加氢铜铬催化剂的研究,北京化工学院学报,1989,16(1):1-5.
    [76] 刘兴泉,吴玉塘,陈文凯,于作龙,低温低压液相催化合成甲醇和甲酸甲酯用超细铜铬氧化物催化剂I.制备条件对催化剂性能的影响,催化学报,1999,20(1):81.
    [77] Shin-ichiro Fujita, Yoshinori Kanamori, Agus Muhanmad Satriyo, Nobutsune Takezawa, Methanol synthesis from CO_2 over Cu/ZnO catalysts prepared from various coprecipitated precursors, Catalysis Today, 1998, 45:241-244.
    [78] Vanden Bussche K. M., Froment G. F., Nature of formate in methanol synthesis on Cu/ZnO/A_2O_3, Applied CatalysisA:General, 1994, 112:37.
    [79] Li J. L., Takeguchi T., Inui T., Doping effect of potassium permanganate on the performance of a copper/zinc oxide/alumina catalyst for methanol formation, Applied Catalysis A: General 1996, 139(1-2): 97-106.
    [80] Li J. L., Inui T., Enhancement in methanol synthesis activity of a copper/zinc/aluminum oxide catalyst by ultrasonic treatment during the course of the preparation procedure, Applied Catalysis A :General, 1996, 139(1-2):87-96.
    [81] Jensen J. R., Johannessen T., WEdel S., Livbjerg H., A study of Cu/ZnO/Al_2O_3 methanol catalysts prepared by flame combustion synthesis, Journal of Catalysis, 2003, 218:67-77.
    [82] Cabrera I. M., Dranados M. L., Reverse Topotactic Transformation of a Cu-Zn-AI Catalyst during Wet Pd Impregnation: Relevance for the Performance in Methanol Synthesis from CO_2/H_2 Mixtures, Journal of Catalysis, 2002, 210:273.
    [83] Agrell J., Birgersson H., Boutonnet M., Cabrera I. M., Navarro R. M., Fierro J. L. G., Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO_2 and Al_2O_3, Journal of Catalysis, 2003, 219:389.
    [84] 易国斌,王乐夫,吴超,廖列文,崔英德,顺酐加氢制备γ-丁内酯的催化体系研究进展,化工进展,2001,(2):37.
    [85] 沈伟,王玉,吴惊涛,郭伯麟,项一非,顺酐常压气相加氢合成γ-丁内酯,石油化工,1992,21(9):571-575.
    [86] 童立山,顺酐气相氢化制备1,4-丁二醇和/或γ-丁内酯,石油炼制与化工,1995,
    
    26(8):15-18.
    [87] 朱玉雷,苏化连,相宏伟,徐元源,李永旺,1,4-丁二醇脱氢制备γ-丁内酯催化剂及其用途,中国专利,申请号00121572.8,2001.
    [88] Nagaraja B. M., Siva Kumar V., Shasikala V., Padmasri A. H., Sreedhar B., A highly efficient CuO/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol, Catalysis Communication, 2003, (4):287-293.
    [89] Mercker H. J., Pape F. F., Simon J., Henne A., Hesse M., Kohler U., Dostalek R., Erdbrugger C. F., Kratz D., Dehydrogenation of 1,4-butanediol to γ-butyrolactone, USP 5955620, 1999.
    [90] 刘仲能,金文清,沈琴,候闵勃,朱德宝,糠醛常压气相催化加氢合成2-甲基呋喃的研究,石油化工,1999,28(1):39-42.
    [91] 申延明,吴静,张振祥,赵素梅,糠醛常压气相加氢制2-甲基呋喃催化剂的研究,沈阳化工学院学报,2000,14(1):28-31.
    [92] 刘健民,李秋先,乔迁,李国安,糠醛气相加氢制2-甲基呋喃的负载型催化剂,吉林工学院学报,2003,23(2):23-25.
    [93] 王美涵,负载型Cu/TiO_2系催化剂的研究,辽宁师范大学硕士学位论文,2002.
    [94] 高玉晶,李国安,腾立华,Raney Cu催化剂上糠醛气相加氢制2-甲基呋喃,吉林工学院学报,1998,19(4):14-16.
    [95] Patel S. M., Chudasama U. V., Ganeshpure P. A., Cyclodehydration of 1,4-butanediol catalyzed by metal(Ⅳ) phosphates, Reaction Kinetics and Catalysis Letters,2002, 76(2):322.
    [96] Tonner S. E, Wainwright M. S., Trimm D. L., CANT N. W., Characterization of copper chromite catalysis for methanol dehydrogenation, Applied Catalysis, 1984, 11: 93-101.
    [97] Luo Hongshan, Li Hexing, Zhuang Li, Furfural Hydrogenation to Furfuryl Alcohol over a Novel Ni-Co-B Amorphous Alloy Catalyst, Chemistry Letters, 2001:404.
    [98] Kijenski Jacek, Winiarek Piotr, Paryjczak Tadeusz, Andrzej Lewicki, Agnieszka Mikolajska, Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol, Applied Catalysis A: General, 2002, 233:176.
    [99] Chert Xingfan, Li Hexing, Luo Hongshan, Qiao Minghua, Liquid phase hydrogenation of
    
    furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalysts, Applied Catalysis A: General, 2002, 233:18.
    [100] 曹景慧,糠醛加氢生成糠醇的概况,山西化工,1987(3):35-37.
    [101] Gines M. J. L., Amadeo N., Laborde M., Apestegula C. R., Activity and structure-sensitivity of the water-gas shift reaction over Cu-Zn-Al mixed oxide catalysts, Applied Catalysis A:General, 1995, 131:283.
    [102] Reichle W. T., Yang S. C., Everhardt D. S., The Nature of the Thermal Decomposition of Catalytically Active Anionic Clay Mineral, Journal of Catalysis, 1986, 101:352.
    [103] Zhang Q., Wu Z., Xu L., High-Pressure Hydrogenolysis of Diethyl Maleate on Cu-Zn-Al-O Catalysts, Industrial & Engineering Chemistry Research, 1998, 37: 3525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700