法尼基转移酶抑制剂靶向治疗髓系白血病的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究髓系白血病胞外信号调节激酶(ERK)/丝裂原活化蛋白激酶(MAPK)的表达水平及其意义。方法以髓系白血病细胞株HL-60、K562细胞,31例初治急性髓系白血病(AML)、21例初治慢性髓系白血病(CML)和14例AML完全缓解(CR)骨髓细胞为研究对象,应用流式细胞术和Western blot检测磷酸化ERK1/2 (磷酸化P44/42MAPK)和ERK2 (P42MAPK)信号分子的表达。结果流式细胞术检测显示,HL-60、K562细胞,初治AML、初治CML、AML-CR及正常骨髓细胞均表达磷酸化ERK1/2,但表达水平不同;正常细胞表达较低,与AML-CR细胞相比,差异无显著性(P>0.05);HL-60、初治AML细胞与AML-CR、正常细胞相比,以及K562、初治CML细胞与正常细胞相比,磷酸化ERK1/2表达水平均显著增高(P<0.05);其中,高表达磷酸化ERK1/2的初治AML和初治CML比例分别为80.6% (25/31)、61.9% (13/21)。Western blot结果也表明,正常细胞与AML-CR细胞相比,磷酸化ERK1/2(磷酸化P44/42MAPK)和ERK2 (P42MAPK)灰度比值差异无显著性(P>0.05);HL-60、初治AML细胞与正常、AML-CR细胞相比,以及K562、初治CML细胞与正常细胞相比,磷酸化ERK1/2(磷酸化P44/42MAPK)和ERK2 (P42MAPK)灰度比值显著增高(P<0.05);其中,高表达磷酸化ERK1/2 (磷酸化P44/42MAPK)、ERK2(P42MAPK)的初治AML和初治CML比例分别为77.4% (24/31)、52.4%(11/21),与流式细胞术检测结果基本一致。结论构成性激活的ERK/MAPK信号转导途径存在于大多数髓系白血病患者及HL-60、K562细胞株,在介导髓系白血病细胞增殖、存活、凋亡受抑中发挥重要作用,是髓系白血病合理的治疗靶点。
Objective To investigate the expression and pathophysiological significance of extracellular signal-regulated kinase (ERK) / mitogen- activated protein kinase (MAPK) in myeloid leukemia. Methods Myeloid leukemia cell lines HL-60, K562 cells, bone marrow mononuclear cells (BMMNCs) from 31 acute myeloid leukemia (AML)patients at diagnosis, 21 chronic myeloid leukemia (CML) patients at diagnosis and 14 AML patients in complete remission (CR) were examined. The expression levels of phospho-ERK1/2 (phospho-P44/42MAPK) and ERK2 (P42MAPK) were detected by flow cytometry and Western blot. Results There were no difference in the expression levels of phospho-ERK1/2 (phospho-P44/42MAPK) and ERK2 (P42MAPK) between normal BMMNCs and AML-CR BMMNCs. The expression levels of phospho-ERK1/2(phospho-P44/42MAPK) and ERK2 (P42MAPK) in HL-60 cells and BMMNCs from AML patients at diagnosis were significantly higher than those in BMMNCs from AML-CR and normal donors (P<0.05). The expression levels of phospho-ERK1/2 and ERK2 in K562 cells and BMMNCs from CML patients at diagnosis were also significantly higher than those in normal cells(P<0.05). Flow cytometry showed that ratios of phospho-ERK1/2 hyperexpression in AML and CML patients at diagnosis were 80.6%(25/31) and 61.9% (13/21) respectively. Western blot also indicated that ratios of both phospho-ERK1/2 (phospho-P44/42MAPK) and ERK2 (P42MAPK) hyperexpression in AML and CML patients at diagnosis were 77.4%(24/31) and 52.4%(11/21) respectively. Conclusion Constitutive ERK/MAPK phosphorylation was observed in most patients with myeloid leukemia. Constitutive activation of ERK/MAPK signaling pathway plays an important role in the pathogenesis of myeloid leukemia.
引文
1 Kiyokawa E, Takai S, Tanaka M, et al. Overexpression of ERK, an EPH family receptor protein tyrosine kinase, in various human tumors. Cancer Res, 1994, 54:3645-3650.
    2 Kim SC, Hahn JS, Min YH, et al. Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood, 1999, 93:3893-3899.
    3 张之南, 沈悌, 主编. 血液病诊断及疗效标准. 第 2 版. 北京: 科学出版社, 1998, 168-380.
    4 Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated Protein Kinase: Conservation of a three-Kinase module from yeast to human. Phys Rev, 1999, 79: 143-180.
    5 Pierce KL, Luttrell LM, Lefkowiz RJ. New mechanisms in heptahelical receptor signaling to mitogen activated to mitogen activated protein kinase cascades. Oncogene, 2001, 20:1532-1539.
    6 Khokhlatchev AV, Canagarajah B, Wilsbacher J, et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translation. Cell, 1998, 93: 605-615.
    7 Morgan MA, Dolp O, Reuter CWM. Cell-cycle-dependent activation of mitogen- activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood, 2001, 97:1823-1834.
    8 Towatari M, Iida H, Tanimoto M, et al. Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia, 1997, 11:479-484.
    9 Kang CD, Yoo SD, Hwang BW, et al. The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res, 2000, 24:527-534.
    10 李登举, 张瑶珍, 曹文静等. 端粒酶活性在白血病细胞凋亡中的变化及调控机制研究. 中华血液学杂志, 2002, 23:376-377.
    11 Sonoyama J, Matsumura I, Ezoe S, et al. Functional cooperation among Ras, STAT5, and phosphatidylinositol 3-kinase is required for full oncogenic activities of BCR/ABL in K562 cells. J Biol Chem, 2002, 277: 8076-8082.
    12 Steelman LS, Pohnert SC, Shelton JG, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia, 2004, 18:189-218.
    13 Zecevic M, Catling AD, Eblen ST, et al. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol, 1998, 142:1547-1558.
    14 Milella M, Kornblau SM, Estrov Z, et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest, 2001, 108: 851-859.
    15 Liu Y, Martindale JL, Gorospe M, et al. Regulation of p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway. Cancer Res, 1996, 56:31-35.
    16 Boucher MJ, Morisset J, Vachon PH, et al. MEK/ ERK signaling pathway regulates the expression of Bcl-2 , Bcl-X(L) , and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem, 2000, 79: 355-369.
    17 Erhardt P, Schremser EJ, Cooper GM. B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol, 1999, 19:5308-5315.
    18 李登举, 张瑶珍, 黄伟等. 新型免疫抑制剂FTY720诱导HL-60和K562细胞凋亡的作用机制. 中华血液学杂志, 2003, 24:663-665.
    19 Iida M, Towatari M, Nakao A, et al. Lack of constitutive activation of MAP kinase pathway in human acute myeloid leukemia cells with N-Ras mutation. Leukemia, 1999, 13:585-589.
    20 Hayakawa F, Towatari M, Iida H, et al. Differential constitutive activation between STAT-related proteins and MAP kinase in primary acute myelogenous leukaemia. Br J Haematol, 1998, 101:521-528.
    1 Rotea WJ, Saad ED. Targeted drugs in oncology: New names, new mechanisms, new paradigm. Am J Health-Syst Pharm, 2003,60: 1233-1245.
    2 Cohen-Johathan E, Toulas C, Ader I, et al. The farnesyltransferase inhibitor FTI-277 suppresses the 24-kDa FGF2-induced radioresistance in HeLa cells expressing wild-type RAS. Radiation Res, 1999, 152: 404-411
    3 Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol, 2004, 22: 1430-1438.
    4 Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J Clin Oncol, 1999, 17: 3631-3652.
    5 Britten CD, Rowinsky EK, Soignet S et al. A Phase I and pharmacological study of the farnesyl protein transferase inhibitor L-778,123 in patients with solid malignancies. Clin Cancer Res, 2001, 7:3894-3903.
    6 Morgan MA, Dolp O, Reuter CWM. Cell-cycle-dependent activation of mitogen- activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood, 2001, 97:1823-1834.
    7 Selleri C, Maciejewski JP, Montuori N, et al. Involvement of nitric oxide in farnesyltransferase inhibitor–mediated apoptosis in chronic myeloid leukemia cells. Blood, 2003, 102:1490-1498.
    8 Bolick SC, Landowski TH, Boulware D, et al. The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug- resistant myeloma tumor cells. Leukemia, 2003,17:451-457.
    9 Karp JE, Lancet JE, Kaufmann SH, et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase I clinical- laboratory correlative trial. Blood, 2001, 97: 3361-3369.
    10 Chen GQ, Zhu J, Shi XG, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute myelogenous leukemia: As2O3 induces NB4 cells apoptosis with downregulation of BCL-2 expression and modulation of PML-RARα/PML proteins. Blood, 1996, 88: 1052-1061.
    11 Huang XJ, Wiernik P, Gallageher R, et al. Potentiation of arsenic-induced apoptosis RA-sensitive and RA-resistant leukemia cell lines. Blood, 1997, 90: 329a.
    12肖冬梅,孙关林,邬维礼,等. As2O3诱导K562细胞凋亡过程中酪氨酸蛋白激酶活性的变化.中华血液学杂志,1998,19:234-237.
    13 傅卫军, 侯健,王东星, 等.氧化砷诱导骨髓瘤细胞株(KM3)凋亡的初步研究.中华血液学杂志,1998, 19:591-592.
    14 葛繁梅, 白庆咸, 梁蓉, 等.三氧化二砷联合抗坏血酸对骨髓瘤细胞增殖与凋亡的作用. 中华血液学杂志, 2005, 26:625-627.
    15 许晓巍, 许小平, 易克, 等. 地塞米松对三氧化二砷诱导淋巴瘤细胞凋亡与 NF - κB活化及相关基因表达的影响.中华血液学杂志, 2005, 26:227-231.
    16 张鹏, 王树叶, 胡龙虎, 等. 三氧化二砷治疗急性早幼粒细胞白血病七年总结—附 242 例分析. 中华血液学杂志, 2000, 2:67-70.
    17 Hussein MA, Saleh M, Ravandi F, et al. Phase 2 study of arsenic trioxide in patients with relapsed or refractory multiple myeloma. Br J Haematol, 2004,125: 470 -476.
    18 Dai J, Weinberg RS, Waxman S, et al. Malignant cells can be sensitized to undergo growthinhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood, 1999, 93:268-277.
    19 Jing Y, Dai J, Chalmers-Redman RM, et al. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood, 1999, 94:2102-2111.
    20 Hahn SM, Bernhard EJ, Regine W, et al. A Phase I trial of the farnesyltransferase inhibitor L-778,123 and radiotherapy for locally advanced lung and head and neck cancer. Clin Cancer Res, 2002, 8: 1065-1072.
    21 Lobell RB, Omer CA, Abrams MT, et al. Evaluation of farnesyl: protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res, 2001, 61: 8758 -8768.
    22 Loprevite M, Favoni RE, De Cupis A, et al. In vitro study of farnesyltransferase inhibitor SCH66336, in combination with chemotherapy and radiation, in non-small cell lung cancer cell lines. Oncol Rep, 2004,11:407-414.
    23 Ellis CA, Vos MD, Wickline M, et al. Tamoxifen and the farnesyl transferase inhibitor FTI-277 synergize to inhibit growth in estrogen receptor-positive breast tumor cell lines. Breast Cancer Res Treat, 2003, 78:59-67.
    24 Korycka A, Smolewski P, Robak T. The influence of farnesyl protein transferase inhibitor R115777 (Zarnestra) alone and in combination with purine nucleoside analogs on acute myeloid leukemia progenitors in vitro. Eur J Haematol, 2004, 73:418-426.
    1 Loprevite M, Favoni RE, De Cupis A, et al. In vitro study of farnesyltransferase inhibitor SCH66336, in combination with chemotherapy and radiation, in non-small cell lung cancer cell lines. Oncol Rep, 2004,11:407-414.
    2 Korycka A, Smolewski P, Robak T. The influence of farnesyl protein transferase inhibitor R115777 (Zarnestra) alone and in combination with purine nucleoside analogs on acute myeloid leukemia progenitors in vitro. Eur J Haematol, 2004,73:418-426.
    3 Morgan MA, Dolp O, Reuter CWM. Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood, 2001, 97:1823-1834.
    4 Ashar HR, James L, Gray K, et al.The farnesyltransferase inhibitor SCH66336 induces a G2/M or G 1 pause in sensitive human tumor cell lines. Exp Cell Res, 2001, 262: 17-27.
    5 Reuveni H, Klein S, Levitzki A. The inhibition of Ras farnesylation leads to an increase in p27Kip1 and G1 cell cycle arrest. Eur J Biochem, 2003, 270:2759-2772.
    6 Milella M, Kornblau SM, Estrov Z, et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest, 2001, 108: 851-859.
    7 Wiesenauer CA, Yip-Schneider MT, Wang Y, et al. Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinoma. J Am Coll Surg, 2004, 198:410-421.
    8 申徐良,王椿,乔振华,等. bcl-x 和 bcl-2 基因在急性白血病患者中的表达及其临床意义.中华血液学杂志,1999, 20: 350-353.
    9 Delia D, Aiello A, Soligo D, et al. bcl-2 proto-oncogene expression in normal and neoplastic human myeloid cells. Blood, 1992,79: 1291- 1298.
    10 Campos L, Sabido O, Sebban C, et al. Expression of bcl-2 proto- oncogene in adult acute lymphoblastic leukemia. Leukemia, 1996, 10: 434-438.
    11 隋雪梅,苏力,褚建新,等. Bcl-2 基因表达在慢性粒细胞性白血病急变中意义. 中华血液学杂志, 1999, 20:27-29.
    12 Handa H, Hegde UP, Kotelnikov VM, et al. BCL-2 and c-myc expression, cell cycle kinetics and apoptosis during the progression of chronic myelogenous leukemia from diagnosis to blastic phase. Leuk Res, 1997, 21:479-489.
    13 Benito A, Lerga A, Silva M, et al. Apoptosis of human myeloid leukemia cells induced by an inhibitor of protein phosphatases (okadaic acid) is prevented by Bcl-2 and Bcl-X(L). Leukemia, 1997, 11:940-944.
    14 Campos L, Rouault J, Sabido O, et al. High expression of bcl-2 Protein in acute myeloid leukemia cell is associated with poor response to chemotherapy. Blood, 1993, 81:3091-3096.
    15 陈峰,徐功立,李英,等.三氧化二砷对 HL-60 细胞及 NB4 细胞端粒酶活性的调节.中华血液学杂志,2000, 21:366-369.
    16 Chen GQ, Zhu J, Shi XG, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RARα proteins. Blood, 1996,88:1052-1061.
    17 肖冬梅,孙关林,苏卉,等. As2O3对 K562 细胞 BCR/ABL 蛋白酪氨酸磷酸化的影响. 中华血液学杂志, 1999, 20:637-639.
    18赖忠彬,孙关林,邬维礼,等. As2O3对慢性粒细胞白血病原代细胞BCR-ABL蛋白水平及信号转导的影响.中华血液学杂志,2002, 23: 360-362.
    19 Steube KG, Jadau A, Teepe D, et al. Expression of bcl-2 mRNA and protein in leukemia-lymphoma cell lines. Leukemia, 1995, 9: 1841 -1846.
    20 Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor. Nature, 1998,391:43-50.
    21 黄晓军. 三氧化二砷诱导细胞凋亡的调节.中华血液学杂志,1999, 20: 258-260.
    22 邹俊晖, 潘祥林, 冯长伟, 等.三氧化二砷对 K562 及其多药耐药细胞 K562/A02 细胞的诱导凋亡研究.中华血液学志,2002, 23:37-38.
    23 Renvoize C, Roger R, Moulian N, et al. Bcl-2 expression in target cells leads to functional inhibition of caspase-3 protease family in human NK and lymphokine- activated killer cell granule-mediated apoptosis. J Immunol. 1997, 159:126-134.
    24 Amarante-Mendes GP, Naekyung Kim C, Liu L, et al. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood, 1998, 91:1700-1705.
    25 Perkins C, Kim CN, Fang G, et al. Arsenic induces apoptosis of multidrug- resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood, 2000, 95: 1014-1022.
    26 Yu C, Wang S, Dent P, et al. Sequence-dependent potentiation of paclitaxel- mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway. Mol Pharmacol, 2001, 60:143-154.
    1 Rotea WJ, Saad ED. Targeted drugs in oncology: New names, new mechanisms, new paradigm. Am J Health-Syst Pharm, 2003,60: 1233-1245.
    2 Beaupre DM, Cepero E, Obeng EA, et al. R115777 induces Ras-independent apoptosis of myeloma cells via multiple intrinsic pathways. Mol Cancer Ther, 2004,3:179-186.
    3 Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol, 2004, 22: 1430-1438.
    4 Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated Protein Kinase: Conservation of a three-Kinase module from yeast to human. Phys Rev, 1999, 79:143-180.
    5 Pierce KL, Luttrell LM, Lefkowiz RJ. New mechanisms in heptahelical receptor signaling to mitogen activated to mitogen activated protein kinase cascades. Oncogene, 2001, 20:1532-1539.
    6 Khokhlatchev AV, Canagarajah B, Wilsbacher J, et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translation. Cell, 1998, 93:605-615.
    7 Karp JE, Lancet JE, Kaufmann SH, et al. Clinical and biologic refractory and relapsed acute leukemias: a phase I clinical- laboratory correlative trial. Blood, 2001, 97: 3361–3369.
    8 Mo H, Elson CE. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp Biol Med (Maywood), 2004, 229: 567-585.
    9 Morgan MA,Wegner J,Aydilek E, et al. Synergistic cytotoxic effects in myeloid leukemia cells upon cotreatment with farnesyltransferase and geranylgeranyl transferase-I inhibitors. Leukemia, 2003, 17: 1508- 1520.
    10 Chun KH, Lee HY, Hassan K, et al. Implication of protein kinase B/Akt and Bcl-2/Bcl-XL suppression by the farnesyl transferase inhibitor SCH66336 in apoptosis induction in squamous carcinoma cells. Cancer Res,2003,63:4796-4800.
    11 Si MS, Ji P, Tromberg BJ, et al. Farnesyltransferase inhibition: a novel method of immunomodulation. Int Immunopharmacol, 2003, 3: 475- 483.
    12 Ellis CA, Vos MD, Wickline M, et al. Tamoxifen and the farnesyl transferase inhibitor FTI-277 synergize to inhibit growth in estrogen receptor-positive breast tumor cell lines. Breast Cancer Res Treat, 2003,78:59-67.
    13 Hu W, Wu W, Verschraegen CF, et al.Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics, 2003,3:1904-1911.
    14 Mazzocca A, Giusti S, Hamilton AD, et al. Growth inhibition by the farnesyltransferase inhibitor FTI-277 involves Bcl-2 expression and defective association with Raf-1 in liver cancer cell lines. Mol Pharmacol, 2003, 63: 159-166.
    15 Loprevite M, Favoni RE, De Cupis A, et al. In vitro study of farnesyltransferase inhibitor SCH66336, in combination with chemotherapy and radiation, in non-small cell lung cancer cell lines. Oncol Rep, 2004,11:407-414.
    16 Khuri FR, Glisson BS, Kim ES, et al. Phase I study of the farnesyltransferase inhibitor lonafarnib with paclitaxel in solid tumors. Clin Cancer Res,2004,10:2968-2976.
    17 Adjei AA, Croghan GA, Erlichman C, et al. A Phase I trial of the farnesyl protein transferase inhibitor R115777 in combination with gemcitabine and cisplatin in patients with advanced cancer. Clin Cancer Res, 2003, 9:2520-2526.
    18 Hahn SM, Bernhard EJ, Regine W, et al. A phase I trial of the farnesyltransferase inhibitor L-778,123 and radiotherapy for locally advanced lung and head and neck cancer. Clin Cancer Res,2002, 8:1065-1072.
    19 Heymach JV, Johnson DH, Khuri FR, et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with sensitive relapse small-cell lung cancer.Ann Oncol, 2004 ,15:1187-1193.
    20 Sharma S, Kemeny N, Kelsen DP, et al. A phase II trial of farnesyl protein transferase inhibitor SCH 66336, given by twice-daily oral administration, in patients with metastatic colorectal cancer refractory to 5-fluorouracil and irinotecan. Ann Oncol, 2002,13: 1067-1071.
    21 Gotlib J. Farnesyltransferase inhibitor therapy in acute myelogenous leukemia. Curr Hematol Rep, 2005,4:77-84.
    22 Peters DG, Hoover RR, Gerlach MJ, et al.Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid Leukemia. Blood, 2001, 97: 1404–1412.
    23 Hoover RR, Mahon FX, Melo JV, et al. Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood, 2002,100:1068-1071.
    24 Bolick SC, Landowski TH, Boulware D, et al.The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug- resistant myeloma tumor cells. Leukemia, 2003,17:451-457.
    25 Marzo I, Perez-Galan P, Giraldo P, et al. Farnesyltransferase inhibitor BMS-214662 induces apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia, 2004,18:1599-1604.
    26 Korycka A, Smolewski P, Robak T. The influence of farnesyl protein transferase inhibitor R115777 (Zarnestra) alone and in combination with purine nucleoside analogs on acute myeloid leukemia progenitors in vitro. Eur J Haematol, 2004,73:418-426.
    27 Kurzrock R,Albitar M,Cortes JE. Phase II Study of R115777, a Farnesyl Transferase Inhibitor, in Myelodysplastic Syndrome. J Clin Oncol, 2004,22: 1287-1292.
    28 Alsina M, Fonseca R, Wilson EF, et al. Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood, 2004, 103:3271-3277.
    29 Lobell RB, Omer CA, Abrams MT, et al. Evaluation of farnesyl: protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res, 2001, 61:8758-8768.
    30 Sun J, Ohkanda J, Coppola D, et al. Geranylgeranyltransferase I inhibitor GGTI-2154 induces breast carcinoma apoptosis and tumor regression in H-Ras transgenic mice. Cancer Res, 2003, 63: 8922- 8929.
    31 Marley S, Lewis J, Schneider H, et al. Phosphatidylinositol-3 kinase inhibitors reproduce the selective antiproliferative effects of imatinib on chronic myeloid leukaemia progenitor cells. Br J Haematol, 2004,125:500-511.
    32 Caraglia M, D'Alessandro AM, Marra M, et al. The farnesyl transferase inhibitor R115777 (Zarnestra) synergistically enhances growth inhibition and apoptosis induced on epidermoid cancer cells by Zoledronic acid (Zometa) and Pamidronate. Oncogene, 2004,23: 6900-6913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700