JAK2V617F突变在骨髓增殖性疾病中的意义及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2005年以来数个独立的研究组报告了BCR/ABL阴性骨髓增殖性疾病(myeloproliferative disorders,MPD)中存在JAK2基因突变,JAK2基因突变位于JAK2基因第1849位,原来的鸟嘌呤(G)被胸腺嘧啶(T)所取代(G→T),导致原位于617位的缬氨酸错义编码为苯丙氨酸(JAK2V617F)。国外报告JAK2V617F突变见于65%~90%的真性红细胞增多症(PV)、23%~57%的特发性血小板增多症(ET)和35%~57%特发性骨髓纤维化(IMF),是MPD发生的重要分子机制。JAK2V617F突变引起人们广泛关注而称为“MPD的JAK2时代”。然而,JAK2V617F突变国内报道较少,其作为临床诊断依据的价值仍需大量的临床资料验证?JAK2V617F突变导致MPD的发病机制还不清楚?JAK2V617F突变相关的信号通路及其下游靶基因还有待进一步研究?我们在临床上对110例恶性血液病患者检测了JAK2V617F基因突变,并应用细胞模型探索JAK2V617F突变相关的信号通路及其靶基因,为相关靶向药物的研发提供新的靶点和理论依据,对阐明其作用的分子机制有重要意义。
     目的①在临床上探索JAK2V617F突变在BCR/ABL阴性MPD患者中的特异性、发生率及其临床意义,并确立一种敏感特异、简便快捷的实验诊断体系;②应用细胞模型,研究JAK2V617F突变相关的信号通路;③寻找JAK2V617F(JAK/STAT)信号通路调控的下游靶基因,探索与细胞增殖和凋亡异常的相关性,以期进一步阐明PV的发病机制。
     方法①临床上对110恶性血液病患者和10例正常对照的外周血或骨髓粒细胞提取基因组DNA,采用等位基因特异性PCR(AS-PCR)、限制性内切酶消化方法检测JAK2V617F突变,并对BCR/ABL阴性MPD 41例和正常对照2例进行基因测序鉴定;②言袢撕彀籽∠赴闔EL细胞为模型,用上述三种方法检测和验证HEL细胞模型中存在天然的JAK2V617F突变,并对HEL细胞的形态学、细胞化学染色和染色体核型进行观察;③应用Western blot方法研究HEL细胞中JAK2特异性抑制剂AG490干预对JAK2/STAT5信号通路中的JAK2、STAT5、磷酸化JAK2和磷酸化STAT5蛋白表达的影响;④Cell Titer-Glo(?)法和FITC-AnnexinV/PI双染后的流式细胞技术分别用于检测细胞增殖和凋亡情况;⑤应用RT-PCR技术筛选JAK2/STAT5信号通路可能的下游靶基因(GATA1、GATA2、PTTG1、bcl-x)。Western blot技术和流式细胞技术用于进一步检测HEL细胞中AG490对PTTG1的蛋白表达水平的影响;⑥双荧光素酶报告基因技术用于检测AG490对PTTG1启动子的影响。
     结果①AS-PCR和限制性内切酶的方法检测JAK2V617F阳性的结果为:PV 11/12例(91.7%)、ET 8/15例(53.3%)、IMF 4/7例(57.1%)。高嗜酸粒细胞增多症(HES)7例、慢性粒细胞白血病(CML)25例、急性白血病44例[包括急性髓细胞白血病(AML)24例、急性淋巴细胞白血病(ALL)18例、慢性粒细胞白血病急粒变1例、急性混合细胞白血病1例]均未检测到JAK2V617F基因突变。将所有BCR/ABL阴性MPD患者41例、正常对照2例一并进行基因测序鉴定,结果显示AS-PCR和限制性内切酶的方法检测JAK2V617F阳性的23例患者为JAK2V617F突变型,其他标本为野生型;②通过AS-PCR、限制性内切酶分析和DNA测序,我们证实了HEL细胞中存在JAK2V617F突变,并且细胞形态学和细胞化学观察也提示该细胞株具有红系细胞的形态特征;③Western blot结果表明在总蛋白上样量一致的情况下,随着AG490作用时间(0小时、12小时、24小时、48小时、72小时)的延长,JAK2蛋白总量表达变化不大,但是磷酸化JAK2的表达逐渐下降,最大下降95.3%;同样STAT5的总蛋白水平变化不大,磷酸化的STAT5表达水平明显降低,最大下降72.4%。在K562细胞中,在100μM的AG490作用72小时后蛋白JAK2、磷酸化JAK2、STAT5、磷酸化STAT5的表达水平均没有明显变化;④用50μM AG490干预后(0小时、24小时、48小时、72小时、96小时和120小时),HEL细胞增殖活力与对照组比较明显降低(P<0.01);⑤通过FITC-AnnexinV/PI双染法和流式细胞技术,我们发现AG490作用之后HEL细胞的凋亡率明显升高,并呈现出明显的时间和剂量依赖性;⑥通过RT-PCR技术,发现AG490干预HEL细胞后癌基因PTTG1和凋亡相关基因Bcl-x(主要为bcl-x_L)mRNA的表达水平明显下调,并呈现出明显的时间和剂量依赖性;而转录因子GATA1和GATA2mRNA的表达水平无明显变化;⑦用100μM AG490(0小时、12小时、24小时、48小时、72小时)干预HEL细胞,Western blot技术观察到,随着AG490作用时间的延长,PTTG1的蛋白表达明显下降;流式细胞技术检测未加药时PTTG1表达阳性率为55.9%,随着AG490作用时间的延长,PTTG1阳性细胞的百分比下降,72小时后的细胞阳性率仅为9.0%;⑧通过双报告基因技术,我们发现AG490作用之后,PTTG1的启动子活性下降2.5倍。
     结论①90%以上的PV、50%以上的ET和IMF可检测到JAK2V617F基因突变;AS-PCR和限制性内切酶分析是JAK2V617F基因突变敏感特异、简便快捷的检测方法;JAK2V617F可以作为MPD诊断的分子标志,也可能是治疗的新靶点;②在HEL细胞中JAK2激酶特异性抑制剂AG490可以抑制突变的JAK2V617F激酶和JAK2V617F/STAT5信号通路,使HEL细胞增殖活力明显降低和凋亡率明显升高;而AG490导致Bcl-x(主要是Bcl-x_L)基因的mRNA表达明显降低,提示JAK2V617F可能通过上调Bcl-x_L抑制细胞凋亡;③用AG490抑制JAK2V617F/STAT5信号通路后,PTTG1基因的启动子活性、mRNA和蛋白水平的表达明显下调,提示PTTG1是JAK2V617F/STAT5信号通路的下游靶分子,JAK2V617F在转录水平上调PTTG1基因表达可能导致细胞的异常增殖。
In early 2005,several independent groups published virtually simultaneously on the presence of a specific mutation in the JAK2 associated with BCR/ABL-negative MPD.The mutation of JAK2 was the same base change(G to T)at nucleotide 1849,resulting in a substitution of valine 617 for a phenylalanine in the JH2 domain of JAK2(JAK2V617F).The frequency of JAK2V617F mutation was 65%~97%among patients with PV,23%~57%among patients with ET and 35%~57%among patients with IMF,which indicates JAK2V617F mutation plays an important role in the pathogenesis of MPD. JAK2V617F mutation caused a widespread concern,and the period afterwards was named as "JAK2 era of myeloproliferative disorders" However,JAK2V617F mutation among Chinese people has been scarcely reported;The diagnostic value of JAK2V617F mutation should be assessed further by considerable clinical data;The pathogenesis role of JAK2V617F in myeloproliferative disorders is still unclear;The signal pathway and downstream target gene of JAK2V617F mutation remains to be studied further.In this investigation,JAK2V617F mutation in 110 patients with malignant hematologic disease was detected,and a cell model was used to characterize the signal pathway and identify the target gene of this mutation.The research provides new targets as well as a theoretical basis for research and development of JAK2V617F-mutation-targeted drug,and will be of great significances in elucidating the mechanisms underling the mutation.
     OBJECTIVE①To analyze the specificity,incidence of JAK2V617F mutation in patients with BCR/ABL-negative myeloproliferative disorders(MPD)and explore the clinical significances, and develop a sensitive and specific clinical diagnosis test system for patients with MPD.②A cell model was used to characterize the signal pathway associated with the JAK2V617F mutation;③To further elucidate the mechanism underling the polycythaemia vera(PV),the target genes of JAK2V617F(JAK/STAT)signal pathway was identified and the relevance between this mutation and apoptosis and proliferation was studied.
     METHODS①Genomic DNA was isolated from granulocytes originating from peripheral-blood or bone marrow.Allele-specific polymerase chain reactions(AS-PCR),restriction enzyme digestion were performed to detect the mutation in genomic DNA.110 patients and ten normal controls were detected.The PCR product originating from 41 patients with BCR/ABL-negative MPDs and two normal controls was subject to DNA sequencing.②HEL cell line,which has a genetic background of erythrocyte and carries a homozygous JAK2V617F mutation confirmed by the three methods mentioned above,was selected as a cell model.We also investigated the morphology,cytochemical staining and chromosome karyotype properties of this model.③Western blot was performed to determine the effect of AG490 on the JAK2/STAT5 signal pathway by the antibodies against the JAK2、STATS、phospho-JAK2 and phospho-STATS.④CeilTiter-Glo(?) Luminescent cell viability assay and FITC-Annexin V/PI double staining and then Flow cytometry(FCM)were performed to determine the proliferation ability and apoptosis rate of the HEL cell,respectively.⑤RT-PCR was performed to screen the candidate gene(GATA1、GATA2、PTTG1、and bcl-x)to identify the downstream target of the JAK2/STAT5 signal pathway.Western blot and Flow Cytometry(FCM) were performed to analyze the effect of AG490 on the expression of PTTG1 protein further.⑥Dual Luciferase Reporter Assay was performed to detect the effect of AG490 on the promoter activity of PTTG1.
     RESULTS①The positive rate of JAK2V617F detected by AS-PCR and restriction enzyme was shown as follows:11(91.7%)of 12 with PV,8(53.3%)of 15 with ET,4(57.1%)of 7 with IMF,while in other patients including 7 patients with HES,25 patients with CML,44 patients with AL(including 24 patients with AML,18 patients with ALL,1 patients with CML-blast phase,1 patients with mixed-lineage acute leukemia (MAL)),JAK2V617F could not be detected.The PCR product prepared from 41 patients with BCR/ABL negative MPD patients and 2 normal controls were further subjected to sequencing analysis,and the results demonstrated that the 23 patients carrying JAK2V617F mutation detected by AS-PCR and restriction enzyme digestion were JAK2V617F positive and the others were wild-type.②The presence of the JAk2V617F in the HEL cell was confirmed by AS-PCR,restriction enzyme digestion and DNA sequencing,and morphological experiments and cytochemical staining suggested that the HEL cell has a genetic background of erythrocyte.③Western blot demonstrated that under the condition that the total protein loaded in each well were much the same,as the time extended(0h,12h,24h,48h,72h),the JAK2 total protein changed little, while the pospho-JAK2 protein decreased gradually,with the greatest decreasing rate of 95.3%;Similarly the STAT5 total protein changed little, while the phospho-STAT5 protein decreased obviously,with the greatest decreasing rate of 72.4%;In K562 cells,the protein expression of JAK2, phospho-JAK2,STAT5,phospho-STAT5 has little change when treated by AG490 for 72h.④When treated by 50μM AG490(0h,24h,48h,72h, 96h),the proliferation rate of HEL cells decreased dramatically compared with the control(P<0.01).⑤FITC-AnnexinV/PI double staining and FCM demonstrated that the apoptosis rate of HEL cell increased obviously in a time and dose dependent manner after treated by AG490.⑥RT-PCR demonstrated that when treated by AG490,the mRNA of PTTG1 was down-regulated obviously,and the down-regulation was strongly time and dose dependent;but the expression of transcriptional factor GATA1 and GATA2 changed little.⑦Western blot demonstrated that when treated by 100μM AG490(0h,12h,24h,48h,72h),PTTG1 protein decreased obviously as time extended;Flow cytometry(FCM)showed that the PTTG1 positive rate of the HEL cells was 55.9%under normal condition,and as the AG490 treating time extended,the positive rate decreased,which was only 9.0%at 72h;⑧Dual-luciferase assay showed that the PTTG1 promoter activity decreased by 2.5 fold when treated by AG490.
     CONCLUSION①The frequency of JAK2V617F mutation was more than 90%among patients with PV,more than 50%among patients with ET and IMF.AS-PCR and restriction enzyme digestion assay were sensitive,specific,convenient and shortcut tests for the JAK2V617F mutation;This mutation might be a molecular marker as well as a treatment target of MPD in the future;②In HEL cells,the muted JAK2V617F kinase and JAK2V617F/STAT5 signal pathway can be inhibited by the specific inhibitor of JAK2 kinase,resulting in the significantly decreasing of the cell proliferation activity and increasing of the apoptosis rate;AG490 caused an obviously decrease of Bcl-x(Bcl-x_L mRNA was the main species of Bcl-x found),which suggests that JAK2V617F might inhibit cell apoptosis through upregulation of Bcl-x_L.③On the inhibition of the JAK2V617F/STAT5 signal pathway by AG490, PTTG1 mRNA and protein were decreased significantly,which suggested that PTTG1 might be a downstream target of JAK2V617F signal pathway. Upregulation of PTTG1 on the transcriptional level might promote cell proliferation abnormally.
引文
[1] Dameshek W.Some speculations on the myeloproliferative syndromes. Blood. 1951, 6(4):372-375.
    
    [2] James C, Ugo V, Le Couedic JP, et al.A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005 , 434(7037): 1144-1148.
    
    [3] Levine RL, Wadleigh M, Cools J, et al. Activating mutation of the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005,7(4): 387-397.
    [4] Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet. 2005,365(9464): 1054-1061.
    [5] Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005, 35(17): 1779-1790.
    [6] Zhao R, Xing S, Li Z, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005, 280(24): 22788-22792.
    [7] Ihle JN, Gilliland DG. Jak2: normal function and role in hematopoietic disorders. Current Opinion in Genetics & Development.2007,17(1):8-14.
    [8] Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006, 108(5): 1652-1660.
    [9] Villeval JL, James C, Pisani DF, New insights into the pathogenesis of JAK2 V617F-positive myeloproliferative disorders and consequences for the management of patients. Semin Thromb Hemost. 2006,(4 Pt 2):341-51.
    [10] Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005,106(6): 2162- 2168.
    
    [11] Rudzki Z, Sacha T, Stoj A, et al. The gain-of-function JAK2 V617F mutation shifts the phenotype of essential thrombocythemia and chronic idiopathic myelofibrosis to more "erythremic" and less "thrombocythemic": a molecular, histologic, and clinical study. Int J Hematol. 2007, 86(2): 130-136.
    
    [12] Speletas M, Katodritou E, Daiou C, et al. Correlations of JAK2-V617F mutation with clinical and laboratory findings in patients with myeloproliferative disorders. LeukRes. 2007,31 (8): 1053-1062.
    [13] Ruiz-Arguelles GJ, Garces-Eisele J, Reyes-Nunez V, et al. The Janus Kinase 2 (JAK2) V617F mutation in hematological malignancies in Mexico.Rev Invest Clin. 2006, 58(5):458-461.
    [14] Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood. 2005,105(11): 4187-4190.
    [15] Wilks AF.Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction. Proc Natl Acad Sci USA. 1989,86(5):1603-1607.
    [16] Pritchard MA, Baker E, Callen DF, et al. Two members of the JAK family of protein tyrosine kinases map to chromosomes 1p31.3 and 9p24. Mammalian Genome. 1992,3(1): 36-38.
    [17] Rane SG, Reddy EP. Janus kinases: Components of multiple signaling pathways. Oncogene. 2000,19(49): 5662-5679.
    [18] Yamaoka K, Saharinen P, Pesu M, et al.The Janus kinases (Jaks). Genome Biol. 2004,5(12): 253-255.
    [19] Kerr IM, Costa-Pereira AP, Lillemeier BF, et al. blind watchmakers, jeeps and trains. FEBS.2003, 546(1):1-5.
    [20] Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002,298(5600): 1912-1934.
    [21] Saharinen P, Takaluoma K, Silvennoinen O.Regulation of the Jak2 tyrosine kinase by its pseudo kinase domain. Mol Cell Biol. Mol Cell Biol.2000, 20(10): 3387-3395.
    [22] Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002,277(49): 47954-47963.
    [23] Schafer AI.Molecular basis of the diagnosis and treatment of polycythemia vera and essential thrombocythemia. Blood. 2006,107(11): 4214-4222.
    
    [24] Velazquez L, Fellous M, Stark GR, et al. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992, 70(2): 313-322.
    [25] Huang LJ, Constantinescu SN, Lodish HF.The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor.Mol Cell 2001,8(6):1327-1338.
    [26]Rawlings JS,Rosler KM,Harrison DA.The JAK/STAT signaling pathway.J Cell Sci.2004,117(pt-8):1281-1283.
    [27]Goldman JM.A unifying mutation in chronic myeloproliferative disorders.N Engl J Med.2005,352(17):1744-1746.
    [28]Dominguez A,Ramos-Morales F,Romero F,et al.hpttg,a human homologue of rat pttg,is overexpressed in hematopoietic neoplasms:evidence for a transcriptional activation function of hPTTG.Oncogene.1998,17(17):2187-2193.
    [29]Zhang X,Horwitz GA,Prezant TR,et al.Structure,expression,and function of human pituitary tumor-transforming gene(PTTG).Molec.Endocr.1999,13(1):156-166.
    [30]Kakar,S.S.Assignment of the human tumor transforming gene TUTR1 to chromosome band 5q35.1 by fluorescence in situ hybridization.Cytogenet.Cell Genet.1998,83(1-2):93-95.
    [31]Pérez de Castro I,de Cárcer G,et al.A census of mitotic cancer genes:new insights into tumor cell biology and cancer therapy.Carcinogenesis.2007,28(5):899-912.
    [32]Vlotides G,Eigler T,Melmed S.Pituitary tumor-transforming gene:physiology and implications for tumorigenesis.Endocr Rev.2007,28(2):165-86.
    [33]Zou H,McGarry TJ,Bernal T,et al.Identification of a vertebrate sisterchromatid separation inhibitor involved in transformation and tumorigenesis.Science.1999,285(5426):418-422.
    [34]Boise LH,González-García M,Postema CE,et al.bcl-x,a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death.Cell 1993,74(4):597-608.
    [35]Garcon L,Rivat C,James C,et al.Constitutive activation of STAT5 and Bcl-x_L overexpression can induce endogenous erythroid colony formation in human primary cells.Blood.2006,108(5):1551-1554.
    [36]张之南,沈悌.血液病诊断及疗效标准.北京,科学出版社,2007,87-92.
    [37]Vardiman JW,Harris NL,Brunning RD.The World Health Organization(WHO)classification of the myeloid neoplasms.Blood.2002,100(7):2292-2302.
    [38] Goerttler PS, Steimle C, Marz E, et al. The Jak2V617F mutation, PRV-1 overexpression and EEC formation define a similar cohort of MPD patients. Blood. 2005,106(8): 2862-2864.
    [39] Prober JM, Trainor GL, Dam RJ, et al. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987,238(4825): 336-341 .
    [40] Izmailov A, Goloubentzev D, Jin C, et al. A general approach to the analysis of errors and failure modes in the base-calling function in automated fluorescent DNA sequencing. Electrophoresis. 2002,23(16): 2720-2728.
    [41] James C, Delhommeau F, Marzac C, et al. Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis. Leukemia. 2006,20(2): 350-353.
    [42] Steensma DP. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn. 2006,8(4):397-411.
    [43] McClure R, Mai M, Lasho T. Validation of two clinically useful assays for evaluation of JAK2 V617F mutation in chronic myeloproliferative disorders. Leukemia. 2006,20(1): 168-171.
    [44] LinksSutton BC, Allen RA, Zhao ZJ, et al. Detection of the JAK2V617F mutation by asymmetric PCR and melt curve analysis.Cancer Biomark. 2007;3(6):315-324.
    [45] Ruan GR, Chen SS, Li LD, et al. Detection of JAK2V617F mutation in patients with myeloproliferative disorders with TaqMan-MGB probe. Zhonghua Yi Xue Za Zhi 2007,87(34):2401-4.
    [46] Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood. 2005,106(10): 3370-3373.
    [47] Fu JF, Shi JY, Zhao WL, et al. MassARRAY assay: a more accurate method for JAK2V617F mutation detection in Chinese patients with myeloproliferative disorders. Leukemia. 2008,22(3): 660-663.
    [48] Mesa RA.Navigating the evolving paradigms in the diagnosis and treatment of myeloproliferative disorders. Hematology Am Soc Hematol Educ Program. 2007,2007:355-362.
    [49] Haferlach T, Bacher U, Kern W, et al. The diagnosis of BCR/ABL-negative chronic myeloproliferative diseases (CMPD): a comprehensive approach based on morphology, cytogenetics, and molecular markers.Ann Hematol. 2008,87(1): 1-10.
    [50] Tefferi A, Vardiman JW. The diagnostic interface between histology and molecular tests in myeloproliferative disorders. Curr Opin Hematol. 2007, 14(2):115-122.
    [51] Berk PD. Therapeutic recommendations in polycythemis vera study group protocols. Semin Hematol. 1986,23(2): 132-143.
    [52] Spivak JL. polycythemia vera: myths,mechanisms and management. Blood, 2002,100(13): 4272-4290.
    [53] Murphy S, Peterson P, Hand H et al. experience of the polycythemis vera study group with essential thrombocythemia: a final report on diagnostic criteria, survival and leukemic transition by treatment. Semin Hematol. 1997. 34 (1): 29-39.
    
    [54] Hasselbalch H. Idiopthic myelofibrosis. Am J Hematol. 1990 , 34(4):291.
    [55] Michiels JJ, De Raeve H, Berneman Z, et al. The 2001 World Health Organization and updated European clinical and pathological criteria for the diagnosis, cl assification, and staging of the Philadelphia chromosome-negative chronic myeloproliferative disorders. Semin Thromb Hemost. 2006, 32(4 Pt 2): 307-340.
    [56] Wolanskyj AP, Lasho TL, Schwager SM, et al. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance.Br J Haematol 2005, 131(2):208-213.
    [57] Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med.2006,355(23):2452-2466.
    [58] Fisher JW.Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood).2003,228(1): 1-14.
    [59] Berlin NI, Lawrence JH, Lee HC. The life span of the red blood cell in chronic leukemia and polycythemia. Science. 1951,114(2963): 385-387.
    [60] Eaves AC, Henkelman DH, Eaves CJ. Abnormal erythropoiesis in the myeloproliferative disorders: an analysis of underlying cellular and humoral mechanisms. Exp Hemato. 1980, 8(suppl 8):235-247.
    [61] Lawrence JH, Elmlinger PJ, Fulton G. Oxygen and the control of red cell production in primary and secondary polycythemia: effects on iron turnoverpattern with Fe59 as a tracer. Cardiologia.1952,21(4): 37-346.
    [62] Spivak JL, Cooke CR. Polycythemia vera in ananephric man. Am J Med Sci. 1976, 272(3): 339-344.
    [63] Falconer E. Treatment of polycythemia: the reticulocyte response to venesection, phenylhydrazin and radiation. Ann Intern Med. 1933,7:172-189.
    [64] Stephens DJ, Kaltreider N. The therapeutic use of venesection in polycythemia. Ann Intern Med.\937, 10:1565-1581.
    [65] Carneskog J, Kutti J, Wadenvik H, et al. Plasma erythropoietin by highdetectability immunoradiometric assay in untreated and treated patients with polycythaemiavera and essential thrombocythaemia. Eur JHaematol. 1998, 60(5): 278-282.
    [66] Handin RI, Lux SE, Stossel TP. Blood: Principles and Practices of Hematology, 2nd ed. Philadelphia, PA: Lippincott, Williams, and Wilkins, 2002.
    [67] Skoda, R. (2007). The Genetic Basis of Myeloproliferative Disorders. ASH Education Book. 2007: 1-10.
    [68] Weinberg RS. In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders. Semin Hematol. 1997,34(1): 64-69.
    [69] Aaronson DS, Horvath CM.A road map for those who don't know JAK- STAT.Science. 2002,296(5 5 73): 1653-1655.
    [70] Silver RT.Treatment of polycythemia vera with recombinant interferon alpha (rIFNalpha) or imatinib mesylate. Curr Hematol Rep. 2005,4(3): 235-237.
    [71] Tefferi A. Polycythemia vera: a comprehensive review and clinical recommendations. Mayo Clin Proc.2003, 78(2): 174-194.
    [72] Gangat N, Strand J, Lasho TL, et al. Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2V617F allele burden correlates. Eur J Haematol. 2008,80(3): 197-200.
    [73] Antonioli E, Guglielmelli P, Poli G, et al. Polycythemia vera following autologous transplantation for AML: insights on the kinetics of JAK2V617F clonal dominance. Blood. 2007,110(13): 4620-4621.
    [74] Kim YK, Shin MG, Kim HR, et al. Simultaneous occurrence of the JAK2V617F mutation and BCR-ABL gene rearrangement in patients with chronic myeloproliferative disorders. Leuk Res. 2008,32(6): 993-995.
    [75] Pardanani A, Lasho TL, Finke C, et al. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 2007,21(9): 1960-1963.
    [76] Martin P, Papayannopoulou T. HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science. 1982, 216(4551): 1233-1235.
    [77] Papayannopoulou T, Yokochi T, Nakamoto B, et al. The surface antigen profile of HEL cells. Prog Clin Biol Res. 1983,134:277-292.
    [78] Tabilio A, Rosa JP, Testa U, et al. Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL). EMBO J. 1984,3(2): 453-459.
    [79] Leonaud WJ.Type I cytokanes and interferons and their receptors. Fundametal immunology. 1999; 4(2): 741-774.
    [80] Tripathi A, Sodhi A. Prolactin-induced production of cytokines in macrophages in vitro involves JAK/STAT and JNK MAPK pathways. Int Immunol. 2008,20(3): 327-336.
    [81] Nefedova Y, Gabrilovich DI. Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Curr Cancer Drug Targets. 2007 ;7(1):71-77.
    [82] Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998,93(3): 385-395.
    [83] Staerk J, Kallin A, Royer Y, et al. JAK2, the JAK2 V617F mutant and cytokine receptors. Pathol Biol (Paris). 2007,55(2): 88-91.
    [84] Neubauer H, Cumano A, Muller M, et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998,93(3): 397- 409.
    [85] Saltzman A, Stone M, Franks C, et al. Cloning and characterization of human Jak-2 kinase: high mRNA expression in immune cells and muscle tissue. Biochem. Biophys. Res. Commun.1998, 246(3): 627-633.
    [86] Schwaller J, Parganas E, Wang D, et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Molec. Cell. 2000,6(3): 693-704.
    [87] Moore MA, Dorn DC, Schuringa JJ, et al. Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells. Exp Hematol 2007, 35(4 Suppl 1):105-116.
    [88] Saharinen P, Takaluoma K, Silvennoinen 0. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol. 2000, 20(10): 3387-3395.
    [89] Saharinen P, Vihinen M, Silvennoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell.2003,14(4): 1448-1459.
    [90] Wernig G, Gonneville JR, Crowley BJ, et al. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pirn proto-oncogenes. Blood. 2008,111(7): 3751-3759.
    [91] Zhao ZJ, Vainchenker W, Krantz SB, et al. Role of tyrosine kinases and phosphatases in polycythemia vera. Semin Hematol. 2005, 42(4): 221-229.
    [92] Heller PG, Lev PR, Salim JP, et al. JAK2V617F mutation in platelets from essential thrombocythemia patients: correlation with clinical features and analysis of STAT5 phosphorylation status. Eur J Haematol. 2006,77(3): 210-216.
    [93] Lucet IS, Fantino E, Styles M, et al. The structural basis of Janus kinase2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood.2006, 107(1):176-183.
    [94] Lu X, Levine R, Tong W, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci U S A.2005,102: 18962-18967.
    [95] Walz C, Crowley BJ, Hudon HE, et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem. 2006,281(26): 18177-18183.
    [96] Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model.Blood.2006, 107(11): 4274-4281.
    [97] Levitzki, A. Tyrphostins-potential antiproliferative agents and novel molecular tools. Biochem Pharmacol.1990, 40(5): 913-918.
    [98] Gazit A, Osherov N, Posner I, et al. Tyrphostins. 2. Heterocyclic and alpha-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. J Med Chem. 1991,34(6): 1896-1907.
    [99] Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature.1996, 379 (6566): 645-648.
    [100] De Vos J, Jourdan M, Tarte K, et al. JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol. 2000,109(4): 823-828.
    [101] Nielsen M, Kaltoft K, Nordahl M, et al. Constitutive activation of a slowly igrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA. 1997,94(13): 6764-6769.
    [102] Eriksen KW, Kaltoft K, Mikkelsen G, et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001,15(5): 787-793.
    [103] Delias C, Schafer K, Rohm IK, et al. Leptin signalling and leptin-mediated activation of human platelets: importance of JAK2 and the phospholipases Cgamma2 and A2. Thromb Haemost. 2007,98(5): 1063-1071.
    [104] Wang Y, Cai D, Brendel C, et al. Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood. 2007 Mar 1 ; 109(5): 2147-55.
    [105] Kovanen PE, Junttila I, Takeluoma K, et al. Regulation of JAK2 tyrocine kinase by protein kinase C during macrophage differentiation of IL-3-dependent myeloid progenitor cell. Blood. 2000:95(5): 1626-1632
    [106] Ramos-Morales F, Dominguez A, Romero F, et al. Cell cycle regulated expression and phosphorylation of hpttg proto-oncogene product. Oncogene.2000, 19(3): 403-409.
    [107] Bernal JA, Luna R, Espina A, et al. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet.2002,32(2): 306-311.
    [108] Bernal JA, Hernandez A. p53 stabilization can be uncoupled from its role in transcriptional activation by loss of PTTG1 /securin. J Biochem. 2007,141(5): 737-745.
    [109]Tong Y,Tan Y,Zhou C,et al.Pituitary tumor transforming gene interacts with Spl to modulate G1/S cell phase transition.Oncogene.2007,16;26(38):5596-605.
    [110]Ishikawa H,Heaney A P,Yu R,et al.Human pituitary tumor-transforming gene induces angiogenesis.J.Clin.Endocr.Metab.2001,86(2):867-874.
    [111]Tsai S J,Lin S J,Cheng Y M,et al.Expression and functional analysis of pituitary tumor transforming gene-1 in uterine leiomyomas.J Clin Endocrinol Metab.2005,90(6):3715-3723.
    [112]Pei L.Identification of c-myc as a down-stream target for pituitary tumortransforming gene.J Biol Chem.2001,16;276(11):8484-8491.
    [113]De Maria R,Testa U,Luchetti L,et al.Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis.Blood.1999,93(3):796-803.
    [114]De Maria R,Zeuner A,Eramo A,et al.Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA- 1.Nature.1999,401(6752):489-493.
    [115]Zamai L,Secchiero P,Pierpaoli S,et al.TNF-related apoptosis-inducing ligand(TRAIL)as a negative regulator of normal human erythropoiesis.Blood.2000,95(12):3716-3724.
    [116]Felli N,Pedini F,Zeuner A,et al.Multiple members of the TNF superfamily contribute to IFN-γ-mediated inhibition of erythropoiesis.J Immunol.2005,175(3):1464-1472.
    [117]Kischkel FC,Hellbardt S,Behrmann I,et al.Cytotoxicity-dependent APO-1(Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC)with the receptor.EMBO J.1995,14(22):5579-88.
    [118]白洁,邵宗鸿,刘鸿等.真性红细胞增多症患者骨髓CD34阳性细胞凋亡及增殖特征研究.中华血液学杂志.2004,25(4):195-197.
    [119]Koury MJ,Bondurant MC.Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells.J Cell Physiol.1988;137(1):65-74.
    [120]Koury MJ,Bondurant MC.Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells.Science.1990;248(4953):378-381.
    [121]Kelley LL,Koury MJ,Bondurant MC,et al.Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities:a mechanism for controlled rates of erythrocyte production. Blood. 1993; 1993; 82(8): 2340-2352.
    [122] Silva M, Richard C, Benito A, et al. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera N Engl J Med. 1998,338(9): 564-5671.
    [123] Zeuner A, Pedini F, Signore M, et al. Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. Blood. 2006,107(9): 3495-3502.
    [124] Kusaba M, Nakao K, Goto T, et al. Abrogation of constitutive STAT3 activity sensitizes human hepatoma cells to TRAIL-mediated apoptosis. J Hepatol. 2007,47(4): 546-555.
    [125] Lin Q, Lai R, Chirieac LR, et al. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 2005,167(4): 969-980.
    [126] Sakamoto E, Hato F, Kato T, et al. Type I and type II interferons delay human neutrophil apoptosis via activation of STAT3 and up-regulation of cellular inhibitor of apoptosis 2. J Leukoc Biol. 2005, (1): 301-309.
    [127] Boise LH, Gonzalez-Garcia M, Postema CE, et al. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993, 74:597-608.
    [128] Boon-Unge K, Yu Q, Zou T, et al. Emetine regulates the alternative splicing of Bcl-x through a protein Phosphatase 1-dependent mechanism. Chem Biol. 2007,14(12): 1386-1392.
    [129] Shultz JC, Chalfant CE. Emetine and the alternative splicing of Bcl-X: where to next? Chem Biol. 2007,14(12): 1313-4.
    [130] Revil T, Toutant J, Shkreta L, et al. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol. 2007,27(24): 8431-41.
    [131] Paronetto MP, Achsel T, Massiello A, et al. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 2007,26; 176 (7): 929-939.
    [132] Harb JG, Chyla BI, Huettner CS. Loss of Bcl-x in Ph+ B-ALL increases cellular proliferation and does not inhibit leukemogenesis. Blood. 2008 Apr 1; 111(7):3760-3769.
    [133]Djerbi M,Malinowski MM,Yagita H,et al.Participation of FLIP,RIP and Bcl-x_L in Fas-mediated T-cell death.Scand J Immunol.2007,66(4):410-421.
    [134]Juaristi J A,Aguirre M V,Todaro J S,et al.EPO receptor,Bax and Bcl-x_L expressions in murine erythropoiesis after cyclophosphamide treatment.Toxicology.2007,231(2-3):188-199.
    [135]申徐良,王椿,乔振华,等.bcl-x和bcl-2基因在急性白血病患者中的表达及其临床意义.中华血液学志.1999,20(07):350-353.
    [136]申徐良,魏武,王椿,等.急性白血病患者Bcl-x基因表达的初步探讨.白血病·淋巴瘤.2007,16(3):192-194.
    [137]Socolovsky M,Fallon AEJ,Wang S,et al.Fetal anemia and apoptosis of red cell progenitors in Stat5a -/- 5b -/- mice:a direct role for Stat5 in Bcl-x_L induction.Cell.1999,98(2):181-191.
    [1]Vardiman J,Harris N.The World Heath Organization(WHO)classification of the myeloidneoplasms.Blood.2002,100(7):2292-2302..
    [2]Baxter E J,Scott L M,Campbell P J,et al.Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.Lancet.2005,365(9464):1054-1061.
    [3]James C,Ugo V,Le Couedic JP,et al.A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera.Nature.2005,434(7037):1144-1148.
    [4]Kralovics R,Passamonti F,Buser AS,et al.A gain-of-function mutation of JAK2 in myeloproliferative disorders.N Engl J Med.2005,352(17):1779-1790.
    [5]Levine RL,Wadleigh M,Cools J,et al.Activating mutation in the tyrosine kinase JAK2 in polycythemia vera,essential thrombocythemia,and myeloid metaplasia with myelofibrosis.Cancer Cell.2005,7(4):387-397.
    [6]Zhao R,Xing S,Li Z,et al.Identification of an acquired JAK2 mutation in polycythemia vera.J Biol Chem.2005,280(24):22788-22792.
    [7]Ihle JN.Cytokine receptor signalling.Nature.1995,377(6550):591-594.
    [8]Saharinen P,Takaluom a K,Silvennoinen O.Regulation of the Jak2 tyrosine kinase by its pseudokinase domain.Mol Cell Biol.2000,20(10):3387-3395.
    [9]Wilks AF,Harpur AG.Cytokine signal transduction and the JAK family of protein tyrosine kinases.Bioessays.1994,16(5):313-320.
    [10]Rawlings JS,Rosler KM,Harrison DA.The JAK/STAT signaling pathway.J Cell Sci.2004,117(pt8): 1281-1283.
    [11] Lacronique V, Boureux A, Valle VD, et al. A TELJAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997, 278 (5341): 1309-1312.
    [12] Peeters P, Raynaud SD, Cools J, et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia.Blood. 1997,90(7):2535-2540.
    [13] Neubauer H, Cumano A, Muller M, et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998, 93(3): 397- 409.
    [14] Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 93(3): 385-395.
    [15] Miura O, Nakamura N, Quelle FW, et al. Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood. 1994,84(5): 1501-1507
    [16] Lindauer K, Loerting T, Liedl KR, et al. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng. 2001, 14(1): 27-37.
    [17] Saharinen P, Vihinen M, Silvennoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell. 2003, 14(4): 1448-1459.
    [18] Funakoshi-Tago M, Pelletier S, Matsuda T, et al. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBOJ. 2006, 25(20): 4763-4772.
    [19] Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002, (1- 2):1-24
    [20] Pellegrini S, Dusanter-Fourt I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem. 1997, 248(3): 615-633.
    [21] Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994,264(5164): 1415-1421.
    [22] Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene. 2000, 19(21): 2474-2488.
    [23] Fujitani Y, Hibi M, Fukada Y, et al. An alternative pathway for STAT activation that is mediated by the direct interaction between JAKand STAT . Oncogene. 1997, 14(7): 751-761.
    [24] Andrea P, Mario C, Aristoteles N, et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood. 2006, 108(1): 337- 345
    [25] Levine RL, Belisle C, Wadleigh M, et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood. 2006,107(10): 4139-4141.
    [26] Jamieson CH, Gotlih J, Durocher JA, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythem ia vera and predisposes toward erythroid differentiation. Proc Nati Acad Sci USA.2006, 103(16): 6224- 6229.
    [27] Levine RL, Loriaux M, Huntly BJ, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005,106(10): 3377-9.
    [28] Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005, 106 (6): 2162-2168.
    [29] Wenrig G, Mercher T. Expression of Jak2V617F causes a polycythemia vera- like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006, 107(11): 4274-4281.
    [30] Lu X, Levine R, Tong W, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA. 2005, 102(52): 18962-18967.
    [31] Shide K, Shimoda HK, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia.2008, 22(1): 87-95
    [32] Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006,108(5): 1652-1660.
    [33] Zeuner A, Pedini F, Signore M, et al. Increased death receptor resistance and FI IPshort expression in polycythem ia vera erythroid precursor cells. Blood. 2006,107(9): 3495-3502.
    [34] Walz C, Crowley BJ, Hudon HE, et al. Activated JAK2 with the V617F mutation promotes G1/S phase transition. J Biol Chem.2006, 281(26): 18177- 18183.
    [35] Kralovics R, Teo SS, Buser AS, et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood. 2005,106(10): 3374-3376.
    [36] Jonathan KA, Robert WG , XiaobingY, et al. KLF4 as a mediator of uiescence in Hematopoietic stem/progenitor cells. Blood. 2004,104: 4146.
    [37] Bieker JJ. Kruppel-like factors: three fingers in many pies. J Biol Chen. 2001, 276(37): 34355-34358.
    [38] Shield JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Kriippel-like factor expressed during growth arrest. J Biol Chem. 1996,271(33): 20009-20017.
    [39] Garrett-sinka LA, Eberspaecher EH, Seldin MF, et al. A gene for a novel zinc finger protein expressed indiferentiat epithelial cells and transiently in certain mesenchymal cell. J Biol Chen.2005, 271(49): 31384-31390.
    [40] van Klinken BJ, Einerhand AW, Duits LA, et al. Gastrointestinal expression and partial cDNA cloning of murine Muc2. Am J Physiol. 1999 , 276(1 Pt 1):G115-124.
    
    [41] Andrea P, David V, Cordeila F. Gene Expression Profiling in Polycythemia Vera Using cDNA Microarray Technology. Cancer Research.2003, 63(14): 3940-3944
    [42] Temerinac S, Klippel S, Strunck E, et al. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in Polycythemia rubra vera. Blood. 2000, 95(8): 2569-2576.
    
    [43] Klippel S, Strunck E, Temerinac S, et al. Quantification of PRV-1 expression, a molecular marker for the diagnosis of polycythemia vera blood. 2001,98()470.
    [44] Kralovics R, Buser AS, Teo SS, et al. Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders. Blood. 2003, 102(5): 1869-1871.
    [45] Tefferi A, Lasho TL, Wolanskyj AP, et al. Neutrophil PRV-1 expression across the chronic myeloproliferative disorders and in secondary or spurious polycythemia. Blood. 2004, 103(9): 3547-3548.
    [46] Griesshammer M, Klippel S, Strunck E, et al. PRV-1 mRNA expression discriminates two types of essential thrombocythemia. Ann Hematol. 2004, 83(6): 364-370.
    [47] de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 1994, 369(6481): 533-538.
    [48] Kaushansky K, Lok S, Holly RD, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature.\994, 369(6481): 568-571.
    [49] Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994; 369(6481):565-568.
    [50] Sauvage FJ, Carver-Moore K, Luoh SM, et al. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med. 1996; 183(2):651-656.
    [51] Alexander WS, Roberts AW, Nicola NA, et al. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996, 87(6): 2162-2170.
    [52] Moliterno AR., Williams DM, Rogers O, et al. Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood. 2006, 108(12): 3913-3915.
    [53] Pikman Y, Lee BH, Mercher T, et al. MPLW515L Is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006, 3(7): 270-276.
    [54] Mercher T, Wernig G, Moore SA, et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood. 2006, 108(8): 2770-2779.
    [55] Walters DK, Mercher T, Gu TL, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell. 2006, 10(1): 65-75.
    [56] Ishii T, Bruno E, Hoffman R, et al. Involvement of various hematopoietic cell lineage by the JAK2 V617F mutation in polycythemia vera. Blood. 2006, 108(9): 3128-3134.
    [57] Lippert E, Boissinot M, Kralovics R, et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocy themia and polycythemia vera.Blood. 2006,108(6): 1865-1867.
    [58] Wolanskyi AP, Lasho TL, Schwager SM, et al. JAK2 617F mutation in essential thrombocy thaemia : clincal associations and long-term prognosticrelevance. Br J Haematol. 2005, 131(2): 208-213.
    [59] Passamonti F, Rumi E, Pietra D, et al. Relation between JAK2(V617F) mutation status, granulocytic activation, and constitutive mobilization of CD34 cells into peripheral blood in myeloproliferative disorders. Blood. 2006, 107(9): 3676-3682.
    [60] Tefferi A, Lasho TI, Schwaqer SM, et al. The clinical phenotype of wild type, heterozygous, and homozygous JAK2V7617F in polycythemia vera. Cancer. 2006, 106(3): 631-635.
    [61] Vardiman JW, Brunning RD, Harris NL. WHO histological classification of chronic myeloproliferative diseases. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumors: Tumours of the Haematopoietic and Lymphoid Tissues. Lyon, France: International Agency for Research on Cancer (IARC) Press.2001: 17-44.
    [62] Murphy S. Diagnostic criteria and prognosis in polycythemia vera and essential thrombocythemia. Semin Hematol. 1999, 36(1 Suppl 2): 9-13.
    [63] Thiele J, Kvasnicka HM. A critical reappraisal of the WHO classification of the chronic myeloproliferative disorders. Leuk Lymphoma. 2006, 47(3): 381-396.
    [64] McMullin MF, Bareford D, Campbell P, et al. On behalf of the General Haematology Task Force of the British Committee for Standards in Haematology. Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis. Br J Haematol. 2005, 130(2): 174-195.
    [65] Johansson PL, Safai-Kutti S, Kutti J. An elevated venous haemoglobin concentration cannot be used as a surrogate marker for absolute erythrocytosis: a study of patients with polycythaemia vera and apparent polycythaemia. Br J Haematol. 2005, 129(5): 701-705.
    [66] Mossuz P, Girodon F, Donnard M, et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica.2004, 89(10): 1194-1198.
    [67] Tefferi A. Polycythemia vera: a comprehensive review and clinical recommendations. Mayo Clin Proc. 2003, 78(2): 174-194.
    [68] Tefferi A, Sirhan S, Lasho TL, et al. Concomitant neutrophil JAK2 mutation screening and PRV-1 expression analysis in myeloproliferative disorders and secondary polycythaemia. Br J Haematol. 2005, 131 (2): 166-171.
    [69] Villeval JL, James C, Pisani DF,New insights into the pathogenesis of JAK2 V617F-positive myeloproliferative disorders and consequences for the management of patients. Semin Thromb Hemost. 2006,(4 Pt 2):341-351.
    [70] Kiladjian JJ, Cassinat B, Turlure P, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood. 2006, 108(6): 2037-2040.
    [71] Jones AV, Silver RT, Waghorn K, et al. Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. Blood.2005,107(8): 3339-3341.
    [72] Campbell PJ, Green AR. The Myeloproliferative Disorders. N. Engl. J. Med. 2006,355(23): 2452-2466.
    [73] Schittenhelm MM, Shiraga S, Schroeder A, et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies. Cancer Res. 2006, 66(1): 473-481.
    
    [74] Thompson JE, Cubbon RM, Cummings RT, et al. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett. 2002,12(8): 1219-1223.
    [75] Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature. 379(6566): 645-648.
    [76] Vannucchi AM, Antonioli E, Guglielmelli P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia. 2007,21(9): 1952-1959.
    [77] Barosi G, Bergamaschi G, Marchetti M, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood. 2007, 110(12): 4030-4036.
    [78] Mauro MJ, Druker BJ. STI571: Targeting BCR-ABL as Therapy for CML. The Oncologist. 2001, 6(3): 233-238.
    
    [79] Gaikwad A, Prchal JT. Study of two tyrosine kinase inhibitors on growth and signal transduction in poiycythemia vera. Exp Hematol. 2007, 35(11): 1647-56.
    [80] Bareng J, Jilani I, Gorre M, et al. A potential role for HSP90 inhibitors in the treatment of JAK2 mutant-positive diseases as demonstrated using quantitative flow cytometry. Leuk Lymphoma. 2007,48(11): 2189-2195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700