大规模供水管网多水源优化调配运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国城市的空间布局与资源环境承载能力不相适应的问题现在越来越突出,城市缺水与水源污染日益加剧,致使城市供水系统现有供水格局面临严峻挑战。为了缓解城市用水供需矛盾,改善水源水质,许多城市实施长距离引水、水源置换等工程,形成不同水质多水源联合供水格局。水源的变更和新旧水源的切换会带来城市供水管网的安全配水问题,因此,如何科学合理的调配新旧水源,保证城市供水安全,并且实现供水系统的优化节能,成为供水行业亟待解决的问题。本文对水源切换下,多水源多水池供水系统优化调配与安全分析的理论和实践进行了广泛深入地研究。
     供水系统的传统水力模型为节点水量驱动模型,该模型虽被广泛采用,但难以反映供水管网的真实流态,尤其无法反映出供水系统的压力驱动水量和漏失特性。本文提出改进的管道漏失模型,将其与压力驱动漏失模型相结合进行供水系统水力模拟。以压力模拟、水量模拟和漏失模拟的权重方差为校核目标函数,以管段C值和管段漏失系数为调整参数,通过新的节点水量分配方法和GA优化算法对压力驱动漏失水力模型进行校核研究。研究供水系统储水池的动态模拟数学模型,将储水池模型与压力驱动漏失水力模型结合,研究多水池多水源供水系统的整合水龄,并分析不同进水模式下,储水池出水水龄的变化模式。
     本文提出水源切换下多水源供水系统的优化调配模型,目标函数为系统运行费用的最小化,漏失量的最小化以及节点平均水龄的最小化。针对混合泵站含有定速泵和调速泵的特性,提出新的混合编码方法和交叉算子,对优化模型的约束条件采用分层处理。另外,针对优化过程中生成的大量不可行解,提出个体修复规则,加速个体的寻优。为改善优化解的质量,提出一种以MOEA与局部优化算法相结合的混合多目标进化算法(Hybrid MOEA)。将多目标进化算法与多属性决策方法相结合求解多水源供水系统的优化调配模型。
     针对多储水池多水源供水系统的优化调配,采用两阶段方法求解。第一阶段,根据电价模式、水池调蓄能力和水池服务区用水量模式,决定每个储水池的优化储水策略。第二阶段,运用多目标进化算法优化泵站的运行,在满足管网用水量和水池进水量需求的前提下,实现供水系统的优化目标。
     本文探讨了水源更换对供水系统水质的影响,提出水源切换下供水系统的水质安全评价模型,构建了管网水体水质变化对水质的影响函数。研究水源切换条件下,供水系统的水质安全保障措施。以管网改造的经济性目标和水质影响后果的最小化为目标函数,建立基于水质安全的管网优化改造模型。
     以S市水源置换工程为实例,充分利用S市多储水池的调节能力,结合峰谷电价,建立以优化储水策略为基础的多水源优化调配模型,运用多目标进化算法与多属性决策进行优化求解。分别采用采用NSGA-II,epsilon-MOEA,SPEA2和混合多目标进化算法(HMOEA)求解,并对四种算法的Pareto解集进行比较,结果表明,本文提出的混合多目标进化算法相对其它算法求解结果较优。以混合多目标进化算法Pareto解集为例,运用多属性决策方法(TOPSIS)选取最终优化解,结果表明,通过对水源的优化调配,运行费用节省约6.7%,系统漏失率和节点平均水龄都有了较大改善。对水源切换后S市供水系统的水质安全进行分析与评价,应用表明该方法能为供水系统决策人员提供有效的决策分析,为供水系统的优化改造提供技术理论支持。
The problem that the spatial arrangement of city does not meet the bearing capacity municipal of water environment emerges as a major issue in our country. water shortage and environmental pollution stand out to be the two primary obstacles for water distribution system development. To relieve the contradictions between supply and demand and improve the water quality, many cities carried out the project of long distance water transfer and water source switch. During the process of water sources switching, the problem that how to operate the new and old water sources to make the water distribution system economical, reasonabl and safe is to be settled urgently in the world. This paper researches the theory and practice of optimal operation and safety analysis in water distribution system during the water source switch.
     The conventioanl hydraulic model in water distribuiton system is demand driven model, which can not model the pressure driven demand and represent the leakge characteristic. An improved pipe leakage model was developed and integrated into pressure driven demand hydraulic model to simulate the water supply network. In this paper, a new approach is proposed for calibrating pressure driven demand hydraulic and leakage model. This procedures uses a new node demand distribution method and Genetic Algorithm to solve the calibration objective, which involves comparing meaured system flows, pressures, and leakages with computer simulations. Pipe roughness and leakage coefficient are chosed as adjusting parameters. This paper integrates the dynamic storage tank model with the hydraulic model to simulate the water age in outflow of storage tank. Under the condition of different inflow pattern of storage tank, the corresponding pattern of water age in outflow is analyzed and compared.
     Optimal operation of multi-source water distribution system during the process of water source switch is a large-scale non-linear optimization problem with discrete and continuous variables, which represents one of the most difficult problems to solve. The proposed optimal operation model inclueds three objectives: minimization of operation cost (energy cost +treatment cost), minimization of leakage flow, and minimizaiton of avage age in water network nodes. A mixed coding methodology and a new crossover operator are developed according to the characteristics of decision variables. the constraints are handled with dirrent level.according to its importance. To improve the quality of optimal solutions, a Hybrid MOEA is proposed which combined with a local search algorithm and multiple attribute decision methoto solve the water source scheduling problem.
     A two-stage method is proposed to solve a new class of multi-storage tank multi-source system. In the first stage, the optimal storage policy of each tank is determined according to the electricity tariff, and the ground-level storage tank is modeled as a node. In the second stage, multi-objective evolutionary algorithm is applied to solve pump scheduling problem under the condition of meeting the water network demand and storage volume.
     This paper discusses the influence of water source switching on water quality in drinking water distribution system. The influence function of water source switching is proposed to assement water quality safety. Physical control measures are optimized to guarantee water quality safety. An optimal rehabilitation model considering water qualtiy is developed, which involves economic objective and effect conference of water quality.
     Taking shenyang water supply system as an example, the optimal schedule model of multi-tank multi-source water distribution system was solved by multi-objective evolutionary algorithm and multiple attribute decision method. Four kinds of MOEAS (NSGA-II, epsilon-MOEA, SPEA2, Hybrid MOEA) are implemented and compared.. By application of the proposed method in Shenyang water distribution system, daily operation cost savings of approximately 6.7% is obtained, and the leakage rate and aveage age of network nodes are improved greatly. Practical application of this method shows that proposed optimal operation and decision model can make efficient decision to support the operators.
引文
1.王洋,牛璋彬,张晓剑等.水源更换对给水管网水质的影响研究[J].环境科学, 2007, 28(10):2275-2279.
    2. Berg, R.L., T. Jensen, and L. Bennedsen. Investigation of introducing water from an artifical recharge plant to an existing groundwater distribution system[J].Water supply, 2005, 5(1):25-32.
    3.王洋,张晓健,陈超等.水源切换引起给水管网黄水问题原因分析[J].环境科学, 2009, 30(12):3555-3561.
    4.牛璋彬,王洋,张晓健等.某市给水管网中铁释放现象影响因素与控制对策分析[J].环境科学, 2006, 27(2):310-314.
    5. Wood, D.J. Computer analysis of slow in pipe networks[D]. Lexington, KY: University of Kentucky.1980a.
    6. Clark, R.M. and R.M. Males. Developing and applying the water supply simulation model[J].Journal AWWA, 1986, 78(8).
    7. Grayman, W.M., R.M. Clark, and R.M. Males. Modeling distribution system water quality dynamic approach[J].Journal of Water Resources Planning and Management, 1988, 114(3).
    8. Rossman, L.A. Epanet 2 User's manual[R]. cincinnati: water supply and water resources division, national risk management research laboratory.2002.
    9. Walski, T.M., D.V. Chase, and D.A. Savic. Advanced Water Distribution Modelling and Management[R]. Waterbury, CT.2005.
    10. AWWA. Computer modeling of water distribution systems[R]. Denver, CO: AWWA.2004.
    11. Larock, B.E., R.W. Jeppson, and G.Z. Watters. Hydraulics of pipeline systems[M], Boca Raton CRC Press, 2000.
    12. Chandapillai, J. Realistic simulation of water distribution system[J].J.Transp.Eng., 1991, 117(2):258-263.
    13. Gaupta, R. and P.R. Bhave. Comparison of methods for predicting dificient-network performance[J].journal of Water Resources Planning and Management,1996, 122(3):214-217.
    14. Tabesh, M., T.T. Tanyimboh, and R. Burrows. Head driven simulation of water supply networks[J].Internal Journal of Engineering, Transactions A: Basics, 2002, 15(1):11-22.
    15. Ackley, J.R.L., et al. Head-driven analysis of water distribution systems[C]. in Proc. computer and control in water industry(CCWI), Water software systems: theory and applications. England: Research studies press. 2001:183-192.
    16. Todini, E. A more realistic approach to the "extended period simulation" of water distribution networks[M]. Advances in water supply management, The Netherlands, 2005.
    17. Wu, Z.Y., et al. Efficient pressure dependent demand model for large water distribution system analysis[C]. in Proc. 8th water distribution system analysis symp. 2006
    18. Giustolisi, O., D. Savic, and Z. Kapelan. Pressure-driven demand and leakage simulation for water distribution networks[J].Journal of Water Resources Planning and Management, 2008, 134(5):626-635.
    19. Axworthy, D.H. Water distribution network modelling: from steady state to waterhammer[D]. Ph.D thesis: University of Toronto.1997.
    20. Wylie, E.B. and V.L. Streeter. Fluid Transients[M] McGraw-Hill international book company, 1978.
    21. Vardy, A.E. and K.L. hWANG. A characteristic model of transient friction in pipes[J].Journal of Hydraulic Research, 1991, 29(5):669-684.
    22. Silva-Araya, W.F. and M.H. Chaudhry. Energy dissipation in transient flow[C]. in Proc. Fluid Transients. New York, USA. 1994.
    23. Axworthy, D.H., M.S. Ghidaoui, and D.A. Mcinnis. Extended thermodynamics derivation of energy dissipation in unsteady pipe flow[J].Journal of Hydraulic Engineering, 2000, 126(4):276-287.
    24. Brunone, B., et al. Velocity profiles and unsteady pipe friction in transient flow[J].Journal of Water Resources Planning and Management, 2000, 126(4):236-244.
    25. Bergant, A., A.R. Simpnon, and J. Vitkovsky. Developments in unsteady pipe flow friction modelling[J].Journal of Hydraulic Research, 2001, 39(3):249-257.
    26. Todini, E. and S. Pilati. A gradient algorithm for the analysis of pipe network[C]. in International conference on computer applications for water supply and distribution. Leicester Polytechnic, UK. 1987
    27. ECAC. Calibration guidelines for water distribution system modeling[C]. in Proceedings of 1999 AWWA information management and technology conference. 1999
    28. Ormsbee, L. Implicit network calibration[J].Journal of Water Resources Planning and Management, 1989, 115(2):243-257.
    29. Walski, T. Technique for calibrating network models[J].Journal of Water Resources Planning and Management, 1983, 109(4):360-372.
    30. Walski, T. Case study: pipe network model calibration issues[J].Journal of Water Resources Planning and Management, 1986, 112(2):238-249.
    31. Bhave, P.R. Calibrating water distribution network models[J].journal of Environmental Engineering, 1988, 114(1):120-136.
    32. Ormsbee, L.E. and D.J. Wood. Explicit network calibration[J].Journal of Water Resources Planning and Management, 1986, 112(2):166-182.
    33. Boulos, P.F. and D.J. Wood. Explicit calculation of pipe-network parameters[J].Journal of hydraulic engineering, 1990, 116(11):1329-1344.
    34. Boulos, P.F. and L.E. Ormsbee. Explicit network calibration for multiple loading conditions[J].Civil engineering systems, 1991, 8(3):153-160.
    35. Ferreri, G.B., E. Napoli, and A. Tumbiolo. Calibration of roughness in water distribution networks[C]. in Proceedings 2 international conference on water pipeline systems. Edinbrugh, UK. 1994:379-396.
    36. Shamir, U. Optimal design and operation of water distribution systems[J].Water Resources Research, 1974, 10(1):27-36.
    37. Ormsbee, L.E. Implicit network calibration[J].Journal of Water Resources Planning and Management, 1989, 115(2):243-257.
    38. Lansey, K.E. and C. Basnet. Parameter estimation for water distribution networks[J].Journal of Water Resources Planning and Management, 1991, 117(1):126-144.
    39. Pudar, R.S. and J.A. Liggett. Leaks in pipe networks[J].Journal of Hydraulic Engineering, 1992, 118(7):1031-1046.
    40. Savic, D.A. and G.A. Walters. Genetic algorithm techniques for calibrating network models[R]. Centre for systems and control engineering, University of Exeter.1995.
    41. Reddy, P.V.N., K. Sridharan, and P.V. Rao. WLS method for parameter estimation in water distribution networks[J].Journal of Water Resources Planning and Management, 1996, 122(3):157-164.
    42. Todini, E. Using a kalman filter approach for looped water distribution network calibration[C]. in Proc. water industry systems: modelling and optimisation applications. UK: Exter. 1999:327-336.
    43. Lingireddy, S. and L.E. Ormsbee. Optimal network calibration model based on genetic algorithms[R]. University of Kentucky, USA.1998.
    44. Greco, M. and G. Del Guidice. New approach to water distribution network calibration[J].Journal of Hydraulic Engineering, 1999, 125(8):849-854.
    45. Tucciarelli, T., A. Criminisi, and D. Termini. Leak analysis in pipeline systems by means of optimal valve regulation[J].Journal of Hydraulic Engineering, 1999, 125(3):277-285.
    46. Kapelan, Z. Calibration of water distribution system hydraulic models[D]. Ph.D Thesis: University of EXETER.2002.
    47. Ainola, L., et al. Water Network Model Calibration Based on Grouping Pipes with Similar Leakage and Roughness Estimates[C]. in Proceedings of Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000: ASCE. 2000:1-9.
    48. Salas, D., R. Gómez, and J. Saldarriaga. Water distribution network calibration with Fuzzy Logic[C]. in Proceedings of World Water and Environmental Resources Congress 2004 ASCE. 2004:1-12.
    49. Kang, D. and K. Lansey. Demand and roughness estimation in water distribution system[J].Journal of Water Resources Planning and Management, 2010.
    50. WU, Z.y. and T.M. Walski. Diagnosing error prone application of optimal model calibration[C]. in International conference of computing and control in the water industry. Exeter, UK. 2005:1-7.
    51.韩德宏.配水管网状态估计的几种方法[J].中国给水排水, 1993, 9(1):31-33.
    52.吴学伟,赵洪宾.给水管网状态估计方法的研究[J].哈尔滨建筑大学学报, 1995, 28(6):61-65.
    53.吴学伟,赵洪宾.管网工况分析中d、C及k值得确定-用管道相对负荷指数分析管道工况[J].哈尔滨建筑大学学报, 1996, 29(3):69-72.
    54.王荣和,姚仁忠,潘建华.遗传算法在给水管网现状分析中的应用[J].给水排水, 2000, 26(9):31-36.
    55.陶建科,信昆仑,刘遂庆.给水管网微观模型中介点流量在线预测计算方法研究[J].给水排水, 2001, 27(8):25-32.
    56.丛海兵,黄廷林.给水管网状态估计的优化方法[J].给水排水, 2001, 27(19):34-38.
    57.信昆仑,刘遂庆.城市给水管网水利模型准确度的影响因素[J].中国给水排水, 2003, 19(4):52-55.
    58.袁一星,曲世琳,伍悦滨.城市给水管网系统的阻力变化规律研究[J].中国给水排水, 2003, 19(10):52-54.
    59.丛海兵,黄廷林.给水管网的状态模拟[J].西安建筑科技大学学报(自然科学版), 2003, 35(4):343-346.
    60.许刚,张土乔,吕谋,洪赟.多工况的遗传算法校正管道摩阻系数[J].中国给水排水, 2004, 20(8):50-53.
    61.王云海,俞国平.给水管网水力模型校正的一种新方法[J].工业用水与废水, 2004, 35(4):61-63.
    62.袁一星,张杰,赵洪宾等.城市给水管网系统模型的校核[J].中国给水排水, 2005, 21(12):44-46.
    63.张土乔,许刚,吕谋,俞亭超.用于供水系统直接优化调度的蚁群改进算法[J].计算机集成制造系统, 2006, 12(6):918-923.
    64. Ormsbee, L. and K. Lansey. Optimal Control of Water Supply Pumping Systems[J].Journal of Water Resources Planning and Management, 1994, 120(2):237-252.
    65. Ertin, E., et al. Dynamic optimization for optimal control of water distribution systems[C]. in Conference on Applications and Science of Computational Intelligence IV. Orlando, USA 2001:142-149.
    66. Ulanicki, B., J. Kahler, and H. see. Dynamic optimization approach for solving an optimal scheduling problem in water distribution system[J].Journal of Water
    Resources Planning and Management, 2007, 133(1):23-32.
    67. Zessler, U. and U. Shamir. Optimal operation of water distribution systems[J].Journal of Water Resources Planning and Management, 1989, 115(6):735-752.
    68. Pasha, M., F.K and K. Lansey. Optimal pump scheduling by linear programming[C]. in Proceedings of World Environmental and Water Resources Congress 2009 Kansas City, MO, United states American Society of Civil Engineers, 1801 Alexander Graham Bell Drive, Reston, VA 20191-4400, United States. 2009:395-404.
    69. Jowitt, P.W. and G. Germanopoulos. Optimal pump scheduling in water-supply networks[J].Journal of Water Resources Planning and Management, 1992, 118(4):406-422.
    70. Brion, L.M. and L.W. Mays. Methodology for optimal operation of pumping stations in water distribution systems[J].Journal of Hydraulic Engineering, 1991, 117(11):1551-1569.
    71. Chase, D. and L. Ormsbee. An alternate formulation of time as a decision variable to faciliate real-time operation of water supply systems[C]. in Proc.
    18th Annual Conf. of the ASCE Water Resour. Plng, and Mgmt. Div.: ASCE. 1991:923-927.
    72. Ulanicki, B. and C.H. Orr. Unified approach for the optimization of nonlinear hydraulic systems[J].Journal of Optimization Theory and Applications, 1991, 68(1):161-171.
    73. Mackle, G., G.A. Savic, and G.A. Walters. Application of genetic algorithms to pump scheduling for water supply[C]. in Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA. Sheffield, UK. 1995:400-405.
    74. Beckwith, S.P. and K.P. Wong. A genetic algorithm approach for electric pump scheduling in watersupply systems[J].Evolutionary Computation, 1996, 1:21-26.
    75. Savic, D.A., G.A. Walters, and M. Schwab. Multiobjective genetic algorithms for pump scheduling in water supply[J].Computer Science, 1997, 1305:227-236.
    76. Ivalermir B, C., et al. Operational optimization of WDS based on multiobjective genetic algorithm and operational extraction rules using data mining[C]. in world water and environmental resources. Salt Lake City, UT. 2005:1-8.
    77. Lopez-lbanez, M., T. Devi Prasad, and B. Paechter. Multi-objective optimisation of the pump scheduling problem using SPEA2[C]. in Evolutionary Computation, 2005, The 2005 IEEE Congress on. Edinburgh, Scotland. 2005:435-442.
    78. Baran, B., C.v. Lucken, and A. Sotelo. Multi-objective pump scheduling optimisation using evolutionary strategies[J].Advances in Engineering Software, 2005, 36:39-47.
    79. López-Ibá?ez, M., T.D. Prasad, and B. Paechter. Ant colony optimization for optimal control of pumps in water distribution networks[J].Journal of Water Resources Planning and Management, 2008, 134(4):337-346.
    80.钟伟俊,徐南荣.含加压泵站城市供水系统的递阶优化调度[J].系统工程理论与实践, 1989, 9(5):60-68.
    81.王增义,张宏伟.送水泵站的优化调度[J].中国给水排水, 1991, 7(1):55-57.
    82.赵新华,田一梅,武福平.城市配水系统优化运行的研究[J].中国给水排水, 1992, 8(3):18-22.
    83.武福平.多水源供水系统分级优化调度[J].兰州铁道学院学报, 1995, 14(4):34-39.
    84.吕谋,张土乔,赵洪宾.大规模供水系统直接优化调度方法[J].水利学报, 2001(7):84-90.
    85.信昆仑,刘遂庆,陶涛,李树平.伪并行遗传算法在供水管网优化调度中的应用[J].同济大学学报(自然科学版), 2006, 34(12):1662-1667.
    86. T.Tucciarelli, A.Criminisi, and D.Termini. Leak analysis in pipeline systems by means of optimal valve regulation[J].Journal of Hydraulic Engineering, 1999, 125(3):277-285.
    87. Germanoloulos, G. Valve control regulation for reducing leakage[C]. in Improving efficiency and reliabiltiy in water distribution systems. Boston, London: Kluwer Academic. 1995:165-188.
    88. Vela, A., P. R, and E. V. Incorporation of leakage in the mathematical model ofa water distribution network[C]. in Proceedings of the 2nd international conference on computing methods in water resources: computational mechanics. 1991:245-257.
    89. Andres, M. and F. Planells. Water losses versus optimal life of a water distribution system's network[C]. in Water supply systems. state of the art and future trends. Southampton, UK: Computational Mechanics. 1993:381-409.
    90. Stathis, J.A. and G.V. Loganathan. Analysis of Pressure-Dependent Leakage in Water Distribution Systems[C]. in Proceedings of the 26th Annual Water Resources Planning and Management Conference. Tempe, Arizona: ASCE. 1999
    91. Tabesh, M., A.H.A. Yekta, and R. Burrows. An integrated model to evaluate losses in water distribution systems[J].Water Resour Manage, 2009, 23:477-492.
    92. Marunga, A., Z. Hoko, and E. Kaseke. Pressure management as a leakage reduction and water demand management tool: the case of city of mutare, zimbabwe[J].Physics and chemistry of the earth, 2006, 31:763-770.
    93. Grayman, W.M. and C.N. Arnold. Overview of CFD methods in analysis of distribution system tanks and reservoirs[C]. in Proceedings of AWWA annual conference. Denver: AWWA. 2005
    94. Mahmood, F., et al. Evaluation of water mixing characteristics in distribution system storage tanks[J].Journal AWWA, 2005, 97(3):74-88.
    95. Grayman, W.M., et al. Mixing and aging of water in distribution system storage facilities[J].Journal AWWA, 2005, 96(9):70-80.
    96. Mau, R.E., P.F. Boulos, and R.M. Clark. Explicit mathematical models of distribution storage water quality[J].Journal of Hydraulic Engineering, 1995, 121(10):699-709.
    97. Clark, R.M., et al. Mixing in distribution system storage tanks: Its effect on water quality[J].journal of Environmental Engineering, 1996, 122(9):814-821.
    98. Boulos, P.F., T. Altman, and K.S. Sadhal. Computer modeling of water quality in large multiple-source networks[J].Journal of Applied Methematics and Computing, 1992, 16:439-445.
    99. Farley, M. and S. Trow. Losses in water distribution networks - A practitioner'sto assessment, monitoring and control[R].2005.
    100. Ferreira, A.B., L. Melo, and A.A. Luis. Assistance to EPAL in the establishment of an investment strategy in the water supply network of Lisbon-Final report of tasks A1 and A2[R]. Portugal: LNEC.2006.
    101. WRC. Water industry: managing leakage(reports A to F)[R]. UK: Engineering and Operations Committee.1994.
    102. AWWA. Effects of water age on distribution system water quality[R].2006.
    103. Alvisi, s., M. Franchini, and A. Marinelli. A short-term, pattern-based model for water demand forecasting[J].Journal of Hydroinformatics, 2007, 9(1):39-50.
    104. Gato, S., N. Jayasuriya, and P. Roberts. Forecasting residential water demand : case study[J].Journal of Water Resources Planning and Management, 2007, 133(4):309-319.
    105. Ghiassi, M., D.K. Zimbra, and H.Saidane. Urban water demand forecasting with a dynamic artificial neural network model[J].Journal of Water Resources Planning and Management, 2008, 134(2):138-146.
    106. Magini, R., I. Pallavicini, and R. Guercio. Spatial and Temporal Scaling Properties of Water Demand[J].Journal of Water Resources Planning and Management, 2008, 134(3):276-284.
    107.Ben-Tal, A. Characterization of pareto and Lexicographic optimal solutions[C]. in Lecture notes in economics and mathematical systems. Berlin: Springer-Verlag. 1980
    108. Veldhuizen, D.A.V. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations[D]. Ph.D, Ohio: Air Force Institute of Technology.1999.
    109.玄光男,程润伟.遗传算法和工程优化[M],北京清华大学出版社, 2004.
    110.申晓宁.基于进化算法的多目标优化方法研究[D].博士,南京:南京理工大学.2008.
    111. Ikeda, K., H. Kita, and S. Kobayashi. Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal?[C]. in Evolutionary Computation, 2001. Proceedings of the 2001 Congress on. Seoul, South Korea. 2001.
    112. Laumanns, M., et al. Combining Convergence and Diversity in Evolutionary Multiobjective Optimization[J].Evolutionary Computation, 2002, 10(3):263-282.
    113. Coello, C.A.C., G.B. Lamont, and D.A.V. Veldhuizen. Evolutionary algorithms for solving multi-objective problems 2nd edition[M] Springer science+Business Media, LLC, 2007.
    114. Fonseca, C.M. and P.J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, Discussion and Generalization[C]. in Proceedings of the fifth international conference on genetic algorithms. San Mateo, California: University of Illinois at urbana champaign, Morgan Kaufmann 1993:416-423.
    115. Horn, J., N. Nafpliotis, and D.E. Goldberg. A niched pareto genetic algorithm for multiobjective optimization[C]. in Proceedings of the first IEEE conference on Evolutionary Computation. Piscataway, New Jersey: IEEE service center. 1994:82-87.
    116. Srinivas, N. and K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation, 1994, 2(3):221-248.
    117. Deb, K., et al. A Fast and Elitis MultiObjective Genetic Algorithm:NSGA-II[R]. 200001, Kanpur: Kanpur Genetic Algorithms Laboratory.2000.
    118. Zitzler, E. and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach[J].IEEE Transactions on Evolutionary Computation, 1999, 3(4):257-271.
    119. Zitzler, E., M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm[R]. Technical Report 103, Switzerland: Computer Engineering and Networks Laboratory(TIK).2001.
    120. Deb, K. A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions[R]. India: KanGAL.2005.
    121. Zydallis, J.B., D.A.V. Veldhuizen, and G.B. Lamont. A statistical comparion of multiobjective evolutionary algorithms including the MOMGA-II[C]. in First international conference on evolutionary multi-ctriterion optimization: Springer-Verlag. 2005:226-240.
    122. Laumanns, M., et al. Combining convergence and diversity in evolutionary multi-objective optimizaiton[J].Evolutionary Computation, 2005, 10(3):263-282.
    123. Back, T., Evolutionary algorithms in theory and practice. 1996, Oxford University Press: New York.
    124. Rudolph, G. Evoluitonary search for minimal elements in partially ordered finite sets[C]. in Proceedings of the seventh annual conference on evolutionary programming. Berlin: Springer. 1998.
    125. Rudolph, G. On a Multi-objective evolutionary algorithm and its convergence to the Pareto set[C]. in Proceedings of the 15th IEEE conference on evolutionary computation. Anchorage. 1998.
    126. Rudolph, G. and A. Agapie. Convergence properties of some multi-objective evolutiionary algorithms[C]. in Proceedings of the 2000 congress on Evolutionary Computation(CEC 2000). Piscataway, NJ. 2000.
    127. Hanne, T. On the convergence of multiobjective evolutionary algorithms[J].European Journal of Operarional Research, 1999, 117(3):553-564.
    128.周育人,闵华清,许孝元等.多目标演化算法的收敛性研究[J].计算机学报, 2004, 27(10):1415-1421.
    129. Zitzler, E. Evolutionary algorithms for multiobjective optimizaiton: methods and applications[D]. phD thesis, Zurich, Switzerland: Swiss federal institute of technology(ETH).1999.
    130. Schott, J.R. Fault tolerant design using single and multicriteria genetic algorithm optimization[D]. Master's Thesis: Massachusetts Institute of Technology.1995.
    131.徐玖平,吴巍.多属性决策的理论与方法[M],北京清华大学出版社, 2006.
    132. Simon, H.A. A behavioral model of rational choice.[J].Quarterly journal of economics, 1955, 69(1):99-114.
    133.刘树林,邱菀华.多属性决策基础理论研究[J].系统工程理论与实践, 1998, 18(1):38-43.
    134. Satty, T.L. A scaling method of priorities in hierarchical structures[J].Journal of Mathematical Psychology, 1978, 1(1):57-68.
    135. Chu, A.T.W. and R.E. Kalaba. A comparison of two methods for determining the weights of belonging to fuzzy sets[J].Journal of Optimization Theory andApplications, 1979, 27(4):531-538.
    136. Yoon, K. System selection by multiple attribute decision making[D]. Ph.D, Manhattan: Kansas state university.1980.
    137. Hwang, C.L. and K. Yoon. Multiple attribute decision making -methods and applications: A state- of- the -art survey[M], New York Springer-Verlag, 1981.
    138. Srinivasan, V. and A.D. Shocker. Linear programming techniques for multidimensional analysis of preference[J].Psychometrika, 1973, 38(3):337-369.
    139. Kruskal, J.B. Nonmetric multidimensional scaling: A numerical method[J].Psychometrika, 1964, 29(2):115-129.
    140.Shepard, R.N. The analysis of proximities, part i and ii[J].Psychometrika, 1962, 27(2):125-139.
    141. Deb, K. and S.Jainz. Multi-speed gearbox design using multi-objective evolutionary algorithms[R]. Kanpur: KanGAL.2005.
    142. Pezeshk, S. and O.J. Helweg. Adaptive search optimization in reducing pump operating costs[J].Journal of Water Resources Planning and Management, 1996, 122(1):57-63.
    143. Deb, K. An efficient constraint handling method for genetic algorithms[J].Computer methods in applied mechanics and engineering 2000, 186(2-4):311-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700