雅砻江杨房沟水站坝区岩体风化、卸荷分带的量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
座落于雅砻江中游河段第五个梯级的杨房沟水站,位于四川省凉山州木里县境内。根据工程预可行性研究成果,杨房沟水站推荐坝型为混凝土双曲拱坝,最大坝高158米,正常蓄水位2092米,相应库容4.442亿立方米。坝址区为高山峡谷地貌,雅砻江流向S30~40°E,枯水期江面宽50~100m,水位高程1984~1985m。两岸地形陡峭,基岩裸露。拟建大坝区内出露地层主要为燕山期花岗闪长岩,岩质坚硬,岩体较完整,岩性条件较好,仅右岸引水隧洞及地下厂房分布变质粉砂岩,局部夹含炭质板岩。两岸山体雄厚,河谷狭窄,两岸地形基本呈对称的“V”型,河床覆盖层24~30m。坝区未见区域性大断层,工程地质条件总体较好,适于修建双曲拱坝。
     对于装机容量达百万千瓦的站而言,其坝体工程建设往往涉及到深切河谷地区,考虑到现阶段经济发展和社会投资水平,决定了工程对岩土体的改造利用只能局限于地表浅表层数十米至数百米的范围之内。而坝区浅表层出露岩石作为大坝工程围岩的物质基础,主要接受风化作用与卸荷作用两种重要的外生营力的改造,因此研究风化、卸荷岩体,对于工程设计、岩体开挖、岩体质量分级以及建基面选取等具有非常重要的意义。尽管岩体(或岩石)风化、卸荷的研究已经是一个被讨论了数十年的老课题,但将这些新成果转化为指导工程实践的行业规范却很滞后,有鉴于此,本文针对杨房沟水站花岗闪长岩地区的岩体风化、卸荷的特征进行量化研究,同时对风化、卸荷之间的关系做一些尝试性的探索分析,以丰富该研究领域内对不同岩性的岩体风化、卸荷的细化研究。
     在对岩体风化的机理进行分析后,对杨房沟坝区岩体风化特征进行初步调查,总结了坝区岩体风化的三种特征。紧接着开始对岩体风化的量化进行研究,可以表征岩体风化程度的因素很多,把这些因素都用来划分岩体的风化是不太现实的,从岩体工程地质和现工作条件出发,本次杨房沟水站岩体风化特征指标主要选取了:岩石点荷载强度(PLS)、岩石变形性能回值(Re)、岩石质量指标(RQD)、岩体性波和声波的纵波波速(Vp)、完整性系数(Kv)。这些指标在勘探平硐,地表露头等地可以通过现测量获得,而在勘探钻孔中则不易取得,钻孔中较易取得的是岩石质量指标(RQD)以及钻孔声波的纵波波速(Vp)、完整性系数(Kv)。通过对各特征指标之间的关系分析,确立各指标的相关性与可靠度,进而对岩体风化的渐进性进行分析,然后综合考虑国内外多个岩浆岩坝基的水站的风化带量化参数取值,再考虑到杨房沟坝区花岗闪长岩岩体各代表性指标的渐进性特征,建立起杨房沟坝区花岗闪长岩岩体风化带划分的量化标准。通过确立的量化指标对坝区岩体风化带进行定量划分,在岩体风化带的最终综合判定中,加入岩体结构类型作为一项考虑指标进行综合划分。最后展示出杨房沟坝区岩体风化的空间分布特征。
     在对坝址区岩体卸荷开始研究前,同样先对岩体卸荷的机理进行分析,通过现调查,得出岸坡卸荷大多以整体松弛为主,并且以2100m高程作为界限存在不同的卸荷特征。岩体卸荷带划分采用定性与定量相结合,其中定性以地表调查与平硐调查为主,定量划分则主要从张开裂隙数量的增多、裂隙张开宽度的变化以及岩体结构的松弛等方面入手。结合杨房沟水站实测平硐资料,本次卸荷带的划分以裂隙率(单位长度上张开裂隙的条数)和裂隙张开度(单位长度上裂隙的累计隙宽)作为主要量化指标进行岩体卸荷定量化研究,并结合各平硐和钻孔的波速资料,运用纵波波速作为对所划分卸荷带的验证。综合考虑国内外多个岩浆岩坝基的水站的卸荷带量化参数取值,再考虑到杨房沟坝区花岗闪长岩岩体各代表性指标的具体规律,建立起杨房沟坝区花岗闪长岩岩体卸荷带划分的量化标准。通过确立的量化指标对坝区岩体卸荷带进行定量划分,最后展示出杨房沟坝区岩体卸荷的空间分布特征。
     文中用同样的模式对研究区岩体的风化与卸荷分别进行了量化研究,然而岩体的风化与卸荷事实上是存在着密不可分的联系的。根据坝区岩体弱卸荷下限深度与弱风化上段下限深度的比拟,发现两者之间存在某种耦合关系。为了进一步探索两者之间的联系,本文通过现实测的坝区地应力状态,用数值模拟的方法反演整个河谷的应力的分布;分别建立两种不同的概化模型,一种考虑了坝区不同风化程度岩体对河谷应力分布的影响;而另一种则不考虑岩体的风化,均作为新鲜岩体对待。运用两种概化模型得出的河谷应力大小的分布划分出岩体的弱卸荷深度,并用两者作对比得出结论,说明岩体的风化可以影响岩体的卸荷深度,特别是增大岩体弱卸荷的深度。
As the fifth cascade station in the middle reach of Yalong River, Yangfanggou hydropower station is located in Muli County, Liangshan Prefecture in Sichuan. According to the pre-feasibility study results, the dam in Yangfanggou hydropower station is recommended as concrete double-curvature arch dam, with the maximum height of 158 meters, normal water level of 2092 meters, and total capacity of 444.2 million cubic meters. Dam site belongs to landforms of highland and ravine. Yalong River flows in the direction of S30 ~ 40°E with water level elevation of 1984 ~1985m, and is usually 50~100m wide in dry season. Terrain on two banks is steep with exposed rock. Emergence stratum in the dam area is mainly hard and intact Yanshanian granodiorite. There is metamorphic siltstone with carbonaceous slale interbeds distributed only in derivation tunnel and underground powerhouse on left bank. Terrain beside the narrow valley basically assumes symmetrical type "V", and the covering layer on riverbed is 24-30m thick. Engineering geological condition in dam site is quite good overall with no regional faults, so it is suitable for building double-curvature arch dam.
     For the plant of 1000mw installed capacity, the dam construction often involves deep valley area. The current level of economic development and social investment determines the engineering reconstruction of rock and soil is confined to the near-surface tens to hundreds meters. As the foundation of dam project, surface rock in dam area is mainly reformed by two important exogenic forces of weathering and unloading effects. So the study of weathering and unloading rock mass has extremely vital significance for engineering design, rock excavation, rock quality grading and bearing surface selection etc.
     Research on rock mass (or rock) weathering and unloading has been an old task discussed for decades. Although progress and achievements on rock weathering and unloading research have been made in recent years through a large number of projects, translation of these new achievements to the guidance of engineering practice is quite lagging behind. According to this, quantitative characteristics of rock weathering and unloading in Yangfanggou hydropower station granodiorites area were researched. Besides, some tentative exploration of relationship between weathering and unloading was tried to enrich the refined research of weathering and unloading research in different lithology.
     On the analysis of rock weathering mechanisms, rock weathering features in Yangfanggou dam area were preliminary investigated, and three kinds of weathering patterns were summarized. Then rock weathering in quantity was studied. Rock weathering degree can be characterized through many factors, the main indexes were selected as follows in Yangfanggou station according to the rock engineering geology and site conditions: rock point load strength (PLS), rock deformation performance rebound value (Re), rock quality designation (RQD), p-wave velocity of rock mass elastic waves and sound wave (Vp), integrity index (Kv). These indicators can be obtained in exploration adits, surface occurrences by field measurement. Rock quality designation (RQD), borehole p-wave velocity (Vp) and integrity index (Kv) can be easily obtained from boreholes. Based on the analysis of correlation and reliability of feature indexes, the progressive rock weathering was then analyzed. Rock weathering quantitative criteria of Yangfanggou dam granodiorites was established, considering comprehensively of the quantitative selection of weathered zone parameters in multiple magmatic-foundation dams, and progressive feature of representative index in Yangfanggou dam granodiorites. The dam rock was classified according to the established quantitative indexes, and rock mass structure type was added as an index in final integrated judgment of rock weathering zones. Finally spatial distribution features of rock weathering in Yangfanggou station were shown out.
     The rock mass unloading mechanism was analyzed similarly before the study of rock mass unloading in dam area. The field investigation indicates that bank slope unloading is mainly Overall Relaxation, and 2100m elevation is a boundary of different unloading characteristics. Mass unloading zone is partitioned using qualitative and quantitative method. Qualitative investigation includes the surface survey and adit survey; while quantitative division are mainly obtained from the number increase and open width change of open fractures, rock structure relaxation, etc. Fissure rate (number of open fractures of unit length) and fracture apertures (accumulative total gap width of unit length) got from field adits measurement were chosen as major indicators for quantitative study of rock mass unloading in Youngfanggou station. Speed of longitudinal wave from drilling was used to verify the unloading zones dividing. Rock weathering quantitative criteria of Yangfanggou dam granodiorites was established, considering comprehensively of the quantitative selection of weathered zone parameters in multiple magmatic-foundation dams, and progressive feature of representative index in Yangfanggou dam granodiorites. The dam rock was classified according to the established quantitative indexes. Finally spatial distribution features of rock weathering in Yangfanggou station was shown out.
     Rock’s weathering and unloading were studied quantitatively in the same pattern. However, there is an inseparable connection between weathering and unloading actually. The comparison of weak unloading maximum depth and weak weathering maximum depth of rock mass shows a coupling relationship between them. In order to further explore the connection between unloading and weathering, numerical simulation was used to converse stress distribution of the whole valley on the basis of the field observation. Two different kinds of generalized model were established respectively, the first of which considered the influence of different-degree weathering rock mass on the valley stress distribution, while the other treated rock fresh without considering the weathering. Depth of weak unloading was divided according to the valley stress distribution obtained from two generalized models. After comparing the two models, conclusion was drawn that rock weathering can affect the rock mass unloading depth, especially the weak unloading depth.
引文
[1]长江水利委员会.三峡工程地质研究[M].武汉:湖北科学技术出版社,1997.
    [2]陈成宗.工程岩体声波探测技术[M].北京:中国铁道出版社,1990.
    [3]陈大年,王德生.层裂判据与过程模拟[J].爆炸与冲击,1982(4):45-48.
    [4]陈明祥.塑性力学[M].北京:科学出版社,2007.
    [5]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水出版社,2009.
    [6]程培源,金洛华.判断最大主应力方位的剪应力方向法则及确声主应力的综合方法[J].武汉工学院学报,1995,17(3):50-54.
    [7]丁绪荣.普通物探教程一地震附声波探测[M].北京:地质出版社,1984.
    [8]冯庆祖.河谷地应力特征的理论研究及其在溪洛渡水工程中的应用[D].成都理工大学学位论文,2001.
    [9]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [10]韩爱果.坝基岩体质量量化分级及图形展示[D].成都理工大学,2002.
    [11]黄汲清,任纪舜等.中国大地构造及其演化[M].北京:科学出版社,1980.
    [12]黄润秋.中国西南地壳浅表层动力学过程及其工程环境效应研究[M].成都:四川大学出版社,2001.
    [13]黄润秋,张淖元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社,1991.
    [14]黄润秋,王士天,胡卸文等.澜沧江小湾水站——高拱坝坝基重大工程地质问题研究[M].成都:西南交通大学出版社,1996.
    [15]黄润秋,许模等.金沙江白鹤滩水站坝址区岩体结构特性及其工程应用研究[R].成都理工大学,2009年6月.
    [16]黄润秋,林峰,陈德基,王军怀.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报,2001(3):60-68.
    [17]巨广宏.黄河拉西瓦水站深切河谷花岗岩体风化卸荷的工程地质研究[D].成都理工大学环境与土木工程学院,2002.
    [18]巨广宏.黄河拉西瓦水站坝区花岗岩风化研究[J].中国地质灾害与防治学报,2006,17(1):124-129.
    [19]孔德坊.工程岩土学[M].北京:地质出版社,1991.
    [20]李光耀.雅砻江杨房沟水站建基岩体质量综合评价及地质缺陷处理[D].成都理工大学,2009.
    [21]李建林,王乐华.卸荷岩体的力学特性及其分析方法研究[A].岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集[C],2002.
    [22]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001(3):40-45.
    [23]李建林,袁大祥.岩体卸荷分析的基本方法[J].三峡大学学报(自然科学版),2001(1):22-28.
    [24]李日运,吴林峰.岩石风化程度特征指标的分析研究[J].岩石力学与工程学报,2004 (22):15-21.
    [25]李勇,聂德新,任光明.西南某水站左坝肩岩体卸荷分带研究[J].地质灾害与环境保护,2003,14(2):44-46.
    [26]廖颜首.风化岩分带指标定量研究[M].北京:地质出版社,1994.
    [27]聂德新,韩爱果,巨广宏.岩体风化的综合分带研究[J].工程地质学报,2002(1):20-25.
    [28]邱家骤.岩浆岩岩石学[M].北京:地质出版社,1985.
    [29]人民黄河.黄河的研究与实践[M].北京:水利力出版社,1986.
    [30]任光明,巨广宏,聂德新,王毅,宋彦辉.斜坡岩体卸荷分带量化研究[J].成都理工大学学报(自然科学版),2003(4):15-19.
    [31]尚彦军,吴宏伟,曲永新.花岗岩风化程度的化学指标及微观特征对比——以香港九龙地区为例[J].地质科学,2001(3):18-22.
    [32]尚岳全,黄润秋.工程地质研究中的数值分析方法[M].成都:成都科技大学出版社,1991.
    [33]施雅风,李吉均,李炳文.青藏高原晚新生代隆升与环境变化[M].广州:广东科技出版社,1998.
    [34]四川省地质矿产局.四川省区域地质志[M].北京,地质出版社,1989.
    [35]孙广忠.工程地质与地质工程[M].北京:地质出版社,1991.
    [36]孙鸿烈.青藏高原的形成演化[M].上海:上海科学技术出版社,1990.
    [37]孙鸿烈,郑度.青藏高原形成演化与发展[M].广州:广东科技出版社,1998.
    [38]孙耀明,王运生,吴俊峰,王晓欣,邵红涛,胡芹龙.西南某水站谷底深厚覆盖层与卸荷松弛带特征及其成因机制分析[J].工程地质学报,2008,16(2):169-172.
    [39]田小甫.太原晋阳大佛边坡岩体风化分级及地震稳定性评价研究[D].中国地质大学(北京).2009.
    [40]王兰生,李天斌,赵其华.浅生时效构造与人类工程[M].北京:地质出版社,1994.
    [41]王士天等著.复杂环境中地质工程问题分析的理论与实践[M].成都:四川大学出版社,2002.
    [42]王运生,罗永红,吴俊峰,孙耀明.中国西部深切河谷谷底卸荷松弛带成因机理研究[J].地球科学进展,2008,23(5):101-107.
    [43]魏克和.用点荷载法对花岗岩风化程度进行定量评价的研究[J].水文地质工程地质,1982(2):31-38.
    [44]魏克和,刘殿选.再谈点荷载法在花岗岩风化程度定量评价中的应用——以闽奥地区为例[A].岩石力学与工程应用——河北省岩石力学与工程学会学术研讨会论文集[C],1990.
    [45]魏云杰.金沙江白鹤滩水站岩体结构及其对坝肩抗滑稳定性的控制作用[D].成都理工大学,2004.
    [46]魏云杰,许模,陶连金,李虎.峨眉山玄武岩岩体风化分带量化研究[J].湖南科技大学学报(自然科学版),2008(3):32-36.
    [47]魏云杰,许模,陶连金,康小兵.某水站坝区峨眉山玄武岩岩体风化特征[J].北京工业大学学报,2009(1):53-57.
    [48]向桂馥.点荷载试验—一种研究岩体风化分带的快速方法[J].成都地质学院学报,1985(2):30-34.
    [49]许模等.雅砻江杨房沟水站坝址区岩体质量及大坝可利用岩面选择专题研究[R].成都理工大学,2008年10月.
    [50]尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报,2005,27(3):351-353.
    [51]张丽萍.三峡坝区花岗岩风化分带的化学风化特征指标研究[J].浙江大学学报(理学版),2003 (4):46-53.
    [52]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [53]张毅.岩石矿物分析[M].北京:地质出版社,1986.
    [54]郑达,黄润秋.西南水工程坝址峨眉山玄武岩卸荷分带研究[J].成都理工大学学报(自然科学版),2009,36(2):195-200.
    [55]中华人民共和国建设部,国家质量技术监督局.水利水工程地质勘察规范GB/50287 -99[M].北京:中国标准出版社,1999.
    [56]中华人民共和国建设部.水利发工程地质勘察规范GB/50287-2006[M].北京:中国标准出版社,2006.
    [57]中华人民共和国建设部,国家质量技术监督局.岩土工程基本术语标准GB/ 50279- 1998-T[M].北京:中国标准出版社,1998.
    [58]中华人民共和国水力力部.水利水工程地质勘察规范[M].北京:中国标准出版社,1979.
    [59]左三胜,任光明.运用定量指标研究岩体风化问题的探讨[J].山地学报,2002 (3):28-34.
    [60] A. S. Gupta, K.SeshagiriRao, Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state[J]. Vol.56(2000)257-274, Engineering Geology. Ansterdam–Lausanne–NewYork–Oxford–Shannon–Tokyo, ELSEVIER, May:2000.
    [61] A.S.Gupta, A.Seshagiri Rao. Weathering indices and their applicability for crystalline rocks[J]. Vo1.60(3):201-221,Bulletin of Engineering Geological and the Environment, Springer,2001.
    [62] E.Arel, A.Tugrul. Weathering and its relation to geomechanical Properties of Cavusbasi granitic rocks in northwestern Turkey[J], Vol.60(2):123-133,Bulletin of Engineering Geology and the Environment, Springer,200l.
    [63] E.Wiesner. Weathering beneath lateritic profiles[J]. Vol.58(l):71-74,Bulletin of Engineering Geology and the Environment, Springer,1999.
    [64] N.M.Belyaer. Strength of materials[M]. MIR Publishers,MOSCOW,1979.
    [65] Quantitative study on the classification of unloading zones of high slopes [A]. Proceedings of the Tenth International Symposium on Landslides and Engineered Slopes (Volume 1) [C], 2008.
    [66] Robinson. BASIC PHYSICAL GEOLOGY[M], John wiley and sons Inc. NEWYORK,1982.
    [67] T.Bieniawski. Engineering Rock Mass Classifications [M], John Wiley and Sons, NewYork, 1983.
    [68] Williams. The SURFACE of the EARTH[M]. Longman Inc, NEWYORK, 1982.
    [69] YU.M.Vasilliev, V.S.Milnichuk, and M.S.Arabagi. General and Historical Geology [M], MIR Publishers, MOSCOW,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700