无铅易切削铋黄铜的制备及腐蚀、切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以制备一种新型的无铅易切削铋黄铜合金为目的,以替代现有应用广泛的易切削铅黄铜。采用熔铸挤压的方法制备了易切削铋黄铜棒材,利用XRD、金相显微镜、扫描电镜、动电位极化和交流阻抗等方法研究添加Ti、Al、Ce对铋黄铜的微观组织及耐蚀性的影响。并利用电子万能试验机、金属切削机床等仪器测试了材料的力学性能和切削性能,着重研究了合金的腐蚀过程和切削机理,得出如下研究结果:
     1)Ce对Cu-Zn-Bi合金铸态组织的细化作用明显,Al对合金加工后的组织具有一定的细化作用。添加了Al的铋黄铜的抗拉强度、屈服强度较Cu-Zn-Bi、Cu-Zn-Bi-Ce和Cu-Zn-Bi-Ti高,合金的塑性较好。
     2)Cu-Zn-Bi合金中铋主要以薄膜状存在合金中,而Al、Ce的添加使得Bi的反润湿效应明显,添加了Ti、Al、Ce后,薄膜状的铋减少,主要以颗粒状存在于合金中。Cu-Zn-Bi和Cu-Zn-Bi-Al的平均脱锌层厚度在300μm左右,而Cu-Zn-Bi-Ce的耐腐蚀性能较差,脱锌层的平均厚度大于1000μm。
     3)分别研究了Cu-Zn-Bi和Cu-Zn-Bi-Al合金在1.0%CuCl_2溶液中的微观腐蚀形貌,发现挤压态合金的腐蚀表面存在一定的微裂纹,分析了腐蚀表面裂纹形成的微观机制,认为其主要是腐蚀过程和样品中的拉应力共同作用的结果。测量其在1.0%CuCl_2溶液中的开路电位,分别为-40.72mV和-144.67mV。
     4)研究了Cu-Zn-Bi和Cu-Zn-Bi-Al合金在1.0%CuCl_2溶液中不同浸泡时间的交流阻抗图谱,分析表面膜形成过程,得到腐蚀的等效电路图。由腐蚀过程可知,其表面膜在腐蚀6h前形成,6h后被溶液中的Cl~-侵蚀,表面膜破坏。Cu-Zn-Bi-Al合金中的表面膜先于Cu-Zn-Bi中的表面膜形成,Al的加入有利于合金中保护膜的生成。
     5)根据脱锌层厚度计算了添加不同合金元素的铋黄铜中锌的扩散系数,其扩散系数的数量级在10~(-10)~10~(-9)之间,Cu-Zn-Bi-Al的扩散系数较Cu-Zn-Bi的小,而Cu-Zn-Bi的扩散系数较Cu-Zn-Bi-Ce的小。
     6)Cu-Zn-Bi-Ti合金中,随着铋含量的增加,合金的切削性能提高;Cu-Zn-Bi-Al的切屑细小,呈针状,三向切削力均小于HPb59-1,切削性能优异;Cu-Zn-Bi-Ce的切屑主要呈螺旋状和小片状,但其切削力较HPb59-1有所增大。
     7)研究了切削热对变形区的影响,发现切削变形时,在铋颗粒中产生的热应力,在温度变化很小时已经超过了铋颗粒的屈服应力,使铋颗粒发生变形。并应用Griffith的断裂理论计算了断屑时铋颗粒的临界尺寸,计算得到只要铋颗粒的尺寸达到0.3446μm时,切屑发生断裂。
     8)所制备的Cu-Zn-Bi-Al合金具有较高的强度、塑性,耐腐蚀性能良好,并具备优异的切削性能,达到了预期的性能指标,可以替代现有的广泛应用的铅黄铜,具有一定的应用前景。
The purpose of this study is to develop a new kind of easy cutting leadless bismuth brass, which is to substitute for the widely used toxic leaded brass. In this work,the easy cutting bismuth brass was fabricated by melting, casting and extruding processes. The effect of adding Ti, Al and Ce on the microstructure and corrosive properties were studied by X-ray diffraction,optical microscope, scanning electron microscope , potentiodynamic polarization and electrochemical impedance spectroscopy, The mechanical property and machinability were tested by electron universal test machine and metal stock removing machine. The corrosion process and fundamentals of the cutting process were mainly discussed. The following results were obtained:
     1) By adding Ce to the Cu-Zn-Bi alloy,the as-cast micro-structure of Cu-Zn-Bi-Ce alloy was refined. The grain size of as-extruded and annealed Cu-Zn-Bi-Al alloy were smaller than Cu-Zn-Bi, Cu-Zn-Bi-Ce and Cu-Zn-Bi-Ti alloys at the same condition. The ultimate tensile strength and yield strength of Cu-Zn-Bi-Al were much higher than the other three alloys, and also Cu-Zn-Bi-Al alloy has good plastic property.
     2) The Bi exist as film along phase bounaries in Cu-Zn-Bi alloy , but the Bi film changed to particles with the addition of Ti, Al and Ce. The average dezincify layer of Cu-Zn-Bi and Cu-Zn-Bi-Al alloys are about 300μm,but the corrosion layer of Cu-Zn-Bi-Ce is more than 1000μm.
     3) The microstructure of the Cu-Zn-Bi and Cu-Zn-Bi-Al alloys in 1.0%CuCl_2 solution were examined. Also examined the mechanism of crack formation process on the corrosion surface , and it is a result of effects of corrosion and residual stress. The open potential of Cu-Zn-Bi and Cu-Zn-Bi-Al are -40.72mV and -144.67mV.
     4) The typical Nyquist plots with different immersion time of Cu-Zn-Bi and Cu-Zn-Bi-Al alloys were examined, and the equivalent circuit were obtained. The formation of protection film of the alloys were studied, and it was found the film was formed before immersing 6h, and the film was destroyed by Cl~-. The adding of element Al accelerate the formation of the protection film.
     5) According to the depth of the corrosion layer, the diffusion coefficient of Zn were calculated , and the order of magnitude of it is 10~(-10)~10~(-9). The diffusion coefficient of Cu-Zn-Bi-Al is much lower than that of Cu-Zn-Bi, but the diffusion coefficient of Cu-Zn-Bi is lower than that of Cu-Zn-Bi-Ce.
     6) With the increasing of Bi content, the machinability of Cu-Zn-Bi-Ti alloy improved. The chip of Cu-Zn-Bi-Al is needle like, and the cutting force is lower than that of HPb59-1. The chip of Cu-Zn-Bi-Ce is helical, but the cutting force is much higher than HPb59-1.
     7) The effect of cutting heat on the deformed area was also studied. It was found a slim change of the temperature can lead to the heat stress of Bi, which can result in the deform of Bi. According to the fracture theory of Griffith, the critical dimension of Bi was calculated, which is 0.3446μm.
     8) Cu-Zn-Bi-Al alloy has good mechanical properties,corrosive nature and machinability. It can substitude for the widely used leaded brass and have a pratical application.
引文
[1]中南矿冶学院《有色合金材料生产》编写组.有色合金材料生产.长沙:中南工业大学出版社,1974
    [2]《重有色金属材料加工手册》编写组,重有色金属材料加工手册.北京:冶金工业出版社,1979
    [3]Chou TC.Stress corrosion cracking of leaded brass in a sulphuricacid environment.Journal of Materials Science.1989,33(14):3585-3590
    [4]谭树松.有色金属学.北京:冶金工业出版社,1993
    [5]田荣璋,王祝堂.铜合金及其加工手册,中南大学出版社,2002
    [6]王志坚.饮用水管件用铜合金的研究.湖南有色金属,2003,19(1):31-33
    [7]邱宏.铜水管在我国的应用及前景.世界有色金属,1998,35(12):29-30
    [8]庞晋山,肖寅听.无铅易切削黄铜的研究.广东工业大学学报,2001,42(9):63-66
    [9]李勇,许方.无铅易切削黄铜的研究现状及其展望.广东有色金属学报,2006,40(4):267-270
    [10]张新宇,郦剑.饮用水系统黄铜零件表面脱铅的研究.表面技术,2000,29(1):9-11
    [11]黄劲松,彭超群,章四琪,等.无铅易切削铜合金,中国有色金属学报,2006,16(9):1468-1493
    [12]Ruetz R L,Vojta J V,Day D L.Reduced lead bismuth yellow brass.US5879477,1999
    [13]Brock A J,Breedis J F,Crane J.Corrosion-resistant bismuth brass,US5637160,1997
    [14]Ruetz R L,Votita J V,Day D L.Reduced lead bismuth brass.US5360591,1994.
    [15]You S J,Choi Y S,Kim J G,et al.Stress corrosion properties of enviormentally friendly unleaded brasses containing bismuth in Msttsson's solution.Materials Science and Engineering A,2003,345(1-2):207-214
    [16]Chatain D,Wynblatt P,Rohrer G S.Anisotropic phenomena at interfaces in bismuth-saturated copper.Scripta Meterialis,2004,10(5):565-569
    [17]王玉妹.易切削铜合金的显微组织与切削性.上海有色金属,1996,(04).173-175
    [18]海亮集团浙江铜加工研究所有限公司,无铅易切削黄铜合金.中华人民共和国,CN1546703A
    [19]汪治军,张天莉。绿色易切削无铅黄铜棒的研制.有色金属加工,2004,33(6):10-11
    [20]闫静,唐生渝,赵桢,等.冷拔无铅含Bi易切削黄铜的研究.上海有色金属,2006,35(8):40-61
    [21]闫静,唐生渝,李文兵,等.含Bi易切削黄铜的研究.特种铸造及有色合金,2006,26(4):240-241
    [22]李文兵,唐生渝,闫静,等.热挤压铋黄铜的显微组织及性能研究.热加工工艺(热处理版),2006,32(4):5-10
    [23]闫静,唐生渝,王均,等.冷变形及退火温度对无铅铋黄铜耐蚀性能的影响.材料热处理学报,2007,28(3):85-88
    [24]闫静,唐生渝,王均,等.加工工艺对无铅黄铜耐腐蚀性能的影响.特种铸造及有色合金,2006,26(11):733-735
    [25]陈丙璇,宋婧,钟建华.易切削黄铜耐磨耐腐蚀性能的研究.铸造,2006,35(5):516-518
    [26]张明,谢潇,蔡洎华,等.生态环保新型无铅易切削低锑铋黄铜合金及其制造方法.中华人民共和国,发明型专利,200510050425.4,2005
    [27]张明,谢潇,蔡洎华,等.环保健康新型无铅易切削耐蚀低硼钙黄铜合金.中华人民共和国,发明型专利,200510049842.7,2005
    [28]张明,章四琪,谢潇,等.无铅易切削锑黄铜合金.中华人民共和国,发明型专利,200410015836.5,2004
    [29]黄劲松,彭超群,章四琪,等.无铅易切削镁黄铜的组织与性能.材料科学与工程学报,2006,24(6):854-886
    [30]Rohatgi P K,Ray S,Church N,et al.Cast lea& free copper-graphite composite alloys with improved machinability.AFS Transaction,1992,100:1553-1571
    [31]北京市(金属切削理论与实践)编委会.金属切削理论与实践,北京:北京出版社,1979:114-118
    [32]Davim J P,Jose Silva,Baptista A M.Experimental cutting model of metal matrix composites.Journal of Materials Processing Technology,2007,183:385-362
    [33]Vilarinho C,Davim J P,Soares D,et.al.Influence of the chemical composition on the machinability of brasses.Journal of Materials Processing Technology,2007,170:441-447
    [34]Fontaine A L,Keast V J.Compositional distributions in classical and lead-free brasses.Materials Characterization,2006,57:424-429
    [35]亢若谷,计汉容.铜及铜合金中铅的形态与热加工.云南冶金,2004.33(5):24-28
    [36]Ando T,Atsumi T,Yoshikawa Y.Improvement of machinability of bismuth substitute for Advanced Copper Base alloys.Materials and Technologies,2002,41(1):23-27
    [37]Plewes J T,Losiacono D N.Free-cutting copper alloys contain no lead.Advanced Materials and Process,1991,140(4:)23-27
    [38]Hiroyuki T.Lead-free,free-cutting brass alloy material and production method thereof.Japan Patent,2003-277855,2003
    [39]Hiroyuki T,Keiichiro O,Yosbito S.Lead-free copper base alloy material.Japan Patent 2000-169919,2000
    [40]Langenegger E E,Robinson F P A.Investigation of tensile stress induced by dezincification layer during corrosion of brass.Corrosion,1969,25(3):137
    [41]El-Sherif R M,Ismail K M,Badawy W A.Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCI solutions.Electrochemical Acta,2004,49(28):5139-5150
    [42]Sohn S,Kang T.The effects of Tin and nickel on the corrosion behavior of 60Cu-40Zn alloys.Journal of Alloys and Compounds,2002,335(1-2):281-289
    [43]Badawy W A,El-Egamy S S,El-Azab A S.The electrochemical behavior of leaded brass in neutral Cl~- and SO~(2-)media.Corrosion Science volume,1995,37(12):1969-1979
    [44]Namboodhirl T K G,Chaudhary R S,Parkash B,etal.Stress corrosion cracking relation with dezincification layer induced stress.Corrosion Science,1982,22(11):1037
    [45]Pickering H W,Wanger C.Stress corrosion cracking of brass in ammonia solution.Journal of the Electrochemical Society,1967,114(7):698-709
    [46]Howard W Pickering.Formation of new phase during anodic dissolution of Zn-Rich Cu-Zn Alloys.Electrochemical Science,1970,38(1):8-16
    [47]Pickering H W,Byme P.Partial currents during anodic dissolution of Cu-Zn alloys at constant potential.Electrochemical Science,1969,11:1492-1496
    [48]Beavers J A,Paugh E N.Stress corrosion cracking and passive film induced tensile stress.Metal Trans,1968,33(10):562-569
    [49]Sieradzki K,Newman R C.Strength effect in stress corrosion cracking of high st rength steel in aqueous solution.Electrochemical Science,1986,133(12):1979-1985
    [50]Newman R C,Meng F T,Sieradzki K.Stress corrosion cracking of copper alloys.Corrosion Science,1988,28(5):523-528
    [51]Sieradzki K,Corderman R R,Shukla K,et al.Environment induced cracking of copper alloys.PhilMag A,1989,59
    [52]Pickering H W.Analysis of electrochemical noise data for a passive system in the frequency domain.Corrosion Science,1983,23(10):1107
    [53]姚禄安,邱万川,甘复兴,等.黄铜脱锌体扩散机制研究.腐蚀科学与防护技术,1992.4(4):217-222
    [54]邱万川,汪的华,邹津耘.全国第五届正电子湮没谱学会议论文集,1993,甘肃酒泉
    [55]周业蓉.添加不同元素对弹性材料Cu-Ni-Si耐应力腐蚀的影响.腐蚀科学与防护技术,1989,创刊号,25-27
    [56]孙理,姜晓霞.硼对70/30黄铜腐蚀性能的影响.中国腐蚀与防护学报.1990.10(4):371-377
    [57]Picking H W.Characteristic feactures of alloy polarization curves.Corrosion Science,1983,23(10):1107-1120
    [58]王吉会,姜晓霞.硼对HA177-2铝黄铜的组织和耐腐蚀性能的影响.腐蚀科学与防护技术,1996,8(3):185-189
    [59]邓楚平,黄伯云,苏玉长,等.微量的砷、硼和稀土Ce对黄铜冷凝管耐蚀行为的影响.湖南电力,2007,27(4):9-12
    [60]Younghwan Jang.Sangshik Kim,Seungzeon Han.Effect of Misch metal on elevated temperature tensile ductility of the Cu-Zn-Bi alloy.Metallurgical and Materials Transaction,2005,36(4):1060-1065
    [61]钟秋生,陈小祝,成晓玲.ZHPbD59-1铸造铅黄铜锭的研制.铸造,2006,35(2):191-193
    [62]中国有色金属工业总公司.GB10119-88.黄铜耐脱锌腐蚀性能的测定.中华人民共和国标准,1989
    [63]高彩桥.摩擦金属学.哈尔滨:哈尔滨工业大学出版社,1994
    [64]汪的华,邹津耘,,邱万川,等.黄铜脱锌的抑制.应用化学,197(10):104-106
    [65]汪的华,邹津耘,邱万川.α黄铜选择性溶解的研究.腐蚀科学与防护技术,1996,8(3):190-194
    [66]汪的华,邱万川,邹津耘.不同相结构Cu-Zn合金脱锌腐蚀的正电子寿命研究.核技术,1994,17(10):620-623
    [67]孙跃,胡津.金属腐蚀与控制.哈尔滨工业大学出版社,2003.103-110
    [68]Kabasakaloglu M,Kiyak T,Sendil O,et al.Electrochemical behavior of brass in 0.1M NaCl.Applied Surface Science,2002,193:167-174
    [69]朱祖芳.有色金属的耐腐蚀性及其应用.化学工业出版社,1999.5
    [70]郭献忠,高克玮,乔利杰,等.黄铜应力腐蚀敏感性及其与脱Zn层拉应力的对应性.金属学报,2000,36(7):689-703
    [71]Gao K W,Chu W Y,Li H L.Correspondence between hydrogen enhancing dezincification layer-induced stress and susceptibility to SCC of brass.Materials Science and Engineering A,2004,371(1-2):51-56
    [72]吴荫顺.金属腐蚀研究方法.冶金工业出版社,1993.5
    [73]孙跃,胡津.金属腐蚀与控制.哈尔滨工业大学出版社,2003
    [74]王吉会,姜晓霞,李诗卓.表面膜对含硼HA177-2黄铜腐蚀的影响.材料研究学报,1997,(03).292-296
    [75]Badawy W A,EI-Egamy S S,Azab A S.Investigation of corrosion and stability of lead-brass in acid and neutral solutions using electrochemical impedance spectroscopy.Corrosion Science,1997,53(11):842-851
    [76]Satendra Kumar,Sankara Narayanan T S N,Manimaran A,et al.Effect of lead content on the dezincification behaviour of leaded brass in neutral and acidified 3%NaCl solution.Materials Chemistry and Physics,2007,106:134-141
    [77]Khaled M Ismail,Rabab M Elsherif,Waheed ABadawy.Effect of Zn and Pb contents on the electrochemical behavior of brass alloys in chloride-free neutral sulfate solutions.Electrochimica Acta,2004,49:5151-5160
    [78]Karpagavalli R,Balasubramaniam R..Development of novel brasses to resist dezincification.Corrosion Science,2007,49:963-979
    [79]Seung-Jae You,Yoon-Seok,Choi,Jung-Gu Kim,et al.Stress corrosion cracking properties of environmentally friendly unleaded brasses containing bismuth in Mattsson' solution.Materials Science and Engineering A,2003,345:207-214
    [80]刘增才,林乐耕,徐杰,等.实海暴露双相黄铜脱锌的扩散机制.材料研究学报,2000,14(1):145-149
    [81]余宗森,田中卓.金属物理.北京,冶金工业出版社,1982.158-180
    [82]王吉会,姜晓霞,李诗卓.硼抑制铝黄铜脱锌机理的研究.中国腐蚀与防护学报,1996,16(2):87-93
    [83]王吉会,姜晓霞,李诗卓.硼对HA177-2铝黄铜组织和腐蚀性能的影响,材料研究学报.1996,10(6):597-601
    [84]小野浩二,河村末久,北野昌则.理论切削学(,高希正),国防工业出版社,1985
    [85]Uwe Hofmann,Essam El-Magd.Behaviour of Cu-Zn alloys in high speed shear tests and in chip formation processes.Materials Science and Engieering A,2005,39:129-140
    [86]卡恩R W,哈森P.复合材料的结构与性能(,吴人洁).科学出版社,1999:109-115
    [87]范继美,万光珉.位错理论及其在金属切削中的应用.上海交通大学出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700