葡萄糖还原法制备氧化亚铜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化亚铜是一种重要的无机化工原料,在诸多领域有着广泛的应用。目前氧化亚铜的制备方法主要包括固相法、电解法和液相法等,其中液相法因设备投资省、有利于形貌与粒度控制而得到了广泛的研究。然而很多合成工艺采用如水合肼、亚硫酸钠等一些毒性较大的物质为还原剂,环境治理成本较高。本研究的目的是开发以葡萄糖为还原剂的环境友好的氧化亚铜制备方法。
     本文在碱性环境和不加任何添加剂条件下通过葡萄糖还原1.0mol/L的Cu(Ⅱ),采用升温法和定温法制备超细Cu_2O粉体。升温法是先将反应物在室温下混合,然后以一定的速度升温至终点温度进行反应;而定温法是反应物在恒定的温度下进行反应。具体研究内容归纳如下:
     在升温法制备超细Cu_2O中,研究了反应终点温度、葡萄糖浓度和搅拌速度等因素对Cu_2O粒子的影响。实验结果表明,反应终点在温度为50~80℃之间,Cu_2O形貌不受其影响,均以聚集模式长大为球形颗粒;随反应终点温度升高,Cu_2O平均粒径呈现先减小后增大的趋势,但变化范围不大(0.68~0.95μm)。当葡萄糖浓度为1.0~2.0mol/L时,得到了以聚集模式长大的球形Cu_2O颗粒,平均粒径相应为0.99~0.74μm;随葡萄糖浓度的升高,Cu_2O平均粒径减小,粒度分布更均匀。当葡萄糖处于低浓度(0.5mol/L),得到了以二维成核生长模式长大的方形Cu_2O颗粒;在200~600rmp范围内,改变搅拌速度对球形Cu_2O粒径的影响无规律。以本方法制备出Cu_2O平均粒径在0.7~1μm之间,存在问题是无法得到粒径更大的Cu_2O。
     在定温法制备超细Cu_2O中,研究了加料方式、反应温度、反应时间和葡萄糖浓度等因素对Cu_2O形貌与粒度的影响。实验结果表明,加料方式对Cu_2O的分散性有重要的影响,以CuSO_4与NaOH混合反应后加入葡萄糖还原得到的Cu_2O分散性最好。反应温度同时影响Cu_2O形貌与粒径,当反应温度在40~60℃之间时,生成以聚集模式长大的、平均粒径为1.42~0.78μm的球形Cu_2O颗粒;当反应温度高于60℃,生成以聚集模式与二维成核模式共同作用长大的球形和方形混合晶形Cu_2O。在20~120min之间的反应时间对Cu_2O的形貌和粒径没有明显影响。葡萄糖浓度对Cu_2O形貌与粒径有显著影响,当葡萄糖浓度由0.25mol/L逐渐升高到2.0mol/L,Cu_2O晶体生长模式由(100)面位错生长模式占主导地位过渡为二维成核生长模式,直至最后转变为聚积生长模式,晶体形貌从八面体、类球形、立方体与球形混合颗粒向球形多晶过渡;葡萄糖浓度为0.4~2.0mol/L时,生成平均粒径为2.71~1.08μm的球形Cu_2O颗粒。
     两种方法对比,定温法控制条件简单,得到的Cu_2O粒径分布均匀,比升温法更适合于Cu_2O粉体的制备。
Cuprous oxide is an important inorganic industrial chemical and widely applied in many fields.Among the main preparation methods of Cu_2O particles,the liquid phase methods are most widely investigated because their advantages those equipments are simple and control of particle morphology and size is easy.However,the use of poisonous chemicals as reductants such as N_2H_4 and Na_2SO_3 causes a high environmental protection costs in many processes.The purpose of this work is to development a green production process of Cu_2O particle using glucose as a reduction agent.
     In this work,Cu_2O particles were prepared via reducing 1.0mol/L Cu(Ⅱ) with glucose under alkaline condition without any additive,using rising temperature method and constant temperature method.In the rising temperature method,the reactants are mixed at room temperature at first, then rise to reaction end-point temperature at a constant temperature rising rate.In the constant temperature method,the reactants are mixed at given temperature and then react.The results are summarized as follows:
     Concerning the preparation of Cu_2O particles with rising temperature method,the influence of the reaction end-point temperature, the glucose concentration and stiring rate on the morphology and size of Cu_2O particles were studied.The results show that the morphology of Cu_2O particles is not remarkably affected by the end-point temperature change from 50℃to 80℃and spherical particles are obtained as a result of aggregation growth mode.The average size of Cu_2O particles first increases and then decreases with increasing temperature,but change in the average size is not wide(0.68μm to 0.95μm).When glucose concentration changed from 1.0 mol/L to 2.0mol/L,the spherical Cu_2O particles with average size 0.99μm to 0.74μm are obtained as a result of aggregation growth mode.The average size of Cu_2O particles becomes smaller and more uniform with increasing the glucose concentration. When the glucose concentration was 0.5mol/L,the cubic Cu_2O particles were obtained as a result of two-dimensional nucleation growth mode. The stiring rate has ruleless effect on the size of Cu_2O particles at the rage of 200rpm to 600rpm.The average sizes of Cu_2O particles among 0.6~1.0μm were obtained with this method,but the larger sizes of Cu_2O particles are hardly obtained.
     Concerning the preparation of Cu_2O particles with constant temperature method,the influence of adding mode of reagents,reaction temperature,reaction time and glucose concentration on Cu_2O particles were studied.The results show that the adding mode of reagents has important effect on the dispersibility of Cu_2O particles.The dispersibility of Cu_2O particles is the best when the glucose reduction is carried out after mixing CuSO_4 with NaOH.The average sizes of Cu_2O particles become smaller with increasing temperature.The spherical Cu_2O particles were obtained as a result of aggregation growth mode,and Cu_2O particles average size is 1.42μm to 0.78μm at the range of 40 to 60℃. Mixture of spherical and cubic Cu_2O particles was obtained as a result of the two-dimensional and dislocation growth modes accompanying with a temperature higher than 60℃.Prolonging reaction time slightly affect the morphology and size of Cu_2O particles at the rage of 20min to 120min. The glucose concentration significantly affects the morphology and size of Cu_2O particles.The dominant growth mode of Cu_2O crystal converted from dislocation growth to two-dimensional growth and aggregation growth and the morphology of Cu_2O particles changed from octahedron through similar spherical,mixture of cube and sphere to sphere when glucose concentration changed gradually from 0.25mol/L to 2.0mol/L. The sizes of Cu_2O particles become smaller with increasing the glucose concentration.Spherical Cu_2O particles of 2.71μm to 1.08μm were obtained when glucose concentration changed from 0.4mol/L to 2.0mol/L.
     Comparing two methods,the constant temperature method has advantages that the condition controlling is simpler and obtained Cu_2O particles are more uniform.
引文
[1]潘长华主编.实用小化工生产大全.北京:化学工业出版社,1996:30-34
    [2]华南理工大学无机化学教研室.无机化学.北京:高等教育出版社,1994:234
    [3]司徒杰主编.化工产品手册无机化工产品.北京:化学工业出版社,1999:721-723
    [4]《化工百科全书》编辑委员会.化工百科全书.北京:化学工业出版社,1997:446
    [5]严宣申,王长富主编.普通无机化学.北京:北京大学出版社,2003:165-167
    [6]于振花.氧化亚铜的制备、表征及其氧化动力学[硕士学位论文].山东:中国海洋大学,2005
    [7]浦宝康.IMO与船底防污.交通环保,2000,21(4):42-43
    [8]倪余伟,王贵森.无毒防污涂料的进展.涂料工业,1999,7:32-33
    [9]曾德芳.海洋污损生物与船体防污涂料.交通环保,1996,17(6):37-39
    [10]付玉斌.氧化亚铜防污漆表面附着的异养细菌的研究.材料开发与应用,2000,15(1):13-16
    [11]盛梅,许淮,朱毅青.半导体光催化剂及其在环境保护中的应用.江苏石油化工学院学报,2001,13(3):40-43
    [12]Wang Xuejun,Lou Tao.Photo degradation of Dissolved Organic Matter and Its Impact on the Biologic Processes.Photographic Science and Photochemistry,2004,22(4):29-305
    [13]张丽,杨迎春.氧化亚铜可见光催化降解罗丹明B的初步研究.成都信息工程学院学报,2006,21(5):711-714
    [14]刘洪禄,张爱茜,吴海锁,等.氧化亚铜光催化降解对硝基苯酚.环境化学 2004,23(5):490-494
    [15]梁宇宁,黄智,覃思晗,等.Cu_2O光催化降解水中对硝基苯酚的研究.环境污染治理技术与设备,2003,4(10):36-39
    [16]孟楠,张爱茜,吴海锁,等.TiO_2与Cu_2O光催化降解对硝基苯酚比较研究.第二届全国环境化学学术报告会论文集,上海:2004:66-40
    [17]Jialin Li,Li Liu.Preparation of highly photocatalytic active nano-size TiO_2-Cu_2O particle composites with a novel electrochemical method.Electrochemistry Communications,2004,6(9):940-943
    [18]陈金毅,刘小玲,李间轮,等.纳米氧化亚铜可见光催化分解亚甲基蓝.华中师 范大学学报(自然科学版),2002,36(2):200-203
    [19]刘小玲,陈金毅,周文涛,等.纳米氧化亚铜太阳光催化氧化法处理印染废水.华中师范大学学报(自然科学版),2002,36(4):475-477
    [20]朱俊武,陈海群,谢波,等.纳米Cu_2O的制备及其对高氯酸铵热分解的催化性能.催化学报,2004,25(8):637-640
    [21]刘静峰,田德余,邓鹏图.超微细Cu_2O对RDX/AP/HTPB推进剂组分热分解特性影响的研究.火炸药学报,1998,2:1-4
    [22]黄险波,张亮,李定华,等.氧化亚铜在聚氯乙烯燃烧热降解中的作用.北京理工大学学报,1997,17(5):590-594
    [23]李斌,王建祺,张爱英.用锥形量热仪研究Cu_2O和MoO_3对PVC阻燃抑烟的作用.科学通报,1998,43(8):836-840
    [24]TU Hongbin,WANG Jianqi.An XPS investigation of thermal degradation and charring processes for PVC and PVC/Cu_2O systems in the condensed phase—Ⅱ.Polymer Degradation and Stability,1996,54:195-203
    [25]王长波,李斌,氧化亚铜和三氧化钼对PVC阻燃和抑烟作用.化学与粘合.2002(3):120-122
    [26]Hara,M.,Hasei,H.,Yashima,et al.Mechano-catalytic overall water splitting(Ⅱ)nafion-deposited Cu_2O.Applied Catalysis A:General,2000,190:35-42
    [27]Takata,T.,Ikeda,S.,Tanaka,A.,Hara,M.,et al.Domen,K..Mechano-catalytic overall water splitting on some oxides(Ⅱ).Applied Catalysis,2000,200:255-262
    [28]Michikazu Hara,Takeshi Kondo,Mutsuko,et al.Cu_2O as a photocatalyst for overall water splitting under visible light irradiation.Chem.Commune.,1998,357-358
    [29]李越湘,吕功煊,李树本.半导体光催化分解水研究进展.分子催化,2001,15(1):72-78
    [30]邵文柱,沙德生,V.V.伊万诺夫等.氧化亚铜基金属陶瓷导电性的试验研究.材料科学与工艺,1999,7(2):109-112
    [31]王学峰,张勇,高同春.井冈霉素与氧化亚铜复配制剂对水稻稻曲病防效测定.安徽农业科学,2005,33(9):1601-1622
    [32]刘勋,陈时洪.用氧化亚铜从人发水解液中沉淀胱氨酸的研究.氨基酸和生物资源,2003,25(1):55-57
    [33]Tianyan You,Osamu Niwa,Masato Tomita et al.Characterization and electrochemical properties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-like carbon films prepared by RF sputtering method.Electrochemistry Communications,2002,4(5):468-471
    [34]胡军福,朱圣平,杜飞鹏,刘传银.纳米氧化亚铜固载亚甲兰复合膜修饰玻碳电极的电化学性质及其对多巴胺的电催化.分析试验室,2006,25(7):5-9
    [35]胡敏艺,周康根,陈瑞英,郭朝晖.超细氧化亚铜粉体的制备与应用.中国粉体材料.2006(5):44-48
    [36]周玉华,黄熙怀.氧化亚铜在玻璃中的着色.硅酸盐学报,1965,4(1):66-69
    [37]Tsuchiya Fumiaki.Production of colored glass by amber glass.Japanese Patent:11060263
    [38]王现全.杀菌组合物.中国专利,00109476,2000.12-13
    [39]近藤保夫,金田润也,青野泰久,等.复合材料及其应用.中国专利,02119923,2003.03.12
    [40]近藤保夫,金田润也,青野泰久,等.半导体器件.中国专利,02119922,2002.10-30
    [41]Jiatao Zhang,Junfeng Liu,Qing Peng,et al.Nearly Monodisperse Cu_2O and CuO Nanospheres:Preparation and Applications for Sensitive Gas Sensors.Chem.Mater.2006,18:867-871
    [42]YH.Lee,LC.Leu,S.T.Chang,et al.The electrochemical capacities and cycle retention of electrochemically deposited Cu_2O thin film lm toward lithium.Electrochimica Acta,2004,50:553-559
    [43]陈琰,褚万学.一种耐极压重负荷润滑脂.中国专利,94118783,1996.06.12
    [44]S.V.Manoj,Madhu Sharma,K.S.Gupta.Role of cuprous oxide in the autoxidation of aqueous sulphur dioxide and its atmospheric implications.Atmospheric Environment,1999,33:1503-1512
    [45]K.Akimoto,S.Ishizuka,M.Yanagita,et al.Thin film deposition of Cu_2O and application for solar cells.Solar Energy,2006,80:715-722
    [46]V.Georgieva,M.Ristov.Electrodeposited cuprous oxide on indium tin oxide for solar applications.Solar Energy Materials&Solar Cells,2002,73:67-73
    [47]柏振海,罗兵辉,金晓鸿.氧化亚铜粉末的制备.矿冶工程,2001,21(4):67-69
    [48]余颖,杜飞鹏.纳米氧化亚铜的制备方法研究.化学通报,2004,67:1-6
    [49]张萍,李大成,刘恒,等.氧化亚铜的制备.四川有色金属,1995,(3):6-8
    [50]张炜,许小青,郭承育,等.低温固相法制备Cu_2O纳米晶.青海师范大学学报(自然科学版),2004,(3):53-56
    [51]柳建设,舒余德,陈白珍.电解法制取氧化亚铜的研究.湖南冶金,1996 (6):11-13,18
    [52]傅崇说,郑蒂基.关于Cu-Cl-H_2O系的热力学分析及电位pH图.中南矿冶学院学报,1983,(3):12-24
    [53]汪志勇,曾庆学,崔舜,等.电化学法制备氧化亚铜的研究.化学研究,2001,12(1):29-32
    [54]汪志勇,崔舜,康志君,等.碱性NaCl溶液中制取氧化亚铜.海湖盐与化工.2001,30(3):4-7
    [55]汪志勇,曾庆学,康志君,等.电化学法制取氧化亚铜.化学试剂,2001,23(4):246-248
    [56]JiJ,Cooper WC.Electrochemical preparation of cuprous oxide powders.J.Appl electro chem,1990,20(5):818-834
    [57]P.E.de.Jongh,D.Vanmaekelbergh,J.J.Kelly.Cu_2O:Electrodeposition and Characterization.Chem.Mater,1999,11:3512-3517
    [58]陈志钢,唐一文,贾志杰,等.导电玻片上氧化亚铜膜的电沉积和表征.无机材料学报,2005,20(1):367-372
    [59]Run Liu,Fumiyasu Oba,Eric W.Bohannan,et al.Shape Control in Epitaxial Electrodeposition:Cu_2O Nanocubes on InP(001).Chem.Mater,2003,15:4882-4885
    [60]Fang Sun,Yupeng Guo,Yumei Tian.The effect of additives on the Cu_2O crystal morphology in acetate bath by electrodeposition.Journal of Crystal Growth,2008,310:318-323
    [61]Huaming Yang,Jing Ouyang,Aidong Tang,et al.Electrochemical synthesis and photo-catalytic property of cuprous oxide nanoparticles.Materials Research Bulletin.2006,41:1310-1318
    [62]李晓勤,方涛,罗永松,等.电解法制备纳米Cu_2O及其光催化性能的研究.化学通报,2006,4:290-293
    [63]吴晓春.电解法研制氧化亚铜.上海有色金属,2005,20(3):118-121
    [64]Yiwen Tang,Zhigang Chen,Zhijie Jia,et al.Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO_2 films.Materials Letters,2005,59:434-438
    [65]T.Mahalingama,J.S.P.Chitra,J.P.Chu,et al.Preparation and microstructural studies of electrodeposited Cu_2O thin films.Materials Letters,2004,58:1802-1807
    [66]T.Mahalingama,J.S.P Chitra,G.Ravi,et al,Characterization of pulse plated Cu_2Othin films.Surface and Coatings Technology,2003,168:111-114
    [67]T.Mahalingam,J.S.P.Chitra,S.Rajendran,et al.Galvanostatic deposition and characterization of cuprous oxide thin films.Journal of Crystal Growth,2000,216:304-310
    [68]舒余德,孟爱东.碱性NaCl溶液中铜阳极生成Cu_2O的机理.有色金属,1996,48(4):58-62
    [69]张萍,刘恒,李大成.亚硫酸钠还原法制备超细氧化亚铜粉末.四川有色金属,1998,(2):16-18
    [70]曾庆学,崔舜,张维玉,等.添加剂对氧化亚铜产品质量的影响.无机盐工业,2000,32(1):35-37
    [71]柏振海,罗兵辉,金晓鸿.氧化亚铜粉末的制备.矿冶工程,2001,21(4):67-69
    [72]刘亦凡,于慧荣,祝昌翠,等.均分散氧化亚铜溶胶的制备.物理化学学报,1993,9(1):107-109
    [73]A.Muramatsu,T.Sugimoto.Synthesis of Uniform Spherical Cu_2O Particles from Condensed CuO Suspensions.Journal of Colloid and Interface Science,1997,189:167-173
    [74]DONG Ya-jie,LI Ya-dong,WANG Cheng,et al.Preparation of cuprous oxide particles of different crystallinity.Journal of Colloid and Interface Science,2001,243:85-89
    [75]朱俊武,陈海群,谢波,等.纳米Cu_2O的制备及其对高氯酸铵热分解的催化性能.催化学报,2004,25(8):637-640
    [76]刘军刚,杜芳林.还原法制备八面体结构的氧化亚铜微晶及其催化性能.稀有金属材料与工程,2007,36(2):763-765
    [77]王文中,王广厚.还原法制备氧化亚铜纳米线的方法.中国专利:CN1384055,2002
    [78]Haolan Xu,Wenzhong Wang,Wei Zhu.A facile strategy to porous materials:Coordination-assisted heterogeneous dissolution route to the spherical Cu_2O single crystallites with hierarchical pores.Microporous and Mesoporous Materials,2006,95:321-328
    [79]Haolan Xu,Wenzhong Wang,Wei Zhu.Shape Evolution and Size-Controllable Synthesis of Cu_2O Octahedra and Their Morphology-Dependent Photocatalytic Properties.J.Phys.Chem.B,2006,110(28):13829-13834
    [80]Fanglin Dua,Jungang Liu,Zhiyan Guo.Shape controlled synthesis of Cu_2O and its catalytic application to synthesize amorphous carbon nanofibers.Materials Research Bulletin,2009,44:25-29
    [81]施尔畏,夏长泰,王步国,等.水热法的应用与发展.无机材料学报,1996,11(2):193-206
    [82]陈之战,施尔畏,李汉军等.水热条件下Cu_2O的连生习性.人工晶体学报,2001,30(4):369-374
    [83]毛铭华,涂桃枝.水热还原法制取氧化亚铜的研究.化工冶金,1990,11(3):216-221
    [84]朱红飞,陈乾旺,牛和林,彭振猛,孙钱.在酸性条件下合成氧化亚铜纳米立方体.无机化学学报,2004,10(10):1172-1176
    [85]Zhi-Zhan Chen,Er-Wei Shi,Yan-Qing Zheng,et al.Growth of hex-pod-like Cu_2O whisker under hydrothermal conditions.Journal of Crystal Growth,2003,249:294-300
    [86]杨维丰,许小青,郭幼敬,等.溶剂热直接制备Cu_2O、Cu和CuCl微晶.青海科技研究与开发,2004(3):39-40
    [87]魏明真,伦宁,马西骋,等.溶剂热法制备铜与氧化亚铜纳米晶.无机盐工业,2007,39(1):21-22
    [88]霍建振,魏明真,温树林.氧化亚铜微米晶的水热合成与生长机理.无机盐工业,2007,39(7):30-32
    [89]吴正翠,邵明望,张文敏,等.微波辐照下均分散氧化亚铜超细粒子的制备.安徽师范大学学报,2001,24(4):356-358
    [90]Zheng cui Wu,Ming wang Shao,Wu Zhang,et al.Large-scale synthesis of uniform Cu_2O stellar crystals via microwave-assisted route.Journal of Crystal Growth,2004,260:490-493
    [91]翟慕衡,张文敏,郑伟威,等.微波辐照下制备均分散Cu_2O纳米粒子.化学世界,2000,(12):632-634
    [92]T.Suehiro,T.Sasaki,Y.Hiratate.Electronic properties of thin cuprous oxide sheet prepared by infrared light irradiation.Thin Solid Films,2001,383:318-320
    [93]Ping He,Xinghai Shen,Hongcheng Gao.Size-controlled preparation of Cu_2O octahedron nanocrystals and studies on their optical absorption.Journal of Colloid and Interface Science,2005,284:510-515
    [94]陈祖耀,陈敏,朱玉瑞.紫外辐照制备氧化亚铜超细粉的方法.中国专利:CN 1190042,1998
    [95]陈祖耀,朱玉瑞,陈文明,等.紫外射线辐照制备Cu_2O超细粉及其宏观动力学.金属学报,1997,3:330-335
    [96]Kenneth S.Suslick,David A.Hammerton,and Raymond E.Cline.Raymond E..Sonochemical hot spot.J.Am.Chem.Soc.,1986,108(18):5641-5642
    [97]N.Arul Dhas and Kenneth S.Suslick.Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals.J.Am.Chem.Soc.,2005,127(8):2368-2369
    [98]ZHANG Xia,TAO Xiao-Jun,ZHANG Zhi-Shen,et al.Synthesis and Characterization of Cu_2O Single-Crystal by Sonochemical Method.Chinese Journal of Inorganic Chemistry,2005,21(7):1098-1100
    [99]刘文丛,罗云青.氧化亚铜纳米晶的超声化学制备及表征.吉林师范大学学报(自然科学版),2008(2):25-27
    [100]梅光军,师伟,解科峰,夏洋.纳米氧化亚铜的制备及其光催化性能研究.资源环境与工程,2007,21(3):335-338
    [101]张晓霞,孔文君,刘蕾.超声法制备不同形貌氧化亚铜.吉林地质,2008,27(2):100-103
    [102]McFadyen P,Matijevi(?) E.Copper hydrous oxide sols of uniform particle shape and size.J.Colloide Interface Science,1973,44(1):95-105
    [103]Xu Zhang,Yi Xie,Fen Xu,et al.Shape-controlled synthesis of submicro-sized cuprous oxide octahedral.Inorganic Chemistry Communications,2003,6:1390-1392
    [104]Debao Wang,Maosong Mo,Dabin Yu,et al.Large-Scale Growth and Shape Evolution of Cu_2O Cubes.Crystal Growth & Design,2003,3(5):717-720
    [105]Ha-Chul Song,Young-Sik Cho,Young-Duk Huh.Morphology-controlled synthesis of Cu_2O microcrystal.Materials Letters 2008,62:1734-1736
    [106]邢兰兰.纳米氧化亚铜开口空心球的制备、表征及其性质研究[硕士学位论文].武汉:华中师范大学,2008
    [107]宫泮伟,姜磊,翟玉春,等.超细氧化亚铜的制备研究.金属功能材料,2008,15(1):16-18
    [108]赵华涛,王栋,张兰月,等.高反应浓度下制备不同形貌氧化亚铜的简易方法.无机化学学报,2009,25(1):142-146
    [109]Xiaojuan Zhang,Zuolin Cui.One-pot growth of Cu_2O concave octahedron microcrystal in alkaline solution.Materials Science and Engineering B,2009
    [110]Zhen-Hua Liang,Ying-Jie Zhu.Synthesis of uniformly sized Cu_2O crystals with star-like and flower-like morphologies.Materials Letters,2005,59:2423-2425
    [111]郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展.无机材料学报, 1998,14(3):321-332
    [112]Adair J.H.and E.Suvaci.Morphological control of particles.Current Opinion in Colloid & Interface Science,2000,5:160-167
    [113]Antonietti M.Surfactants for novel templating applications.Current Opinion in Colloid & Interface Science,2001,6:244-248
    [114]Hartman P.Proc Koninkl Nederl and Akad Wrtenschap.Acta Crast,1952(B55):34-36
    [115]Hartman P.Crystal Growth.Amsterdam:North-holland Pub Co,1973.367-402
    [116]Zhuo Zhongwei,Su Luo hao,Kun HuaSu,et al.Anionic Coordination Polyhedron Growth Units and Crystal Morphology.人工晶体学报,2004,33(4):475-478.
    [117]Zhuo Zhongwei,Su Luo hao,Kun HuaSu,et al.Crystal Surface Structure and Its Growth Units of Anionic Coordination Polyhedral.人工晶体学报,2004,33(4):471-474
    [118]施尔畏,仲维卓,华素坤,等.关于负离子配位多面体生长基元模型.中国科学(E辑),1998,28(1):37-45
    [119]张克从,张乐潓.晶体生长科学与技术.北京:科学出版社.1996
    [120]施尔畏,陈之战,元如英等.水热结晶学.北京:科学出版社.2004
    [121]于锡铃.晶体生长机理研究的新近进展.中国科学基金,2002,4:215-218
    [122]王继扬.晶体生长的缺陷机制.物理,2001,30(6):332-339
    [123]李广慧,韩丽,方奇.晶体结构控制晶体形态的理论及应用.人工晶体学报,2005,34(3):546-549
    [124]周祖康.胶体化学基础.北京:北京大学出版社.1989
    [125]Rawlings J B,Miller S M,Witkowski W R.Model identification and control solution crystallization processes:a review.Industrial & Engineering Chemistry Research,1993,32(7):1275-1296
    [126]吴慧芳.氧化银、银、氧化亚铜微纳米颗粒的形貌和尺寸控制[硕士学位论文].厦门:厦门大学,2007,43-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700