新型复合铋膜阳极溶出伏安法在环境、食品及药物分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是20世纪70年代以来发展起来的一种电极,目前已广泛应用于涉及环境、生命、材料科学、能源、电子工业等分析领域。随着对化学修饰电极研究的深入,将各种具有良好化学性能的修饰材料与常规的金属电极相结合,可制备出性能优于常规金属电极的复合电极。在诸多的化学修饰材料中,普鲁士蓝具有独特的结构,其良好的化学和电化学稳定性,制备成本低等优点,在功能材料、电化学传感器、离子识别和分子磁性物质等方面得到了广泛的应用。在普鲁士蓝中掺杂铕,可制备出性能比普鲁士蓝更佳的膜,我们称之为稀土掺杂类普鲁士蓝膜。结合此类普鲁士蓝膜和常规铋膜电极的优点,本文利用电化学沉积法在玻碳电极上先镀一层稀土掺杂类普鲁士蓝膜,再镀铋膜,制备出了铕离子掺杂类普鲁士蓝复合铋膜电极,并进行了一些分析应用研究。实验表明,本实验室率先制备出的铕离子掺杂类普鲁士蓝复合铋膜电极可成功用于环境水样中痕量铟、奶制品与药品中痕量锌和药片中异烟肼的测定。该电极具有灵敏度高、稳定性好、电位窗宽、抗干扰能力强和使用寿命长等特点,具有潜在的应用价值。
     本论文包括以下四部分:
     第一章:综述
     该部分阐述了电位溶出分析方法的特点,介绍了汞膜在电位溶出分析法中的作用。接着介绍了铋及铋化合物的性质,铋膜的制备方法与分析应用,简要探讨了化学修饰型复合铋膜电极产生的必然性、制备方法及其在电化学溶出分析方面的应用。最后,对复合型类普鲁士蓝化学修饰电极在电位溶出分析中的发展趋势和应用做了展望。这部分共引用文献104篇。
     第二章:复合铋膜电极阳极溶出法测定水样中痕量铟的研究
     在玻碳电极上采用电化学沉积法制备了新型铕离子掺杂普鲁士蓝复合铋膜电极,建立了用示差脉冲阳极溶出法测定环境水样中痕量铟的分析方法。讨论了铟在常规铋膜电极和复合铋膜电极上的溶出性能,对铋膜的厚度、支持电解质、测定底液的pH、富集时间和富集电位等参数进行了优化。在最佳实验条件下,铟的阳极溶出峰电流与其浓度在2~20μg/L和20~100μg/L范围内分别呈良好的线性关系,检测下限为0.15μg/L(S/N=3),相对标准偏差RSD小于2.0%。该法用于实际水样中痕量铟的测定,样品回收率为97.5%~103%。实验结果表明:该电极的适用性好,灵敏度高,稳定性强。
     第三章:复合铋膜电极阳极溶出法测定痕量锌
     采用预镀铋电化学沉积法制备了铕离子掺杂类普鲁士蓝复合铋膜电极,建立了阳极溶出伏安法测定痕量锌的新方法。实验结果表明:锌在0.03 mol/L的酒石酸钠(pH=4.5)溶液中可得到灵敏的阳极溶出峰;最佳实验条件下,于-1.4 V富集120 s后,锌的溶出峰电流与其浓度在10~540μg/L(r=0.99987)范围内呈良好的线性关系,检出限为1.38μg/L(S/N=3),相对标准偏差为0.94%(n=8)。该法可用于奶制品和药品中锌含量的测定,回收率为99.3%~101%。
     第四章:复合铋膜电极阳极溶出伏安法测定药物中的异烟肼
     提出了一种用复合铋膜电极阳极溶出伏安法测定药物中异烟肼的分析方法。以复合铋膜作工作电极,饱和甘汞电极作参比电极,铂电极作辅助电极,在0.01 mol/L的醋酸-醋酸钠缓冲溶液中,用阳极溶出伏安法测定异烟肼的含量。异烟肼的峰电流与异烟肼浓度在8.0×10~(-8)~2.0×10~(-6) mol/L范围内呈良好的线性关系。富集60 s后,测定的检测下限为1.8×10~(-8) mol/L。该法简单、快速。电极的优点在于线性范围宽,重现性好,使用寿命长,用于异烟肼片剂的测定,结果满意。
Chemically modified electrode was developed since 1970s, and had been widely applied in the fields related to environmental science, life science, materials science, energy power, electronics, etc. With the advancement in the study of chemically modified electrodes, the composite electrodes whose performance were higher than that of conventional metal electrodes can been manufactured through combination of some kinds of modifiers of good chemical properties with metal electrodes. Though there were many types of chemically modified materials, Prussian blue was one of the most widely used, such as in the fields of functional materials, electrochemical sensors, ion identification and molecular magnetic materials, etc, due to its advantages of unique structure, good chemical and electrochemical stability, low cost. By means of doping Eu3+ ions in the Prussian blue, a film called europium-doped Prussian blue analogue (Eu-PB) film whose performance was superior to that of the Prussian blue was prepared. With combination of the advantages of both the europium-doped Prussian blue (Eu-PB) film modified electrode and the coventional bismuth film electrod, an europium-doped Prussian blue (Eu-PB) composite bismuth film was prepared using the electrochemical deposition method, and the samples analysis was made on this electrode. The results of the experiments showed that the europium-doped Prussian blue (Eu-PB) composite bismuth film can been successfully used in the determination of trace Indium in environmental water samples, the determination of trace Zinc in dairy products and the determination of isoniazid in pharmaceuticals. This electrode had the advantages of high sensitivity, good stability, wide potential window, high anti-interference performance, long service life. Therefore, this electrode had high potential value for application.
     This thesis includes the following four chapters:
     Chapter I: Overview
     This chapter described the characteristics of potential stripping analysis, the role of mercury membrane in electrochemical stripping analysis, and the characteristic of mercury film. Then it introduced the features of bismuth and its compounds, the preparation methods and applications of the bismuth film electrode. It also briefly discussed the necessity, preparation and application of the chemically modified bismuth film composite electrode. The last part of this chapter prespectd the development trends of the europium-doped Prussian blue (Eu-PB) composite bismuth film electrode in potential stripping analysis, and included the purpose and significance of the research in this thesis. The references of this part included a total of 104 items.
     ChapterⅡDetermination of Trace Indium in Water Samples by Anodic Stripping Voltammetry on Composite Bismuth Film Electrode
     A novel composite bismuth film electrode (GC/Eu-PB/BFE) was prepared by electrodepositing bismuth film on the glassy carbon matrix which was modified with europium-doped Prussian blue analogue (Eu-PB). In addition, trace levels of Indium was determined by anodic stripping voltammetry using the GC/Eu-PB/BFE as a working electrode. The comparison of stripping properties of In3+ between the common bismuth and the composite bismuth had been studied. Some of effect factors such as the thickness of bismuth film, supporting electrolyte, pH of determining solution, deposition time and deposition potential were optimized. Under the optimum conditions, good linearity was obtained in the concentration range of 2~20μg/L and 20~100μg/L, respectively. The limit of detection was 0.15μg/L and relative standards error was under 2.0%. The method had been applied to the determination of Indium ion in environment water samples with the recovery of 97.5%~103%。The results showed that the composite bismuth film (GC/Eu-PB/BFE) had been applicable to analysis with high sensibility and good stability.
     ChapterⅢDetermination of Trace Zinc by Anodic Stripping Voltammetry Composite Bismuth Film Electrode
     A composite bismuth film electrode (GC/Eu-PB/BFE) was prepared by electrodepositing bismuth film on the glassy carbon which was modified with europium-doped Prussian blue (Eu-PB). A new method for the determination of zinc was developed using the GC/Eu-PB/BFE. The results revealed that the sensitive stripping peak of zinc ions was obtained in 0.03 mol/L tartrate solutions (pH=4.5). Under the optimum conditions, the good linearity of zinc ions were obtained in the concentration range of 10~540μg/L (r=0.99987) after 120 s’deposition at -1.4 V. The limit of detection was 1.38μg/L (S/N=3) and relative standards error was 0.94% (n=8). The method had been applied to the determination of zinc in dairy and medicine samples with the recovery of 99.3%~101.2%.
     ChapterⅣDetermination of isoniazid in medicine by Anodic Stripping Voltammetry on Composite Bismuth Film Electrode
     This paper presented an analytical method which was used in determination isoniazid in drug by composite bismuth film electrode anodic stripping voltammetry. The method was used to determine isoniazid in 0.01 M acetic acid-sodium acetate buffer solution. The composite bismuth film electrode was used as the working electrode, the saturated calomel electrode was used as a reference electrode and platinum electrode was used as an auxiliary electrode. The good linearity between peak current and concentration was obtained in the concentration range of 8.0×10~(-8)~2.0×10~(-6) mol/L. The limit of detection was 1.8×10~(-8) mol/L after 60 s deposition procedure. It can be seen from obtained results that the composite bismuth film working electrode had advantages of high linear range, good reproducibility and performance. Moreover, satisfied results of measuring isoniazid were got.
引文
[1]吴守国,袁倬斌.电分析化学原理.合肥:中国科学技术大学出版社,2006.
    [2]李启隆.电分析化学.北京:北京师范大学出版社出版,1997.
    [3] A. R. Harman, A. S. Baranski. Fast cathodic stripping analysis with ultra micro Electrodes. Anal Chim Acta, 1990, 239: 35.
    [4] E. Tesarova, A. Herasb, A. Colinab et al. A spectroelectrochemical approach to the electrodeposition of bismuth film electrodes and their use in stripping analysis. Analytica Chimica Acta, 2008, 608: 140.
    [5] T. H. Lu, J. F. Huang, I. W. Sun. Perfluorinated anion-exchange polymer mercury film electrode for anodic stripping voltammetric determination of zinc (II): effect of model organic compounds. Anal Chim Acta, 2002, 454: 93.
    [6] B. Hoyer, T. M. Florence, G. E. Batley. Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry. Anal Chem, 1987, 59: 1608.
    [7] W. Frenzel. Mercury film on a glassy carbon support: attributes and problems. Analytica Chimica Acta, 1993, 273: 23.
    [8] D. Dimitrov, D. Tzocheva, D. Kovacheva. Calorimetric study of amorphous Sb-Se thin films. Thin Solid Films, 1998, 323: 79.
    [9] A. Kulinska, K. P. Lieb, M. Uhrmacher et al. PAC study of Ni-irradiated Sb films. Surface and Coatings Technology, 2002, 158-159: 225.
    [10] P. Y. Liu, J. F. Chen, W. D. Sun. Characterizations of SnO2 and SnO2: Sb thin films prepared by PECVD. Vacuum, 2004, 76: 7.
    [11] M. Korolczuk, K. Tyszczuk. Application of lead film electrode for simultaneous adsorptive stripping voltammetric determination of Ni (II) and Co (II) as their nioxime complexes. Analytica Chimica Acta, 2006, 580: 231.
    [12] K. Tyszczuk, M. Korolczuk, M. Grabarczyk. Application of gallium film electrode for elimination of copper interference in anodic stripping voltammetry of zinc. Talanta, 2007, 71: 2098.
    [13] A. Economou. Bismuth-film electrodes: recent developments and potentialities for electroanalysis. Trends in Analytical Chemistry, 2005, 24(4): 334.
    [14] J. Wang, J. Lu, S. B. Hocevar et al. Bismuth-Coated Carbon Electrodes for Anodi-c Stripping Voltammetry. Anal Chem, 2000, 72: 3218.
    [15]宋青云,马永钧,周秀英等.铕离子掺杂普鲁士蓝复合汞膜电极上替硝唑的方波伏安法测定[J].西北师范大学学报:自然科学版, 2007, 43(5): 54.
    [16] L. Lin, N. S. Lawrence, S. Thongngamdee et al. Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode. Talanta, 2005, 65: 144.
    [17] E. Sandnes, M. E. Williams, U. Bertocci et al. Electrodeposition of bismuth from nitric acid electrolyte. Electrochimica Acta, 2007, 52: 6221.
    [18] S. Jiang, Y. H. Huang, F. Luo et al. Synthesis of bismuth with various morphologi -es by electrodeposition. Chem Commun, 2003, 6: 781.
    [19] R. A. Tolutis, S. Balevicius. Study of large magnetoresistance of thin polycrystall -ine Bi films annealed at critical temperatures. Phys Status Solidi A, 2006, 203: 600.
    [20] L. Li, Y. W. Yang, G. H. Li et al. Conversion of a Bi Nanowire Array to an Array of Bi-Bi2O3 Core-Shell Nanowires and Bi2O3 Nanotubes. Small, 2006, 2(4): 548.
    [21] M. Lu, R. J. Zieve, A. van Hulst et al. Low-temperature electrical-transport properties of single-crystal bismuth films under pressure. Phys Rev B, 1996, 53: 1609.
    [22] P. M. Vereecken, K. Rodbell, C. X. Ji et al. Electrodeposition of bismuth thin films on n-GaAs (110). Appl Phys Lett, 2005, 86: 121.
    [23] P. M. Vereecken, L. Sun, P. C. Searson et al. Magnetotransport properties of bismuth films on p-GaAs. Appl Phys, 2000, 88: 6529.
    [24] M. Takashiri, T. Shirakawa, K. Miyazaki et al. Fabrication and characterization of bismuth–telluride-based alloy thin film thermoelectric generators by flash evaporation method. Sensors and Actuators A, 2007, 138: 329.
    [25] N. S. Patil, A. M. Sargar, S. R. Mane et al, Effect of Sb doping on thermoelectric properties of chemically deposited bismuth selenide films. Materials Chemistry and Physics, 2009, 115: 47.
    [26] A. Z. Simoes, C. S. Riccardi, A. H. M. Gonzalez et al. Piezoelectric properties of Bi4Ti3O12 thin films annealed in different atmospheres. Materials ResearchBulletin, 2007, 42: 967.
    [27] A. Krolicka, A. Bobrowski. Bismuth film electrode for adsorptive stripping Voltammetry-electrochemical and microscopic study. Electrochemistry Communications, 2004, 6: 99.
    [28] R. Pauliukaite, R. Metelka, I. Svancara et al. Carbon paste electrodes modified with Bi2O3 as sensors for the determination of Cd and Pb. Anal Bioanal Chem, 2002, 374: 1155.
    [29] G. H. Hwang, W. K. Han, S. J. Hong et al. Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode. Talanta, 2009, 77: 1432.
    [30] A. Economou, A. Voulgaropoulos. On-line stripping voltammetry of trace metals at a flow-through bismuth-film electrode by means of a hybrid flow-injection/seq -uential-injection system. Talanta, 2007, 71: 758.
    [31] J. Wang, J. Lu,ülküAnik Kirg?z et al. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Analytica Chimica Acta, 2001, 434: 29.
    [32] G. Flechsig, M. Kienbaum, P. Grundler. Ex situ atomic force microscopy of bismuth film deposition at carbon paste electrodes. Electrochemistry Communications, 2005, 7: 1091.
    [33] L. Baldrianova, I. Svancara, S. Sotiropoulos. Anodic stripping voltammetry at a new type of disposable bismuth-plated carbon paste mini-electrodes. Analytica Chimica Acta, 2007, 599: 249.
    [34] A. Krolicka, R. Pauliukaite, I. Svancara et al. Bismuth-film-plated carbon paste electrodes. Electrochemistry Communications, 2002, 4: 193.
    [35] L. Jiajie, Y. Nagaosa. Cathodic stripping voltammetric determination of As (III) with in situ plated bismuth-film electrode using the catalytic hydrogen wave. Analytica Chimica Acta, 2007, 593: 1.
    [36] E. A. Hutton, S. B. Hocevar, B, Ogorevc. Ex situ preparation of bismuth film microelectrode for use in electrochemical stripping microanalysis. Analytica Chimica Acta, 2005, 537: 285.
    [37] G. H. Hwang, W. K. Han, J. S. Park et al. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta, 2008, 76: 301.
    [38] D. Demetriades, A. Economou, A. Voulgaropoulos. A study of pencil-lead Bismu -th-film electrodes for the determination of trace metals by anodic stripping vovoltammetry. Analytica Chimica Acta, 2004, 519: 167.
    [39] J. Wang, J. M. Lu, S. B. Hocevar et al. Bismuth-Coated Screen-Printed Electrodes for Stripping Voltammetric Measurements of Trace Lead. Electroanalysis (NY), 2001, 13: 13.
    [40] L. Baldrianova, I. Svancara, M. Vlcek et al. Effect of Bi(III) concentration on the stripping voltammetric response of in situ bismuth-coated carbon paste and gold electrodes. Electrochimica Acta, 2006, 52: 481.
    [41] A. Z. Simoes, C. S. Riccardi, A. Ries et al. Ferroelectric and piezoelectric properties of bismuth layered thin films grown on (100) Pt electrodes. Journal of Materials Processing Technology, 2008, 196: 10.
    [42] S. Legeai, S. Bois, O. Vittori. A copper bismuth film electrode for adsorptive cathodic stripping analysis of trace nickel using square wave voltammetry. Journal of Electroanalytical Chemistry, 2006, 591: 93.
    [43] G. Kefala, A. Economou, A. Voulgaropoulos et al. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta, 2003, 61: 603.
    [44] C. Kokkinos, A. Economou, I. Raptis et al. Novel disposable bismuth-sputtered electrodes for the determination of trace metals by stripping voltammetry. Electrochemistry Communications, 2007, 9: 2795.
    [45] C. Kokkinos, I. Raptis, A. Economou et al. Disposable micro-fabricated electrochemical bismuth sensors for the determination of Tl (I) by strippin voltammetry. Procedia Chemistry, 2009, 1: 1039.
    [46] C. Kokkinos, A. Economou, I. Raptis et al. Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb (II) and Cd(II) by anodic stripping voltammetry. Electrochimica Acta, 2008, 53: 5294.
    [47] S. Yaginuma, T. Nagao, J. T. Sadowski et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surface Science, 2007, 601: 3593.
    [48] T. Romann, E. Anderson, S. Kallip et al. Electroless deposition of bismuth on Si (111) wafer from hydrogen fluoride solutions. Thin Solid Films, 2009.
    [49] Xu Zhao, Tongguang Xu, Wenqing Yao et al. Synthesis and photoelectrochemical properties of thin bismuth molybdates film with various crystal phases. Thin Solid Films, 2009, 517: 5813.
    [50] I. G. Casella, M. Contursi. Characterization of bismuth adatom-modified palladium electrodes the electrocatalytic oxidation of aliphatic aldehydes in alkaline solutions. Electrochimica Acta, 2006, 52: 649.
    [51] W. Zhu, J. Y. Yang, X. H. Gao et al. Effect of potential on bismuth telluride thin film growth by electrochemical atomic layer epitaxy. Electrochimica Acta, 2005, 50: 4041.
    [52] Gao-Ren Li, Guan-Kun Liu, Ye-Xiang Tong. Electrochemical preparation of Yb–Bi thin film in dimethylsulfoxide. Electrochemistry Communications, 2004, 6: 441.
    [53] Sunyoung Ham, Soyeon Jeon, Minsoon Park et al. Electrodeposition and stripping analysis of bismuth selenide thin films using combined electrochemical quartz crystal microgravimetry and stripping voltammetry. Journal of Electroanalytical Chemistry, 2010, 638: 195.
    [54] J. F. Roeder, B. C. Hendrix, F. Hintermaie et al. Ferroelectric Strontium Bismuth Tantalate Thin Films Deposited by Metalorganic Chemical Vapour Deposition (MOCVD). Journal of the European Ceramic Society, 1999, 19: 1463.
    [55] E. O. Jorge, M. M. M. Neto, M. M. Rocha. A mercury-free electrochemical sensor for the determination of thallium (I) based on the rotating-disc bismuth film electrode. Talanta, 2007, 72: 1392.
    [56] Arístides Alberich, Núria Serrano, Cristina Arino et al. Bismuth film electrodes for the study of metal thiolate complexation: An alternative to mercury electrodes. Talanta, 2009, 78: 1017.
    [57] Dan Du, Xiuping Ye, Jiande Zhang et al. Cathodic electrochemical analysis of methyl parathion at bismuth-film-modified glassy carbon electrode. Electrochimica Acta, 2008, 53: 4478.
    [58] R. Segura, M. I. Toral, V. Arancibia. Determination of iron in water samples by adsorptive stripping voltammetry with a bismuth film electrode in the presence of 1-(2-piridylazo)-2-naphtho. Talanta, 2008, 75: 973.
    [59] G. H. Hwang, W. K. Han, J. S. Park et al. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta, 2008, 76: 301.
    [60] Linyuan Cao, Jianbo Jia, Zhenhui Wang. Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes. Electrochimica Acta, 2008, 53: 2177.
    [61] W. Siriangkhawut, S. Pencharee, K. Grudpan et al. Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode. Talanta, 2009, 79: 1118.
    [62] N. Serrano, A. Alberich, J. M. Diaz-Cruz et al. Signal splitting in the stripping analysis of heavy metals using bismuth film electrodes: Influence of concentration range and deposition parameters. Electrochimica Acta, 2008, 53: 6616.
    [63] R. Dansby-Sparks, J. Q. Chambers, Zi-Ling Xue. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes. Analytica Chimica Acta, 2009, 643: 19.
    [64] W. F. Pacheco, E. M. Miguel, G. V. Ramos et al. Use of hydrogen peroxide to achieve interference-free stripping voltammetric determination of copper at the bismuth-film electrode. Analytica chimica acta, 2008, 625: 22.
    [65] C. Prior, C. E. Lenehan, G. S. Walker. Utilising gallium for enhanced electrochemical copper analysis at the bismuth film electrode. Analytica Chimica Acta, 2007, 598: 65.
    [66] L. Lin, S. Thongngamdee, J. Wang. Adsorptive stripping voltammetricmeasurements of trace uranium at the bismuth film electrode. Analytica Chimica Acta, 2005, 535: 9.
    [67] A. Charalambous, A. Economou. A study on the utility of bismuth-film electrodes for the determination of In (III) in the presence of Pb (II) and Cd (II) by square wave anodic stripping voltammetry. Analytica Chimica Acta, 2005, 547: 53.
    [68] E. A. Hutton, S. B. Hocevar, L. Mauko et al. Bismuth film electrode for anodic stripping voltammetric determination of tin. Analytica Chimica Acta, 2006, 580: 244.
    [69] E. A. Hutton, S. B. Hocevar, B. Ogorevc et al. Bismuth film electrode for simultaneous adsorptive stripping analysis of trace cobalt and nickel using constant current chronopotentiometric and voltammetric protocol. Electrochemistry Communications, 2003, 5: 765.
    [70] J. Wang, D. Lu, S. Thongngamdee et al. Catalytic adsorptive stripping voltammetric measurements of trace vanadium at bismuth film electrodes. Talanta, 2006, 69: 914.
    [71] G. Kefala, A. Economou, M. Sofoniou. Determination of trace aluminium by adsorptive stripping voltammetry on a preplated bismuth-film electrode in the presence of cupferron. Talanta, 2006, 68: 1013.
    [72] Minli Yang, Zhanjun Zhang, Zhongbo Hu et al. Differential pulse anodic stripping voltammetry detection of metallothionein at bismuth film electrodes. Talanta, 2006, 69: 1162.
    [73] S. B. Hocevar, I. Svancara, K. Vytras et al. Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochimica Acta, 2005, 51: 706.
    [74] M. Morfobos, A. Economou, A. Voulgaropoulos. Simultaneous determination of nickel (II) and cobalt (II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode. Analytica Chimica Acta, 2004, 519: 57.
    [75] E. O. Jorge, M. M. Rocha, I. T. E. Fonseca et al. Studies on the stripping voltammetric determination and speciation of chromium at a rotating-disc bismuth film electrode. Talanta, 2010, 81: 556.
    [76] Ziying Guo, Feng Feng, Yanxia Hou et al. Quantitative determination of zinc in milkvetch by anodic stripping voltammetry with bismuth film electrodes. Talanta, 2005, 65: 1052.
    [77] J. A. Rodriguez, E. Barrado, Y. Castrillejo et al. Validation of a tubular bismuth film amperometric detector determination of diclofenac sodium by multisyringe flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 47.
    [78]董绍俊,车广礼,谢远武.化学修饰电极,北京:科学出版社, 2003.
    [79] H. D. Abruna,P. Denisevich,M. Umauna et al, Rectifying Interfaces Using Two-Layer Films of Electrochemically Polymerized Vinylpyridine and Vinylbipyridine Complexes of Ruthenium and Iron on Electrodes. J Am Chem Soc. 1981, 103: 127.
    [80] G. X. Cao, O. Jimenez, F. Zhou. Nafion-Coated Bismuth Film and Nafion-Coated Mercury Film Electrodes for Anodic Stripping Voltammetry Combined On-Line with ICP-Mass Spectrometry. J Am Soc Mass Spectrom, 2006, 17: 945.
    [81] He Xu, Liping Zeng, Dekun Huang et al. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes. Food Chemistry, 2008, 109: 834.
    [82] F. Torma, M. Kadar, K. Toth et al. Nafion/2, 2-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry. Analytica chimica acta, 2008, 619: 173.
    [83] Yun Wu, Nian Bing Li, Hong Qun Luo. Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly (p-aminobenzene sulfonic acid) film electrode. Sensors and Actuators B, 2008, 133: 677.
    [84] S. Legeai, O. Vittori. A Cu/Nafion/Bi electrode for on-site monitoring of trace he -avy metals in natural waters using anodic stripping voltammetry:An alternative to mercury-based electrodes. Analytica Chimica Acta, 2006, 560: 184.
    [85] Lin Jiang, Yuane Wang, Jiawang Ding et al. An ionophore-Nafion modifiedbismuth electrode for the analysis of cadmium (II). Electrochemistry Communications, 2010, 12: 202.
    [86] Xue Ying Xie, Hong Qun Luo, Nian Bing Li. Determination of azo compounds by differential pulse voltammetry at a bismuth/poly (p-aminobenzene sulfonic acid) film electrode and application for detection in food stuffs. Journal of Electroanalytical Chemistry, 2010, 639: 175.
    [87] G. Kefala, A. Economou. Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry. Analytica Chimica Acta, 2006, 576: 283.
    [88] Yang Wang, Zaiqing Liu, Guojun Yao et al. Determination of cadmium with a sequential injection lab-on-valve by anodic stripping voltammetry using a nafion coated bismuth film electrode. Talanta, 2010, 80: 1959.
    [89] A. Z. Simoes, M. P. Cruz, A. Ries et al. Ferroelectric and piezoelectric properties of bismuth titanate thin films grown on different bottom electrodes by soft chemical solution and microwave annealing. Materials Research Bulletin, 2007, 42: 975.
    [90] A. Watcharapasorn, P. Siriprapa, S. Jiansirisomboon. Grain growth behavior in bismuth titanate-based ceramics. Journal of the European Ceramic Society, 2010, 30: 87.
    [91] S. Zhong, J. Wang, H. K. Liu et al. Influence of alloying with bismuth on electrochemical behaviour of lead-calcium-tin grid alloys. Journal of Power Sources, 1997, 66: 107.
    [92] A. Z. Simoes, M. A. Ramirez, A. Ries et al. Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method. Materials Research Bulletin, 2006, 41: 1461.
    [93] Pingxiong Yang, Meirong Shi, Sumei Qin et al. Optical and electric properties of strontium bismuth tantalate thin films. Materials Letters, 2007, 61: 2687.
    [94] Y. J. Kang, T. H. Ghong, Y. W. Jung et al. Optical properties of bismuth niobate thin films studied by spectroscopic ellipsometry. Thin Solid Films, 2010.
    [95] L. M. Goncalves, C. Couto, P. Alpuim et al. Optimization of thermoelectricproperties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films, 2010, 518: 2816.
    [96] Chien-Neng Liao, Tong-Her She. Preparation of bismuth telluride thin films through interfacial reaction. Thin Solid Films, 2007, 515: 8059.
    [97]朱明霞,马永钧,康敬万等,稀土掺杂普鲁士蓝化学修饰电极上过氧化氢的伏安性质研究,西北师范大学学报(自然科学版), 1998, 34(3): 38.
    [98]周秀英,周敏,付周周等,铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶钌(Ⅱ)的电催化氧化研究.西北师范大学学报:自然科学版, 2007, 43(1): 54.
    [99]付周周,周秀英,任小娜等.对硝基苯酚在铕离子掺杂类普鲁士蓝化学修饰玻碳电极上的电化学行为及分析测定.分析试验室, 2008, 27(4): 29.
    [100]付周周,任小娜,周秀英等. 2, 4, 6-三硝基苯酚在掺杂了铕(Ⅲ)离子的类普鲁士蓝膜修饰的玻碳电极上的电催化还原反应.理化检验–化学分册, 2009, 45(3): 270.
    [101]马永钧,付周周,任小娜等. 2, 4-二硝基苯酚在类普鲁士蓝修饰电极上的电化学行为及分析应用研究.分析化学, 2008, 36(2): 241.
    [102] Yong Jun Ma, Yu Ying Pan, Wei Feng Wang et al. Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes. Chinese Chemical Letters, 2010, 21: 337.
    [103]侯秀芳,宋青云,杨海青等.复合汞膜阳极溶出法检测树叶上的附着铅.安徽农业科学, 2008, 36 (23): 9846.
    [104]宋青云,马永钧,周敏等.铕离子掺杂类普鲁士蓝复合汞膜电极的制备及溶出分析特性.分析测试学报, 2009, 28(5): 555.
    [1]臧树良.稀散元素化学与应用.北京:中国石化出版社, 2008, 31.
    [2] S. H. Gilani,Y. Alibhai. Teratogenicity of metels to chick embryos. J Oxicol Environ Health, 1990, 30(1): 23.
    [3]周景道,沈求一,沈乃葵.分光光度法测定铟新进展.淮北煤师院学报, 1996, 17(4): 78.
    [4]李慧芝,周长利,赵阳.巯基葡聚糖凝胶分离富集分光光度法测定微量铟的研究.冶金分析, 2003, 23(5): 12.
    [5]谭政之.示波极谱连续测定微量镓、铟.分析化学, 1982, 10(9): 525.
    [6]杨军红.石墨炉原子吸收光谱法测定高温合金中痕量铟.光谱实验室, 2000, 17(2): 176.
    [7]赵敬中,孙德志.微分吸附计时电位法测定矿石中微量铟.冶金分析, 2004, 24(4): 37.
    [8] A. M. Bond. 200 years of practical electroanalytical chemistry: past, present and future directions illustrated by reference to the on-line, on-stream and off-line determination of trace metals in zinc plant electrolyte by voltammetric and potentiometric techniques. Anal Chim Acta, 1999, 400 (1-3): 333.
    [9] F. Lo Coco, P. Monotti, V. Fiecchi et al. Determination of lead (II) and cadmium (II) in hard and soft wheat by derivative potentiometric stripping analysis. Anal Chim Acta, 2000, 409(1-2): 93.
    [10]向翠丽,费锡明,李俊华等. Nafion修饰玻碳电极伏安法测定痕量铟.分析实验室, 2006, 25(2): 19.
    [11] J. Wang, J. Lu, S. B. Hocevar et al. Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Anal Chem, 2000, 72: 3218.
    [12] S. Legeai, K. Soropogui, M. Cretinon. Economic bismuth-film microsensor for anodic stripping analysis of trace heavy metals using differential pulse voltammetry. Anal Bioanal Chem, 2005, 383: 839.
    [13] A. Economou. Bismuth-film electrodes: recent developments and potentialities for electroanalysis. Trends in Analytical Chemistry, 2005, 24(4): 334.
    [14] A. Charalambous, A. Economou. A study on the utility of bismuth-filmelectrodes for the determination of In (Ⅲ) in the presence of Pb (Ⅱ) and Cd (Ⅱ) by square wave anodic stripping voltammetry. Analytica Chimica Acta, 2005, 547: 53.
    [15]公维磊,杜晓燕,王舒然等.预镀铋膜修饰铂电极差分脉冲溶出伏安法测定痕量铅、镉.分析化学, 2008, 36(2): 177.
    [16] R. Pauliukaite, R. Metelka, I. Svancara. Carbon paste electrodes modified with Bi2O3 as sensors for the determination of Cd and Pb. Anal Bioanal Chem, 2002, 374(6): 1155.
    [17]宋青云,马永钧,周秀英等.铕离子掺杂普鲁士蓝复合汞膜电极上替硝唑的方波伏安法测定.西北师范大学学报(自然科学版), 2007, 43(5): 54.
    [18] N. Serrano, A. Alberich, J. M. Diaz-Cruz et al. Signal splitting in the stripping an -alysis of heavy metals using bismuth film electrodes: Influence of concentration range and deposition parameters. Electrochimica Acta, 2008, 53: 6616.
    [19] S. E. Ward Jones, S. H. Zheng, C. A. Jeffrey et al. Stripping voltammetry of bismuth at Au(111): Mathematical modelling and numerical simulation. Journal of Electroanalytical Chemistry, 2008.
    [20]董邵俊,车广礼,谢远武.化学修饰电极.北京:科学出版社, 1995, 267.
    [1] Ashley I Bush. Metals and neuroscience. Current Opinion in Chemical Biology, 2000, 4: 184.
    [2] W. Maret, Y. Li. Coordination dynamics of zinc in proteins. ChemRev, 2009, 109: 4682.
    [3] J. K. Ketterman, Y. V. Li. Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus. J Neurosci Res, 2008, 86: 422.
    [4] S. W. Suh. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation. J Neurosci Methods, 2009, 177: 1.
    [5]陈明改.锌与健康.广东微量元素科学, 1996, 3 (11): 29.
    [6]曾文芳,吴龙,杨忠乔等.牛奶中乳糖和果糖离子色谱电化学修饰法测定.中国卫生检验杂志, 2008, 18 (2): 810.
    [7] Pengju Jiang, Zijian Guo. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coordination Chemistry Reviews, 2004, 248: 205.
    [8] L. C. Costello, R. B. Franklin. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer, 2006, 5: 17.
    [9]陈清,卢国程.微量元素与健康.北京:北京大学出版社, 1989, 159.
    [10] G. Gumus, H. Filik,B. Demirata. Determination of bismuth and zinc in pharmaceuticals by first derivative UV-Visible spectrophotometry. Analytica Chimica Acta, 2005, 547: 138.
    [11] E. G. P. da Silva, A. C. do N. Santos, A. C. S. Costa et al. Determination of manganese and zinc in powdered chocolate samples by slurry sampling using sequential multi-element flame atomic absorption spectrometry. Microchemical Journal, 2006, 82: 159.
    [12] M. Ghaedi, H. Tavallali, A. Shokrollahi et al. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1,3-propanedimine chelates. Journal of Hazardous Materials, 2009, 166: 1441.
    [13]张万明,张林,罗茜等. FAAS法测定硫酸中的铜、铁和锌.光谱实验室, 2007, 24(2): 142.
    [14] O. Mestek, J. Kominkova, R. Koplik et al. Determination of zinc in plant samples by isotope dilution inductively coupled plasma mass spectrometry. Talanta, 2001, 54: 927.
    [15]李建平,彭图治,张雪君等.铋膜电极电位溶出法测定痕量铅、镉、锌.分析化学, 2002, 30(9), 1092.
    [16]马政,郭子英.铋膜电极溶出伏安法测定苍耳子中锌的含量.光谱实验室, 2009, 26(1): 5.
    [17] A. Crew, D. C. Cowell, J. P. Hart. Development of an anodic stripping voltammetric assay, using a disposable mercury-free screen-printed carbon electrode, for the determination of zinc in human sweat. Talanta, 2008, 75: 1221.
    [18] J. Wang, J. Lu, S. B. Hocevar et al. Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Anal Chem, 2000, 72(14): 3218.
    [19] G. H. Hwang, W. K. Han, J. S. Park et al. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta, 2008, 76: 301.
    [20] A. Economou. Bismuth-film electrodes: recent developments and potentialities f or electroanalysis. Trends in Analytical Chemistry, 2005, 24(4): 334.
    [21]宋青云,马永钧,周秀英等.铕离子掺杂普鲁士蓝复合汞膜电极上替硝唑的方波伏安法测定[J].西北师范大学学报:自然科学版, 2007, 43(5): 54.
    [22]董邵俊,车广礼,谢远武.化学修饰电极.北京:科学出版社, 1995, 267.
    [1]王秀丽,赵一署等.光度法测定异烟肼.化学世界, 1996, 7: 377.
    [2]张正奇,曹私祥,何小梅等.原子吸收分光光度法测定异烟肼.分析科学学报, 1996, 12(1): 52.
    [3]赵延清,许林,李华侃.钼磷酸杂多蓝分光光度法测定异烟肼含量.光谱实验室, 2008, 25(3): 376.
    [3]杨维平,张琰图,章竹君.高效液相色谱-化学发光法研究异烟肼和利福平.化学学报, 2003, 61(2): 303.
    [4]金鸣,黄河,陈新山.反相高效液相色谱法测定血浆及尿液中的异烟肼.色谱, 2002, 20(5): 442.
    [5]王朝虹,王志萍.高效液相色谱-质谱联用测定异烟肼.刑事技术, 2008, 4: 65.
    [6]杭菊英,周智明,赵道远等.浊点萃取-高效液相色谱法同时测定药片与尿样中异烟肼、利福平和吡嗪酰胺.分析化学, 2009, 37(6): 845.
    [7]盛若虹.间接原子吸收光谱法测定异烟肼的含量.光谱实验室, 2010, 27(1): 331.
    [8]张维平,杨光,郎惠云.流动注射梯度稀释-原子吸收光谱法间接测定异烟肼.分析试验室, 2003, 22(6): 26.
    [9]赵伟军,赵道远,杨明敏等.衍生极谱法测定血清中的异烟肼.分析试验室, 2008, 27(9): 86.
    [10] P. C. Ioannou. A simple and rapid fluorimetric method for the microdeterminatio -n of sonicotinic acid hydrazid. Talanta, 1987, 34(10): 857.
    [11]宋正华,吕继宏.流动注射抑制化学发光法测定异烟肼.光谱学与光谱分析, 2001, 21(4): 47.
    [12]刘丽君,郑行望,章竹君.电化学发光分析法测定异烟肼.分析化学, 2003, 31(9): 1112.
    [13]王金利,章竹君,吴柯等.毛细管电泳-化学发光法测定人血清中的异烟肼.分析试验室, 2009, 28(6): 17.
    [14]顾雪凡,郑行望.基于电催化还原化学发光法检测异烟肼的高灵敏方法.分析试验室, 2007, 26(9): 6.
    [15] M. C. Sanfeliu Alonso, L. Lahuerta Zamora et al. Flow-injection withchemiluminescence detection for the determination of iproniazid. Analytica Chimica Acta, 2001, 437: 225.
    [16]吕家根,章竹君,罗利荣等.在线自发电源激发的流动注射电致化学发光测定异烟肼.化学学报, 2002, 61(6): 950.
    [17]李惠梅,汪尔康.液相色谱电化学检测抗结核药物-异烟肼.分析化学, 1993, 21(5): 550.
    [18]夏昊云.异烟肼的电化学测定.科技信息, 2008, 30: 376.
    [19]鲁双云,于春梅,姜启玉等.异烟肼在电化学预处理玻碳电极上的电化学行为及其痕量测定.南通大学学报(医学版), 2006, 26 (1): 1.
    [20]瞿万云,王宏,吴康兵.异烟肼在多壁碳纳米管修饰电极上的电化学行为及电化学测定.分析化学, 2005, 33(10): 1431.
    [21]罗立强,汪振辉,周漱萍.阴极溶出伏安法测定异烟肼的研究.分析试验室, 1998, 17(1): 9.
    [22]姚慧琴,史可人,高作宁.铂电极上二茂铁甲基季铵盐电催化氧化异烟肼的电化学及其动力学性质研究.分析测试学报, 2007, 26(3): 339.
    [23]金根娣,杨阿喜,张跃.铋膜玻碳电极阳极溶出伏安法测定异烟肼的研究.化工时刊, 2001, 12: 35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700