膜化学修饰电极的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是当前电化学、电分析化学方面十分活跃的研究领域。目前已应用于生命科学、环境科学、分析科学、材料科学等方面。膜化学修饰电极是在电极表面进行分子设计,修饰在电极表面的媒介体可加速氧化还原中心在电极表面的电子传输过程以实现电催化反应。化学修饰电极广泛应用于难以实现电子转移的慢过程,例如:生物分子的电催化、无机粒子的电催化等。由于电极具有特定的化学和电化学性质,膜化学修饰电极大大地丰富了电化学的电极材料,拓宽了电化学的研究领域。
     聚合物膜含电活性中心浓度高,有三维可利用的势场,性能稳定,不溶或不熔且修饰方法简便,因此它一出现就迅速发展为化学修饰电极的研究重点。氨基酸是生物体的最基本的物质,又因含有氨基和羧基两种官能团而具有许多独特的性质,利用化学法或电话学法将氨基酸修饰到电极表面,在测定金属离子、生物分子、有机污染物等方面显示了其独特的优越性,得到了广泛的应用;自组装作为制备有机超膜的一种新型技术越来越受到广大学者的关注,在过去的几十年里,自组装膜(Self-assembled monolayer,SAMS)是构膜分子通过分子间及其与基体材料间的物理化学作用而自发形成的,是一种热力学稳定、排列规则有序的自组装膜。它具有均匀一致,高密堆积和低缺陷等特征,并能预先设计,通过精密的化学控制获得特定的功能;超分子的识别和催化作用是它的两个基本的性质,利用超分子的这两个性质将受体构筑成功能膜修饰在电极界面上,制成各种功能的修饰电极具有广阔的前景和实际意义。
     本文主要利用电化学聚合的修饰方法把特定的修饰体修饰到电极表面,制备了多种具有特定功能的修饰电极,研究了其电催化、选择、吸附富集等性能,并用于实际样品的分析测定。论文包括五部分工作:
     第一部分:制备了聚L-谷氨酸/铁氰根修饰电极,探讨了电极的制备与使用的最佳条件,研究了镉离子在该修饰电极上的电化学行为。实验表明:修饰电极在0.1mol/LHCl中对Cd~(2+)有灵敏的伏安响应,线性范围4.0×10~(-9)~3.0×10~(-5)mol/L,检出险可达2.5×10~(-9)mol/L。
     第二部分:制备了聚L-组氨酸/铁氰根修饰电极,探讨了电极的制备与使用的最佳条件,研究了银离子在该修饰电极上的电化学行为,实验表明:在0.1mol/LHNO_3溶液中,修饰电极对Ag~+有灵敏的电流响应,线性范围3.0×10~(-12)~7.0×10~(-6)mol/L,检测下限可达1.0×10~(-13)mol/L,用于测定水样中银的含量结果令人满意。
     第三部分:制备了聚甘氨酸/铁氰根修饰电极,探讨了电极的制备与使用的最佳条件,研究了铅离子在该修饰电极上的电化学行为,实验表明:在0.1mol/LHNO_3溶液中,修饰电极对pb~(2+)有灵敏的电流响应,线性范围1.0×10~(-9)~7.0×10~(-6)mol/L,检测下限可达8.6×10~(-10)mol/L,用于水样中铅含量的测定,结果令人满意。
     第四部分:制备了聚苯丙氨酸/铁氰根修饰电极,探讨了电极的制备及使用的最佳条件,研究了抗坏血酸在该修饰电极上的电化学行为,实验表明:在pH5.6的PBS溶液中,修饰电极对Vc有良好的电化学响应,线性范围4.0×10~(-7)~2.0×10~(-2)mol/L,检测下限可达2.4×10~(-7)mol/L,用于Vc片中Vc含量的测定结果令人满意。
     第五部分:制备了聚组氨酸-镍复合膜电极,探讨了电极的制备与使用的最佳条件,利用Ni(Ⅲ)/Ni(Ⅱ)的强氧化性,研究了甲醛在该修饰电极上的电化学行为,实现了对水样中甲醛的测定。线性范围5.0×10~(-7)~2.0×10~(-5)mol/L,检测下限可达2.3×10~(-8)mol/L。
Abstracts: The chemically-modified electrodes (CME) have been a most burgueoning and of the most flourish research realms in the electrochemistry and electroanalytic chemistry. It was for the moment widely appied in many case such as life sicence, envioronment sicence, energy source sicence, analytic sicence, electronics and meterial science. The film chemicaly modified electrodes are prepared by desigining the electrodes surface on the molecule level and immobilizing the molecules, ion and polymers of the specifically chemical and electrochemical functions. The mediator modified on the surface of electrode can accomplish the electrocatalytic reactions by accelerating electron transferring between redox centers and electrode surface. The eletrocatalysis of the modified electrode is an enormous impetus for its development and is widely used in the slow electron transferring processes, which isn't easily realized, such as the electroanalysis of biomolecules, orgnic compounds and inognic ions. With specially chemical and electrochemical functions the modified electrode enriched the electrode materials and expanded the reseach fields of the electrochemistry.
     The preparations of the polymer films are very simple. The polymer film modified electrodes also have many other choiceness characters which have been widely synthesized; the polymer films usually have chemical, mechanical and electrochemical stability; the thickness of the film can be changed. So the polymer film modified electrode have very good development foreground on the application or research. Self-assembly as a new technique for the application of orgnic ultitrafilm was applied in various research fields by more and more investigations. Self-assembled monolayer (SAMS) is a kind of single molecular layer which deposited on the surface of the monolayer is that the molecules in the monolayer haxe a common direction, which is the molecules are well organized and oriented. It's well know that calixarenes are a good group of cavity-shaped cyclic molecules comprising phonel units linked via alkylidene group. They process special cavity structure and thus are able to form host-guest inclusion complexes with a variety of molecules selectivity, if calixarenes weremodified on the electrode to form chemically membrance-modified electrodes, some molecules with electrochemical characters may be separated each other.
     In our papers, we made several modified electrodes with special functions by electrochemically polymerization, we also reseach the functions of these electrodes, such as the ability of electroanalyse, slection and adsorption. At the same time we use these modified electrode to determine the real products. The whole paper includes five parts,
     First, A new chemically modified GC electrode has been prepared by using polymeric L-giutamic acid/Fe (CN)_6~(3-) as a modifier. The best conditons of preparation and usation were studied. The result of the experiment shows that the midified electrode exerts an apparent catalytic effect on the cadmium (Ⅱ) oxidation. The stripping peak of cadmium (Ⅱ) ion on polymeric L-glutamic acid/Fe(CN)_6~(3-)/GC is proportional to concentration of cadmium(Ⅱ) ion between 4.0×10~(-9)~3.0×10~(-5)molL~(-1). The detection limit is 2.5×10~(-9)molL~(-1). The modified electrode was used to measure cadmium in water sample.
     Second, A new chemically modified GC electrode was prepared by using poly-L-histidine/Fe (CN)_6~(3-) as a modifier. The best conditions of preparation and usation were studied. The results of the experiment show that the modified electrode exerts an apparent catalytic effect on the silver (Ⅰ) ion. The oxidation stripping peak current increases linearly With the concentration of silver ion between 1.0×10~(-12)~5.0×10~(-6)molL~(-1).The detection limit is 1.0×10~(-13)molL~(-1). The modified electrode can be used to measure silver (I) ion in water.
     Third, A new Chemically modified glass carbon electrode has been prepared by using polyglycine/Fe(CN)_6~(3-) as a modifier, the electrochemical behaviors of lead (Ⅱ) ion on the modified electrode have been studied. A new approach is developed for sensitive and accurate determination of lead by the electrode. The stripping peak of lead (Ⅱ) ion on Polyglycine /Fe (CN)_6~(3-)/GC is proportional to concentration of lead (Ⅱ) ion between 1.0~10~(-9)~7.0×10~(-6)molL~(-1) and detection limit is 8.6x10~(-10)molL~(-1).
     Forth, A new chemically modified GC electrode has been prepared by using polymeric L-phenylalanine acid/Fe(CN)_6~(3-) as a modifier, the electrochemical behaviors of Ascorbic acid (Vc) on the modified electrode have been studied. A new approach is developed for sensitive and accurate determination of Vc by the electrode. The peak of Vc on polymeric L-phenylalanine acid/Fe(CN)_6~(3-)/GC is proportional to concentration of Vc between 4.0×10~(-7)~2.0×10~(-2)molL~(-1). The detection limit is 2.4×10~(-7)molL~(-1). The modified electrode has been used to measure the effective content in pills of Vc
     Fifth, A polyhistidine-Ni film modified electrode has been prepared at bare GC, and its electrochemical behavior was studied by cyclic voltammetry. The experiments confirmed the electrochemical catalytic oxidation of formaldehyde on the modified electrode. Over the rang 5.0×10~(-7)~, 2.0×10~(-5)molL~(-1), the oxidation peak currents are linearly proportional to the concentration of formaldehyde, the detection limit is 2.3×10~(-8)moiL~(-1). The modified electrode can be used to measure formaldehyde in aqueous solution.
引文
[1] 刘有芹,颜芸,沈含熙,化学研究与应用,2006,18(4):337~343
    [2] B.F. Watkins, J.R. Behling, E.Kariv, L.L. Miller, J.Am.Chem.Scc. 1975,97:3549
    [3] P.PR. Moses, L.Wier, R.W.Murray, Anal.Chem. 1975,47:1882
    [4] 董绍俊,车广礼,谢远武。化学修饰电极,科学出版社,北京,1995
    [5] J.J.Davis, R.J.Coles., A.O. Hill. J.Electroanal.Chem. 1997,440:279-282
    [6] 董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京科学出版社2003年
    [7] P.J.Britto, K.S. Santhanam, P Ajayan. J.Bioelectrochem.Bioenergetics.1996, 41:121-125
    [8] J.F. Rusling, Anal.Chem, 1984, 56:575-578
    [9] P.R. Moses, L.Wier, R.W.Murry. Anal.Chem, 1975, 47:1882-1886
    [10] 查全性,《电极过程动力学导论》,科学出版社,北京(1987)
    [11] 崔兴品,汪夏燕,张雷,林祥钦,分析化学,2002,30(1):93-96
    [12] 卢小泉,吕宝强,薛中华,分析化学,2003,31(6):686-688
    [13] 赵阁,刘快之,张澎湃等。化学研究,2003,14(2):55-58
    [14] Kangbin Wu, Junjie Fei, Shengshui Hu. Analytical Biochemistry, 2003, 318:100-106
    [15] R.F.Lane, A.T. Hubbard. Anal.Chim.Acta.1976,48,1287
    [16] 李桂敏,赵阁,叶文玉等.理化检验—化学分册,2003,39(7),386-388
    [17] 任湘菱,唐芳琼.化学学报,2002,60(3):393-397
    [18] 张住君,杨柳.分析实验室,2003,22(3):97-101
    [19] 张国林,潘献华等.物理化学学报,2003,19(6)533-537
    [20] 焦奎,吕刚,杨涛,吴俊峰.高等学校化学学报,2003,24(6)1005-1008
    [21] 叶建农,金平,金利通,方禹之.华东师范大学学报(自然科学版),1991,4
    [22] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley, New Yokr, 1980
    [23] Southamptom Electrochemistry Group, Instrumental Methods in Electrochemistry ,Ellis Horwood Limited, 1985
    [24] X.Q. Lu, B.Q. Lv, Z.H. Xue. M. Zhang, Y.S. Wang, J.W. Kang, 'Monomolecular films for eleetrocatalytic oxidation of Ascorbic acid at Gold Electrodes', Anal. Lett. 2002, 35(11): 1811-1822
    [25] S.Q. Liu, Z.Y. Tang, A.L. Bo, E.K. Wang, S.J. Dong , 'Electrochemistry of heteropolyanions in coulombically linked self -assembledmonolayers', J.Electroanal.Chem., 1998,458:87-97
    [26] R.D. Armstrong, J.Electroanal.Chem, 1986,198:177
    [27] O. Contamin, E. Levart, G.Mager, etal, J.Electroanal.Chem, 1984, 179:41
    [28] R.D. Armstrong, B. Lindholm, M. Sharp, J.Electroanal.Chem.,1986,202:69
    [29] B. Lindholm, J.Electroanal. Chem., 1990,289:85
    [30] G. Lang, G. Inzelt, Electrochim.Acta,1991,36:847
    [31] C. Ho, I.D. Raistrick, R.A. Huggins, J.Electrochem. Soc 1980,127:343
    [32] B. Lindholm, M. Sharp, R.D. Armstrong, J.Electroanal.Chem. 1987,235
    [33] M. Sharp, B. Lindholm, E.L. Linel, J.Electroanal.Chem. 1989,274:35
    [34] H.Larsson, M. Sharp, B. Lindholm, J.Electroanal.Chem. 1992,336:263
    [42] 徐冉,任延志,李薇,席时权,田颜青,“三氯锗丙酸及其衍生物自组装单分子膜的制备与表征”,高等学校化学学报,1999,20(1):97-100
    [43] 卢小泉,靳军,朱开梅,张炎,康敬万,“巯基自组装膜的表征表征及催化性能”,分析化学,2001,29(10):1178-1180
    [44] Y.N. Xia, D.Qin, Y.D. Yin, 'Surface patterning and its application in wetting dewetting studies,' Current opinion in colloid and interface science.,2001,6:54-64
    [45] M.Tominaga, A.Ohira, Y.Yamaguchi, M.Kunitake, 'Electrochemical, AFM and
    [35] 崔晓丽,蒋殿录,刁鹏等,电化学,1999,5(3):267
    [36] P.Diao. D.L.Jiang, X.L.Cui, et al, J.Elechroanal.Chem, 1999,464:61
    [37] X.L.Cui, D.L.Jiang, P.Diao. et al, J.Elechroanal.Chem, 1999,470:9
    [38] P. Diao. M.Guo, D.L. Jiang, et al, J.Elechroanal.Chem, 2000,480:59
    [39] J. Chlistunoff, D. Cliffel, A.bard, 'Electrochemistry of fullerne films', Thin. Solid. Films., 1995,257:166-184
    [40] Anne-Sophie Duwez, 'Exploting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review', Journal of electron spectroscopy and related phenomena. 2004,134:97-138
    [41] C.D. Bain, E.B. Troughton, Y.T. Tao. 'Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.' J.Am.Chem.Soc.1989,111:321-335 QCM studies on ferritin immobilized onto a self-assembled monolayer-modified gold electrode.' J.Electroana.Chem. 2004,566:323-329
    [46] L.X. Wen, R.C. Wu, E.Eschenazi, K. Papadopoulos, 'AFM of amidine latex particles attachment on mica.' Colloids and surfaces A. 2002, 197:157-165
    [47]S.J. Stranick, S.V. Atre, A.N. Parikh, M.C. Wood, D.L.Allara, N.Winograd, RS. Wiess, 'Nanometer-scal Phase separation in Mixed Composition self-assembled Monolayers.' Nanotechnology., 1996,7:438-442
    [48] 魏晓红,梁文权,潘远江,“PEG化壳聚糖DNA自组装复合物的制备、表征和体外Hela细胞传染研究”,高等学校化学学报,2003,24(11):1993-1996
    [49] 朱梓华,盛晓霞,张智军,朱涛,刘忠范,“表面增强拉曼光谱检测卟啉单分子膜”,高等学校化学学报,2001,22(8):1368-1372
    [50] M.S. Ureta-Zanartu, C. Berrios, J. Pavez, etal. Journal of Electroanalytical Chemistry 2003, 553(1):147-152
    [51] Protiva Rani Roy, Takeyoshi Okajima, akeo Ohsakao Journal of Electroanalytical Chemistry 2004,561(1):75-79
    [52] A.C.Liu, C.C.Lin D.C.Chen, et al. Anal. Chem., 1999,71(8):1549-1553
    [53] H.Ju,J.Ni,Y.Gong,H.YoChen,etal.Analytical Letters 1999,32 (15) :2951-2955
    [54] X.Q.Lin, L.Zhang, Analyst, 2001, 126(2), 367-369
    [55] 林祥钦,晋冠平,崔华.分析化学2002,30(3):271-273
    [56] 熊忠,索有瑞.光谱学与光谱分析1999,19(1):106-108
    [57] Elisabeth Sastre, Alain Nicolay, Bernard Bruguerolle et al. Journal of Electroanalytical Chemistry, 2004, 801(2) :205-209
    [58] Westermann J., Hubl W., Kaiser N. et al. Clin Lab, 2002,48(1-2):61-65
    [59] 田承云,陈静,张黎.电化学1998,4(4):418-422
    [60] Min Wei, Meixian Li, Nanqiang Li et al. Electrochimica Acta, 2002, 147(17):2673-2677
    [61] Hong Zhao, Yuzhong Zhang and Zhuobin Yuan. Analytica chimica Acta, 2002,454(1):75-79
    [62] Qian Wang and Nanqiang Li. Talanta,2001,55(6): 1219-1223
    [63] Wang Zhenhui , Zhang Hongzhong , Zhou Shupingo.Talanta, 1997,44(5):621-626
    [64] 朱爱芝,刘军,傅承光.分析测试学报1997,16(6):47-49
    [65] Shen-ming Chen and Kuo-Tzu Peng. Journal of Electroanalytical Chemistry, 2003, 547(2):179-183
    [66] Min Wei, Meixian Li, Nanqiang Li et al. Electrochimica Acta, 2002, 147(17):2673-2677
    [67] Hong Zhao, Yuzhong Zhang and Zhuobin Yuan Analytica chimica Acta, 2002, 454(1):75-80
    [68] Qian Wang and Nanqiang Li. Talanta, 2001, 55(6): 12i9-1223
    [69] Feng Li, Hua Cui, Xiang-Qin Lin, Analytica Chimica Acta, 2002, 471(2)187-194
    [70] Hong Zhao, Yuzhong Zhang, Zhuobin Yuan, Analytica Chimica Acta, 2002, 454(1)75-81
    [71] Hong Zhao, Yu zhong Zhang, Zhuo bin Yuan, Analyst, 2001, 126(3):358-360
    [72] Hong Zhao, Yuzhong Zhang, Zhuobin Yuan, Electroanalysis, 2002,14(6)445-448
    [73] 靳桂英,张玉忠,杨周生,分析试验室2004,23(4):1-4
    [74] 汪振辉,刘小花,张岱,周漱萍,分析试验室2003,22(5):54-58
    [75] C.Aleksander,M.Grzegorz,Anal.Chem.1999,71(17):1055-1061
    [76] 孙元喜,冶保献,周性尧.分析化学1998,26(5);506-510
    [77] Wen Zhang, Xuni Cao, Yunfeng Xie, et al.Journal of Electroanalytical Chemistry, 2003, 547(4):327'336
    [78] J.-M. Zen, A. Senthil Kumar and M.-R. Chang. Electrochimica Acta 2000, 45(10):1691-1700
    [79] Wenbo Song, Ying Liu, Nan Lu, et al. Electrochimica Acta 2000, 45(10): 1639-1644
    [80] Jyh-Myng Zen, I-Lang Chen, Ying Shih et al. Analytica Chimica Acta 1998, 369(1-2): 103-108
    [81] Guoyue Shi, Min Luo, Jian Xue, et al. Talanta 2001, 55(2):241 - 247
    [82] Shengshui Hu, Cuiling Xu, Gaiping Wang, et al. Talanta 2001,54(1):115-123
    [83] Roy B. Lowry, Claire E. Williams and Jim Braven Talanta 2004, 63(4):961-966
    [84] G.Inzelt, Electroanalytical Chemistry,1993,18 (1): 89-93
    [85] 孙登明,顾海鹰,俞爱民等高等学校化学学报1997,18(3):376-380
    [86] 汪振辉,张永花,周漱萍,分析化学2001,29(12),1384-1388
    [87] Takeyoshi Okajima and Takeo Ohsaka, Journal of Electroanalytical Chemistry, 2002, 534(2): 181 - 187
    [88] Jiequan Zhao,BaohongLiu,YonglongZou, et ai.Electrochimica Acta 2002, 47(12):2013 - 2017
    [89] Hiromi Kitano, Toshitaka Saito and Naoki Kanayama, Journal of Colloid and Interface Science 2002, 250(1):134-141
    [90] Vu T.Hoang,Lisa M.Rogers,Francis D'Souza, Electrochemistry Communications 2002, 4(1):50-53
    [91] Anusorn Kongkanand and Susumu Kuwabata, Electrochemistry Communications 2003, 5(2): 133-137
    [92] Katharina Gaus and Elizabeth A.H. Hall, Analytica Acta 2002, 470(1): 3-17
    [93] Dilsat Ozkan, Arzum Erdem, Pinar Kara, et al. Electrochemistry Communications 2002, 4(10):796-80
    [94] Pawel J. Kulesza, Malgorzata Chojak, Krzysztof Miecznikowski, et al. Electrochemistry Communications 2002, 4(6):510-515
    [95] Kenneth Ozoemena, Philippe Westbroek,Tebello Nyokong, Electrochemistry Communications 2001, 3(9):529-534
    [96] Daisuke Hobara, Takashi Kakiuchi, Electrochemistry Communications 2001, 3(3):154-157
    [97] Taku Yamada, Mamoru Nango and Toshiaki htsuka Journal of Electroanalytical Chemistry 2002, 528(1-2):93-102
    [98] Takahiro Nakamura, Koichi Aoki and Jingyuan Chert Electrochemistry Communications 2002, 4(6):521-526
    [99] Hellas Choi Man Yau, Shu Yuen Wu, Ho Pui Ha etal. Sensors and Actuators B: chemical 2002, 85(3): 227-231
    [100] Wenrong Yang, J.Justin Gooding,D.Brynn Hibbert Journal of Electroanalytical Chemistry, 2001,516(1): 10-16
    [101] 李德刚,陈慎豪,赵世勇等.化学学报2002,60(3):408-412
    [102] Lidong Li, Changqing Sun.Aterials Chemistry and Physics 2001, 69(1-3):45-52
    [103] Wen Zhang, Fangli Wan, Yunfeng Xie, et al.Analytica Chimica Acta 2004, 512(2):207-214
    [104] Jiming Xu, Yanping Wang, Yuezhong Xian, et al. Talanta 2003, 60(6):1123-1130
    [105] Xu-Ni Cao, Li Lin, Yu-Yan Zhou, et al. Journal of Pharmaceutical and Biomedical Analysis 2003, 32(3):505 - 512
    [106] A.M.Oliveira-Brett, M.O.F.Goulart,F.C.Abreu.Bioelectrochemistry 2002, 56(1):53-55
    [107] Abdollah Salimi and Sima Pourbeyram. Talanta 2003, 60(1):205 - 214
    [108] Xu-Ni Cao, Li L in, Yu-Yan Zhou, et al. Talanta 2003, 60(5):1063 - 1070
    [109] 高宏,罗国安,冯军.高等化学学报2001,22(3):376-379
    [110] 高宏.分析科学学报2002,18(1):70-73
    [1] 苏星光,张寒琦,梁枫等,吸收光谱法测定水中镉铜铅的在线富集预处理[J],分析测试学报,1999,18(4):32
    [2] 吴玉萍,夏振远,王丹东等,离子交换富集-火焰原子吸收光谱法测定卷烟辅料中镉[J],理化检验-化学分册,2006,42(11):897~902
    [3] 翁棣,微波消解-石墨炉原子吸收测定鲨鱼肝脏中的痕量镉,光谱学与光谱分析,2006,26(11):2147~2149
    [4] 储海虹,屠一峰,线性扫描伏安法同时测定铬、镉、铜[J],分析科学学报,2003,19(5):472~473
    [5] 杨明华,郑云法,龚楚儒,新试剂1-(2,6-F4氯-4-硝基苯)-3-(4-硝基苯)-三氮烯与镉的显色反应及应用研究[J],分析科学学报,2003,19(1):39~41
    [6] 高连斌,张浩然,梁玉珍,镉-碘-罗丹明B-三元络合物光度法测定镉[J],理化检验-化学分册,2006,42(9):719~720
    [7] 丁亚平,吴庆生,程丽娅等,金属卟啉螯合体系荧光光度法同时测定锌镉铅[J],光谱学与光谱分析,1998,18(4):472~476
    [8] 李金莲,邱海鸥,席永清等,原子荧光光谱法测定微量镉的增感效应,冶金分析,2006,26(3):21~24
    [9] 韩志辉,吕昌银,杨胜圆,Cd~(2+)-PAN-聚乙烯醇共振瑞利散射法测定水中痕量镉[J],分析科学学报,2006,22(1):77~79
    [10] 王艳玲,刘海燕,张国荣,多巴胺在聚甘氨酸修饰电极上的催化氧化及其痕量测定[J].化学传感器,2002,22(1):44~51
    [11] 马心英,赵艳霞,李军等,聚DL-缬氨酸修饰电极的制备及多巴胺的测定[J].化学传感器,2004,24(3):30~34.
    [12] 万其进,杨俊年.L-半胱氨酸自组装膜修饰电极上锌离子的电化学行为及分析应用[J].化学研究与应用.2002,14(14):427~429
    [1] Su xingguang, Zhang Hanqi, Liang Feng, etal. Journal of Instrumental Analysis, 1999, 18(4):32
    [2]Wu Yuping, Xia Zhenyuan, Wang Dandeng, etal. Phsical Testing and Chemical Analysis PartB(chemical Analysis),2006,42(11):897-902
    [3]Weng Di, Spectrocopy and Spectral Analysis,2006,26,(11):3147-2149
    [4]Chu Haihong, Tu Yifeng, Journal of Analytical Science,2003,19(5):472- 473
    [5]Yang, Minghua, Zheng Yunfa, Gong Churu.Journal of Analytical Science, 2003, 19(1):39-41
    [6]Gao Lianbin, Zhang Haoran, Liang Yuzhen, Physical Testing and Chemical Analysis PartB(Chemical Analysis),2006,42(9):719-720
    [7]Ding Yanping, Wu Qingsheng, Cheng Liya.etal.Spectroscopy and Spectral Analysis,1998,18(4):472-476
    [8]Li Jinlian, Qiu Haiou.Xi Yongqing, etal. Metallurgical Analysis,2006,26(3):21 -24
    [9]Han Zhihui, Lv Changyin, Yang Shengyuan, Journal of Analytical Science,2006,22(1):77-79
    [10]Wang Yanling, Liu Haiyan.Zhang Guorong, Chemical Sensors,2002,22(1):44-51
    [11]Ma Xinying, Zhao Yanxia, Li Jun.etal.Chemical Sensors, 2004,24(3):30- 34
    [12]Wan Qijin.Yang Junnian, Chemical Reseach and Application,2002,14(14):427-429
    [1] 熊文明,周方钦,江放明,纳米氧化铝微柱在线预富集火焰原子吸收光谱法测定痕量银,分析化学,2006,34(5):742
    [2] 吕艳阳,张玉霞,2,5-二(邻羟基苯)-1,3,4-噻二唑分光光度法测定银,冶金分析,2007,27(1):45~47
    [3] 黄荣辉,周方钦,刘正华等,固载硫杂环杯芳烃树脂分离富集-火焰原子吸收法测定痕量银,分析化学,2007,35(1):99~102
    [4] 黄秋芬,黄章杰,杨光宇等,固相萃取光度法测定水样中的银,分析化学,2004,32(4):551
    [5] 黄秋芬,李海涛,杨光宇等,2-(2-喹啉偶氮)-1,5-苯二酚光度法测定银的研究,理化检验-化学分册,2005,41(2):102~103
    [6] 吕鉴泉,何锡文,曾宪顺等,新型钳状杯[4]芳烃修饰电极对银离子的分子识别,高等学校化学学报,2003,24(3):398~403
    [7] 张胜帮,张学俊,林祥钦,乙二胺四乙酸二钠/碳糊修饰电极测定银离子,分析化学,2002,30(6):745~747
    [8] Labar C,Lamberts L V Talanta,1997,44(5):733~742
    [9] Sigel H,Martin R B.Chem Rev,1982,82(4):385~428
    [10] 孙登明,马伟,张振新,聚L-赖氨酸修饰电极循环伏安法测定药剂中的多巴胺,分析化学,2006,24(5):668~670
    [11] 孙登明,由文颖,聚L-谷氨酸修饰电极的制备及对多巴胺的测定,分析科学学报,2005,21,(5):530~532
    [12] 李昌守,葛存忘,刘战辉等,戊二醛偶联组氨酸修饰金电极测定铜离子的研究[J],传感器技术学报,2003,16(4):475~479
    [1] Xiong Wenming(熊文明),Zhou Fangqin(周方钦),Jiang Fangming(江放明),Chinese J.Anal.Chern(分析化学),2006,34(5):742
    [2] Lv Yanyang(吕艳阳),Zhang Yuxia(张玉霞),Metllurgical Analysis,2007,27(1):45~47
    [3] Huang Ronghui(黄荣辉),Zhou Fangqin(周方钦),Liu Zhenghua(刘正华)etal. Chinese J.Anal.ehem(分析化学),2007,35(1):45~47
    [4] Hu Qiufen(胡秋芬),Huang Zhangjie(黄章杰),Yang Guangyu(杨光宇),Chinese J.Anal.Chem(分析化学),2004,32(4):551
    [5] Hu Qiufen(胡秋芬),Li Haitao(李海涛),Yang Guangyu(杨光宇)etal.Physical Testing and Chemical Analysis ParlB Chemical Analysis.2005,41(2):102~103
    [6] Lu Jianquan(吕鉴泉),He Xiwen(何锡文),Zeng Xianshun(曾宪顺)etal.Chem.J.Chinese Universities(高等学校化学报),2003,24(3):398~403.
    [7] Zhang Shengbang(张胜帮),Zhang Xuejun(张学俊),Lin Xiangqin(林祥钦).Chinese J.Anal.Chem(分析化学),2002,30(6):745~747
    [8] Labar C,Lamberts L V.Talanta,1997,44(5):733~742
    [9] Sigei H,Martin R B.Chem Rev,1982,82(4):385~428
    [10] Sun Dengming(孙登明),Mawei(马伟),Zhang Zhenxin(张振新).ChineseJ.Anal.Chem(分析化学),2006,24(5):668~670
    [11] Sun Dengming(孙登明),You Wenying(由文颖).Journal of Analytical science(分析科学学报),2005,21(5):530~532
    [12] Li Changshou(李昌守),Ge Cunwang(葛存忘),Liu Zhanhui(刘战辉)etal,Chinese Journal of Sensors and Actuators(传感器技术学报),2003,16(4):475~479
    [1] 胡俐娟,单扫描示波极谱法连测铅锌[J].理化检测—化学分册,2000,36(11):517~518
    [2] 李吉生,示波极谱法连测预混和饲料中的铅和镉[J].青海国土经略,2005,(3):44~45
    [3] 刘献英,微分电位溶出分析法测铅的实验室质量控制[J].职业与健康,2004,20(10):49~50
    [4] 方宾等,微分电位溶出法连续测血清中的铜铅镉锌[J].理化检测-化学分册,1995,31(5):271~273
    [5] 陈桂贻等,直线化回归法计算催化极谱测铅的结果[J].职业与健康,2002,(8):36~37
    [6] 康秀文等,阳极溶出伏安法测染发剂中的微量铅[J].日用化学工业,1995,(4):44~46
    [7] 孙勤枢,候士峰等,电位溶出法同时测定水质和生物样品中的铜、铅、锌、镉、铁、锰[J].分析化学.1994.22(5):488~491
    [8] 淦五二,张召香,苏庆德等,氢化物发生辅助雾化火焰原子吸收法测定人发中的铅[J],光谱法与光谱分析,2004,24(4):484~486
    [9] 蒋红梅,秦永超,胡斌等,纳米Al_2O_3微柱分离/富集-石墨炉原子吸收法测定环境试样中的痕量铅和镉[J],分析科学学报,2006,22(2):193~195
    [10] 巯基壳聚糖富集火焰原子吸收光谱法测定天然水体中的Pb~(2+)和C~(d2+)[J],分析测试学报,2000,19(5):38~41
    [11] 易永等,氢化物原子荧光法测酱油和食盐中的铅[J].江西化工,2003,(4):130~132
    [12] 王树玲,吴晓东,于俊生等,荧光光谱法测定中成药中微量铅[J],分析实验室,2003,22(4):29~32
    [13] 杨元等,端视电感耦合等离子体发射光谱法测水中微量铅、砷、铜、镉、锰、铁、锌、铬[J].分析化学,1997,25(11):1361
    [14] 黄文胜,杨春海,张开辉,双硫腙修饰玻碳电极阳极溶出伏安法测定痕量 铅和镉[J],分析化学,2002,30(11):1367~1370
    [15] 王艳玲,刘海燕,张国荣,多巴胺在聚甘氨酸修饰电极上的催化氧化及其痕量测定,化学传感器,2002,22(1):44~51
    本章小结:制备了聚L-谷氨酸/铁氰根修饰电极(PLG/Fe(CN)6~(3-)/GC)、聚L-组酸/铁氰根修饰电极(PLH/Fe(CN)6~(3-)/GC)、聚甘氨酸/铁氰根修饰电极(PG/Fe(CN)6~(3-)/GC),并分别研究了其对镉离子、银离子、铅离子的电化学响应。由于膜中的活动性基团Fe(CN)6~(3-)能够吸附金属阳离子进入膜内,又因为氨基酸中的氮原子是富电子原子,能够和许多种金属离子配位,从而更进一步提高了选择性和灵敏度。
    [1] 谢红伟,紫外可见光度法测定猕猴桃中Vc的含量,食品科技,2003,(4):80~81
    [2] 肖光,范美坤,韩梅,维生素C片剂的紫外分光光度法测定,光谱实验室, 2004,21(5):947~949
    [3] 于海杰,姚文秩等,用三价铁和邻菲罗啉分光光度法测定果蔬中的Vc含量的研究,现代农业,1996,(1):36~38
    [4] 杨世忠,张连义,巴哈尔古丽·卡哈尔,应用Fe~(2+)与K3[Fe(CN)6]反应测定还原性物质Vc,分析科学学报,2005,21(5):585~586
    [5] Lou O.Luk,Kit-Sum Wong,Analyst,1987,112:1023
    [6] 李光浩,田文杰,李立源等,流动注射化学发光法分析食品中的Vc,福州大学学报(自然科学版),1999,27(S1):41~42
    [7] 逯家辉,赵航等,荧光光度法测定蔬菜中的Vc含量,食品科技,2005(2):85~86
    [8] Sood S P,Sartofi Le,WittmerD P,Hancy WG,Anal.Chem,1976,48:797
    [9] 王莉,周光明,邓传跃等,反相高效液相色谱-增敏化学发光同时测定V_(BI)和Vc,分析科学学报,2006,22(5):533~536
    [10] 薛萍,陆骏,蔡健等,HPLC法测定Vc银翘片中维生素C和对乙酰基酚的含量,中国药品标准,2006,7(1):27~29
    [11] 尹汝东,严金龙,孔岐忠,方波及普法间接测定抗坏血酸,分析化学,2001,29(6):707~709
    [12] 郑建斌,倪宏刚,张宏方,KIO_3用于药片与饮料中抗坏血酸的示波测定,应用化学,2005,22(7):726~729
    [13] 邓子峰,朱仲良,杨正炜等,二茂铁修饰青椒籽碳糊电极测定抗坏血酸,分析化学,1999,27(3):323~326
    [14] 邓培红,张军,匡云飞,普鲁士兰修饰碳黑微电极同时微分伏安法测定多巴胺和抗坏血酸,理化检验-化学分册,2006,42(11):933~935
    [1].郑鹏然.周树南主编:食品卫生全书〔M〕.北京 红旗出版社,1996:524
    [2].阙惠芬,袁陈敏.甲醛与人体健康〔J〕。环境与健康杂志,1993,10(1):46-48
    [3].Squire R.A.Cameroml.甲醛致癌可能性的危险性分析〔J〕。国外医学卫生分册,1995,(4):221-224
    [4].番绥,林燧,罗世昌.甲醛与噪声对神经行为功能影响的联合作用探讨〔J〕.劳动医学,2000,17(3):159-162
    [5].易建华,张敬华,高宇香,甲醛对小鼠精子毒作用实验〔J〕。工业卫生与职业病,2000,26(5):263-264
    [6] Murad L.H.Helaleh, Momoko Kumemura, Shin-ichtro Fujii etc..A new fluorimetric method for the determination of formaldehyde in air based on the liquid droplet sampling techrfique 〔J〕. Analyst, 2001, 126,104-408
    [7] S.Bart Jones, Christopher M.Terry, TeddE.Lister etc..Determination of submicrornolar concentrations of pormaldehyde by liquid chromatography 〔J〕.Anal.chem, 1999, 71, 4030-4033
    [8] .Xin-QiZhan, Dong-HuiZhu, HongZhengetc. Sensitive fiuorimetric determination of formaldehyde by the co-quenching effect of formaldehyde and sulfite on the fluorescence of tetra-substituted amino aluminium phthalocyanine 〔J〕 Analyst, 2000, 125, 2330-2334
    [9] 樊静,唐尧基,冯索玲,催化荧光动力学法测定纺织品中痕量甲醛,分析化学,2002,30(8):942~945
    [10] 韩丽娟,李贵荣,贺冬秀,催化动力学荧光法测定痕量甲醛,分析科学学报,2006,22(5),:582~584
    [11] 刘嘉坤,陈兰化,催化荧光动力学测定食品中痕量甲醛,分析实验室,2006,25(9):78~80
    [12] M. Possanzini, V. Di Palo, Chromatographia .Determination of formaldehyde and acetaldehyde in air by HPLC with fluorescence detection 〔J〕. 1997, 46(5-6): 235-240
    [13] Perry A.Martos and Janusz Pawliszyn. .Sampling and determination of formaldehyde using solid-phase microextraction with on-fiber derivatization 〔J〕. Anal. Chem., 1998, 70, 2311-2320
    [14] .张存玲,于剑,翟敏德 居室空气中甲醛的气相色谱法分析〔J〕。色谱,1998,16(4):363-364
    [15] 张文德,理化检验-化学分册。一种选择性快速测定饮料中游离甲醛的示波极谱法〔J〕.2000,36(2):54-57
    [16] C. Lo Paul Thomas, Charlotte D. McGill and Robert Towillo Determination of formaldehyde by conversion to hexahydrooxazolo 〔3,4-a〕pyridine in a denuder tube with recovery by thermal desorption, and analysis by gas chromatography-mass spectrometry 〔J〕。Analyst, 1997, 122:1471-1476
    [17] Wing Hong Chan, Shaomin Shuang and Martin M.F.Choio Determination of airborne formaldehyde by active sampling on 3-methyl-2-benzothiazolinone hydrazone hydrochloride-coated glass fiber filters 〔J〕. Analyst 2001, 126,720-723
    [18] Wing Hong Chan, Tian Yao Xie.Adsorpion voltammetric determination of μg 1~(-1) levels formaldehyde via in Situ derivatization with Girard's reagent T 〔J〕 Analytica ChimicaActa, 1997, 339,173-179
    [19] Stadler R, Jusys Z., Baltruschat H.Hydrogen evolution of formaldehyde on Au:-The infuce of single crystal structure and Tl-upd 〔J〕。Electrochimica Acta, 2002, 47(28), 4485-4500
    [20] Ciszewsld A., Milczarek G.Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode 〔J〕.Journal of Electroanalytical Chemistry, 1999, 469(1), 18-26
    [21] Xiao-Gang zhang ,Yasushi Murakami,Kiyochika Yahikozawa ect..Electrocatalytic oxidation of formaldehyde on ultrafine palladium particles supported on a glassy carbon 〔J〕.Electrochimica Acta, 1997,42(2),223-227
    [22] Hui yang,Tiatthong Lu,Kuanhong Xue etc..Electrocatalytic mechanism for formaldehyde oxidation on the highly dispersed gold microparticles and the surface characteristics of the electrode 〔J〕.Journal of Molecular Catalysis A:Chemical,1999, 144(2),315-321
    [23] 马玉荣,杨秋霞,李保国等.甲醛在脯氨酸膜修饰电极上的电催化氧化〔J〕。电化学2002,8(2),207-212
    [23] 杭世平主编。空气中有害物质的测定方法 第二版(M)。北京:人民卫生出版社,1986,335-336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700