燃料电池和电化学电容器纳米电极材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池(FC)和电化学电容器(EC)是目前电化学能量存储/转化领域研究开发的重点和热点。燃料电池由于具有能量转换效率高、对环境友好、容量可调等优点而受到世界各国的极大关注。电化学电容器结合了物理电容器高功率及传统电池高能量密度的优点,其应用领域广泛,已成为新型化学电源研究中的热点之一,但是无论是燃料电池还是电化学电容器,其性能表现、制造成本以及使用寿命都在很大程度上的依赖于器件的电极材料和结构。
     本论文综述了当前该两类器件电极材料的最新研究进展,并就相关电极材料制备,改性以及在这两类能量存储/转化装置中的应用进行了深入的研究,主要内容如下:
     1.采用的π-π吸附技术和热处理的方法在多壁碳纳米管上沉积Pt纳米粒子(Pt/MWCNTs)。通过透射电子显微镜(TEM)和X-射线衍射仪(XRD)等手段对Pt/MWCNTs进行了表征。电化学实验结果表明,Pt/MWCNTs对甲醇具有很好电催化氧化作用和电化学稳定性。
     2.在乙醇溶液中,将卞硫醇保护的银纳米粒子通过π-π相互作用沉积在多壁碳纳米管表面上(Ag/MWCNTs)。通过TEM和XRD等手段对Ag/MWCNTs进行了表征。电化学实验结果表明,Ag/MWCNTs对肼具有很好电催化氧化作用。
     3.以Brij 56/MnAc_2/KAc水溶液体系的六角相溶致液晶为模板,利用恒电位电沉积技术在AAO/Ti/Si模板的Ti基底上成功制备出了介孔MnO_2纳米线阵列电极。小角XRD,场发射扫描电子显微镜(FESEM)、TEM等测试证明该介孔纳米线材料具有多孔的三维结构。电化学测试表明,MnO_2纳米线阵列电极的比容量达到了496Fg~(-1)。证明这种电极在电化学电容器方面具有潜在的应用价值。
     4.在Ni(NO)_2水溶液中,通过直流电化学沉积的方法在镍网上沉积了一层Ni(OH)_2,制备出了Ni(OH)_2-Ni foam电化学电容器电极材料。通过FESEM和XRD等手段对Ni(OH)_2-Ni foam进行了表征。电化学测试表明表明,Ni(OH)_2-Ni foam的单电极比电容达到了3152 Fg~(-1),是已报道的最大的单电极比电容。进一步的研究表明,沉积温度和退火温度对Ni(OH)_2-Ni foam电极电化学性能具有明显的影响。
Fuel cell (FC) and electrochemical capacitor (EC) are two kinds of important energy storage/conversion devices that are being studied widely at present. On account of large energy conversion efficiency and green environmental conservation, PEMFC has attracted much attention all over the world. EC has already become one of the research interests related to new chemical energy sources studies because of its higher power density and longer cycle life than secondary batteries and its higher energy density compared to conventional electrical double-layer capacitors. Generally, the cost and the life of FC and EC are restricted by the material and the structure of the electrode.
     In this thesis, we have reviewed the newest development in the research of electrode materials of both FC and EC devices, prepared relevant electrode materials and explored their applications in these two kinds of devices in detail. The main content is as follows:
     1. Multi-walled carbon nanotubes (MWCNTs) were functionalized viaπ-πinteraction with benzyl mercaptan. The subsequent bonding of thiol groups with Pt offered strong adhesion of Pt nanoparticles on MWCNT surface. Thermal treatment was introduced as the essential step of catalyst preparation. The structure and morphology of the resulting Pt/MWCNT composite were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD), the results show that Pt nanoparticles were highly dispersed and effectively adhered on MWCNTs. The excellent electrocatalytic activity of the Pt/MWCNT composite for the oxidation of methanol was demonstrated by cyclic voltammetry.
     2. A simple method is devised to deposit highly monodispersed Ag nanoparticles (about 5 nm) on MWCNTs, which started from an initial modification of Ag nanoparticles with benzyl mercaptan molecules. By simply tuning the relative ratio of Ag catalyst to MWCNTs in solution, Ag/MWCNT composite with different Ag content can be achieved. The as-prepared Ag/MWCNT composite materials showed high electrocatalytic activity towards hydrazine oxidation, which was ascribed to the high dispersion of Ag nanoparticles on MWCNT surface.
     3. We report here for the first time on the synthesis of mesoporous MnO_2 nanowire array on conductive Ti/Si substrate The morphology of the material is significantly controlled by the conjunct template of anodic aluminum oxide (AAO) and the hexagonal phase of a lyotropic liquid crystalline Low-angle XRD, field emission scanning electron microscope (FESEM) and TEM studies show that the nanowire has a coarse structure, which provides a high specific surface area. Galvanostatic charge/discharge measurements reveal that this porous, three-dimensional electrode material has excellent electrochemical capacitance between potential range of -0.1-0.9 V, and a maximum specific capacitance as high as 493 F g~(-1) could be achieved in Na_2SO_4 (0.5 mol L~(-1)) solution at a charge/discharge current density of 4 A g~(-1).
     4.Ni(OH)_2 thin film with porous and three-dimensional (3D) nanostructures was simply fabricated on nickel foam substrate by direct current electrodeposition from aqueous solution of Ni(NO_3)_2. The morphology and composition of the electrodeposited layer coated on nickle network were characterized by FESEM and XRD Cyclic voltammetric, galvanostatic charge/discharge and electrochemical impedance spectroscopic measurements reveal that the as-prepared electrode material has ultrahigh capacitance between potential range of -0.05-0.45 V, and a maximum specific capacitance as high as 3152 F g~(-1) could be achieved in 3% KOH solution at a charge/discharge current density of 4 A g~(-1). The capacitive performances of Ni(OH)_2-Ni electrode are approximately dependent on the deposition temperature and the anneal temperature.
引文
[1] 严陆光,电网与水力发电进展,2008,(01).
    [2] W.R.Grove,Phil.Mag.1839,14:127.
    [3] 衣宝廉,燃料电池——原理·技术·应用,第一版,化学工业出版社,2003.
    [4] 周卫江,辛勤,孙公权,低温直接燃料电池阳极催化剂研制,中科院大连化物所毕业论文,2003,17.
    [5] A. J. Appleby, F. R. Foulkes, Fuel Cell Systems Explained, Van Nostrand Reinhold,John Wiley, 2003, pp.59-61.
    [6] 唐亚文,杨辉,陆天虹,南京师范大学学报(工程技术版),2003,4:6.
    [7] 袁青云,唐亚文,陆天虹,南京师范大学学报(自然科学版),2004,27:48.
    [8] H. Liang, H. Zhang, J. Hu, et al. Angew. Chem. Int. Ed., 2004,43:1540.
    [9] H. A. Gasteiger, N. M. Markovic, P. N. Ross, et al. J. Phys. Chem., 1994,98:617.
    [10] H. A. Gasteiger, N. M. Markovic, P. N. Ross, et al. J. Phys. Chem., 1995,99:8290.
    [11] H. A. Gasteiger, N. M. Markovic, P. N. Ross, et al. J. Phys. Chem., 1993,97:12020.
    [12] H. A. Gasteiger, N. M. Markovic, P. N. Ross, et al. J. Phys. Chem., 1995,99:16757.
    [13] A. Kabbabi, R. Faure, R. Durand, et al. J. Electroanal. Chem., 1998,444:41.
    [14] G. Chen, D. Xia, Z. Nie, et al. Chem. Mater., 2007,19:1840.
    [15] N. Wang, J. L iu, S. Liao, et al. Battery, 2006,10:371.
    [16] S. Liao, K. A. Hoimes, T. Haralampos, et al. J. Am. Chem. Soc, 2006,128:3504.
    [17] K. Shirlaine, L. Jennifer. J. Phys. Chem., 2007,111:3744.
    [18] H. A. Gasteiger, N. M. Markovic, P. N. Ross, et al. J. Phys. Chem., 1995,99:8945.
    [19] 盛江峰,马淳安,物理化学学报,2007,23:181.
    [20] N. Tian, Z. Y. Zhou, S. G. Sun, et al. Science, 2007, 316:732.
    [21] R. S. Vojislav, F. Ben, S. M. Bongjin, et al. Science, 2007, 315:493.
    [22] J. Zhang, K. Sasaki, E. Sutler, et al. Science, 2007, 315:220.
    [23] B. E. Conway, V. Birss, J. Wojtowicz, et al., Reports to continental Group, Inc.,1975-1980; D. Craig, Canadian Pat, 1985, 1:196-683.
    [24] B. E. Conway, Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications, New York: Plenum Press, 1999.
    [25] B. E. Conway, J. Electrochem Soc, 1991, 138:1.
    [26] H. A Robert, Solid State Ionics, 2000, 134:179.
    [27] E. Faggioli, P. Rena, V Danel, J. Power Sources, 1999, 84.261.
    [28] W. G. Ell, B.E Conway, W. A. Adams, J. Power Sources, 1999, 80:134
    [29] S. M. Halpin, R. L. Spker, R. M. Melms, 1996, 11:1899.
    [30] S. Sarangapani, B. V. Tilak, C. P. Chen, Materials for electrochemical capacitors. J Electrochem Soc, 1996, 143:3791.
    [31] A. F. Burke, J.Power Sources, 2000, 91:37.
    [32] 王晓峰,孔祥华,第二十四届中国化学与物理电源学术年会论文集,2000,(393).
    [33] 武文,世界电子元器件,1999,1:60.
    [34] I. Tanahashi, A. Yoshida. J. Electrochem. Soc, 1990,137:3052.
    [35] 张玲,唐冬汉,熊奇,重庆大学学报,2002,25:152.
    [36] M. A. Occhionero, R. A. Hay, R.W. Adams, et al., International Symposium on Advanced Packaging Materials. 1999, 118
    [37] 乔文明,刘郎,新型碳材料,1996,11:25.
    [38] 王建立,刘文华,电源技术,2000,24:57.
    [39] L. Chuan, A. R. James, J. Electrochem. Soc, 1999, 146:3639.
    [40] L. Bonnefoi, P. simon, J. Power Sources, 1999, 83:162.
    [41] C. C. Hu, K. H. Chang, Electrochem. Acta, 2000,45:2685.
    [42] 马仁志,魏秉庆,徐才录,清华大学学报,2000,40:7.
    [43] 江奇,卢晓英,陈召勇等,第五届全国新型碳材料学术研讨会论文集,2001,371.
    [44] T. Osaka, X. J. Liu. J. Electrochem. Soc, 1999, 14:1724.
    [45] 南俊民,杨勇,电源技术,1996,20:152.
    [46] H. Nakagawa, A. Shudo J. Electrochem Soc, 2000, 147:38.
    [47] J. H. Lim, D.J. Choi, H.K. Kim, et al, J. Electrochem. Soc, 2001,148:275.
    [48] A. Rudge, J. Davey, I. Raistrick, J.Power Sources, 1994,47:89.
    [49] J. P. Zheng, T. R.Jow, J.Electrochem. Soc, 1995, 142:L6.
    [50] Y. U. Jeong, A. Manthiram, J. Electrochem Soc, 2001, 148A189.
    [51] M. M. Wohlfahrt, J. Schenk,P M. Wilde et al.J. Power Sources, 2002,105:182.
    [52] M. A. Anderson, S. C. Pang, T. W. Chapman. J Electrochem Soc, 2000,147:444.
    [53] C. L. Kuo, M. A. Anderson, J. Electrochem. Soc, 1996,143:124.
    [54] C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc, 1998, 145:4097.
    [55] A. A. F. Grupionl, T. A. F. Lassali, J. Electrochem. Soc, 2001, 148:A1015.
    [56] H. Y. Lee, J. B. Goodenough, J. Solid State Chem., 1999,148:81.
    [57] Y. Atsuo, B. John, J. Electrochem. Soc, 1998, 145:737.
    
    [58] 景茂祥,沈湘黔,沈裕军等,矿冶工程, 2003,23:73.
    
    [59] C. Arbizzani, M. Mastragoostino, L. Meneghello, Electrochim. Acta, 1995,41:21.
    
    [60] J. C. Carlberg, O. Inganas, J. Electrochem Soc , 1997,144:L61.
    
    [61] F. Florence, G. Pascal, V. Dominique, et al., J. Electrochem. Soc, 2001, 148:A1.
    
    [62] P. N. Kumta, D. Gallet, A. Waghray, et al., J. Power Sources, 1998,72:91.
    
    [63] M. Mastragostino, C. Arbizzani, R. Paraventi, et al., J. Electrochem. Soc, 2000,147:407.
    
    [64] A. Lewandowski, M. Zajder, E. Frackowiak, et al., Electrochim.Acta, 2001,46:2776.
    
    [65] K. Jurewicz, S. Delpeux, V. Bertagna, et al., Chem. Phys. Lett., 2001,347:36.
    
    [66] A. D. Fabio, A. Giorgi, M. Mastragostino, J. Electrochem. Soc, 2001,148:845.
    [1] W. R. Grove, Phil. Mag. 1839, 14:127.
    [2] A. J. Appleby, F. R. Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1989, pp. 15-35.
    [3] A. Hoji, T. Mori, K. Kahara, et al., J. Electrochem. Soc., 1998,135:355.
    [4] J. Aragane, T. Murahashi, T. Odaka, ibid, 1988,135:844.
    [5] T. Kodama, Y. Miyazaki, A. Fukutome, et al., Proc, 3rd Interna. Symp. On Carbonate Fuel Cell Technology, D. Shores, H. Maru, I. Uchide and J.R. Selman, (eds), The Electrochemical Society, 1993, pp.106.
    [6] M. S. Wilson and S. Gottesfeld, J. Electrochem. Soc, 1992,139:L28-30.
    [7] E. J. Taylor, E. B. Anderson, N. R. K. Vilambi, ibid, 1992,139:L45-46.
    [8] M. M. P. Janssen, J. Moclhuysen, Electrochim. Acta, 1976,21:869.
    [9] M. Shibata, S. Motoo, J. Electroanal. Chem., 1985,194: 261.
    [10] M. Shibata, S. Motoo, ibid, 1986,209:151.
    [11] M. Watanabe, S. Motoo, ibid, 1985,194:275.
    [12] V. B. Hughes, R. Miles, ibid, 1983,145:87.
    [13] E. Rich and J. Heitbaum, Electrochim. Acta, 1987,32:1173.
    [14] K. Gossner and E. Mizera, J. Electroanal. Chem., 1982,140:35.
    [15] A. J. Bard, Science, 1980,207:139.
    [16] R. T. K. Baker, K. S. Kin, A. B. Emerson, et al., ibid, 1986,90:864.
    [17] J. P. Issi, L. Landger, J. Heremans, et al., Carbon, 1995,33:941.
    [18] L. M. Ang, T. S. A. Hor, G Q. Xu, et al. Carbon, 2000,38:363.
    [19] E. Reddington, A. Sapienza, B. Gurau, et al. Science, 1998,280:1735.
    
    [20] P. J. Britto, K. S. V. Santhanam, A. Rubio, et al Adv. Mater, 1998, 11:154.
    
    [21] P. M. Ajayan, Chem. Rev., 1999, 99:1787
    
    [22] A. Peigney, Ch. Laurent, E. Flahaut, et al Carbon, 2000, 39:507.
    
    [23] G. H. Gao, T. Cagin, W. A. Goddard, Naonotechnology, 1998, 9:184.
    
    [24] M. R. Pederson, J.Q. Broughton, Phys. Rev. Lett., 1992,69:2669.
    
    [25] D. L. Carrol, X. Blase, J. C. Charlier, et al Phys. Rev. Lett., 1998, 81:2332.
    
    [26] A. M. Rao, P. C. Eklund, S. Bandow, et al. Nature, 1997, 388:257.
    
    [27] R. S. Lee, H. J. Kim, J. E. Fischer, et al. Nature, 1997, 388:255
    
    [28] P. G. Collins, K. Bradley, M. Ishigami,et al. Science, 2000,287:1801.
    
    [29] J. Kong, N. R. Franklin, C. Zhou, et al Science, 2000,287:622.
    
    [30] J. P. Lu, J. Phys. Chem. Solids., 1997, 58: 1649.
    
    [31] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 1997,277:1971.
    
    [32] F. Li, Bai S. Cheng, G. Su, et al., Appl. Phys. Lett., 2000, 77:3161
    
    [33] M. F. Yu, B. S. Files, S. Arepalli, et al., Phys. Rev. Letts., 2000, 84:5552.
    
    [34] A. Star, J. F. Stoddart, D. Steuerman, et al, Angew. Chem. Int. Ed. Engl, 2001,40:1721.
    
    [35] P. M. Ajayan, O. Z. Zhou, Top. Appl. Phys., 2001, 80:391.
    
    [36] S. J. V. Frankland, A. Cagler, D. W. Brenner, et al., Mater. Res. Soc. Symp. Proc.,2001,A14.17.1:633.
    
    [37] S. J. V. Frankland, A. Cagler, D. W. Brenner, et al., J. Phys. Chem B, 2002,106:3046.
    
    [38] Z. Liu, X. Lin, J. Y. Lee, et al., Langmuir, 2002, 18: 4054.
    
    [39] C. Wang, M. Waje, X. Wang, et al., Nano lett., 2004, 345.
    
    [40] W. Li, C. Liang, W. Zhou, et al., J. Phys. Chem. B, 2003,107:6292.
    
    [41] S. Hrapovic, Y. Liu, K. B. Male, et al, Anal Chem , 2004, 76:1083.
    
    [42] H. Ajiki, T. Ando, J. Phys. Soc. Japan., 1996, 65:505.
    
    [43] J. Liu, M. J. Casavant, M. Cox, et al., Chem. Phys. Lett., 1999, 303:125.
    
    [44] L. Dai, A. W. H. Mau, Adv. Mater, 2001, 13:899.
    
    [45] Q. Chen, L. Dai, M. Gao, et al., J. Phys. Chem. B, 2001, 105:618.
    [46] L. Dai, P. Zientek, H. A. W. John. St., et al. Surf. Interface. Anal., 2000,29:46.
    
    [47] J. Sandier, M. S. P. Shaffer, T. Prasse, et al. Polymer, 1999,40:5967.
    
    [48] P. J. F. Harris, Carbon Nanotubes and Related Structure-New Materials for the Twenty-first Century. Cambridge University Press., 1999.
    
    [49] R. F. Service, Science, 1998,281:940.
    
    [50] P. Ball, Nature, 2001,414:142.
    
    [51] J. H. Hafner, C. L. Cheung, C. M. Lieber, Nature, 1999, 398:761.
    
    [52] Y. Wang, J. Ren, K. Deng, et al., Chem. Mater., 2000,12:1622.
    
    [53] D. Q. Yang, B. Hennequin, E. Sacher, Chem. Mater, 2006,18:5033.
    
    [54] V. Lordi, N. Yao, J. Wei, Chem. Mater., 2001, 13:733.
    
    [55] Z. Liu, X. Lin, J. Y. Lee, et al., Langmuir, 2002, 18:4054.
    
    [56] K. I. Han, J. S. Lee, S. O. Park, et al., Electrochim. Acta, 2004, 50:787.
    
    [57] X. Sun, R. Li, D. Villers, et al., Chem. Phys. Lett., 2003,379:99.
    
    [58] K. Jiang, A. Eitan, L. S. Schadler, et al., Nano Lett., 2003, 3:275.
    
    [59] F. B. Zhang, H. L. Li, Carbon, 2006,44:3195.
    
    [60] G. Girishkumar, M. Rettker, R. Underhile, et al., Langmuir, 2005,21:8487.
    
    [61] R. V. Hull, L. Li, Y C. Xing, et al., Chem. Mater., 2006,18:1780.
    
    [62] V. Radmilovic, H. A. Gasteiger, P. N. Ross, J. Catal., 1995, 154:98.
    
    [63] E. Antolini, F. Cardelini, J. Alloy. Compd., 2001,315:118.
    
    [64] T. K. Yong, M. Tadaoki, J Catal. 2006,238:394.
    
    [65] Y. T. Kim, K. Ohshima, K. Higashimine, et al., Angew. Chem. Int. Ed., 2006,45:407.
    
    [66] Z. L. Liu, X. Y. Ling, X. D. Su, et al., J. Phys. Chem. B, 2004, 108:8234.
    
    [67] Y. Y. Mu, H. Liang, J. Hu, et al., J. Phys. Chem. B, 2005, 109:22212.
    
    [68] V. S. Bagotzky, Y B. Vassiliev, O. A. Khazova, J. Electroanal. Chem., 1977,81:229.
    
    [69] J. Kua, W. A. Goddard III, J. Am Chem. Soc., 1999,121:10928.
    [1] S. Iijima, Nature, 1991,354:56.
    [2] S. Iijima, T. Ichihashi, Nature, 1993, 363:603.
    [3] D. S. Bethune, C. H. Kiang, M. S. deVries, et al., Nature, 1993,363:605.
    [4] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press, 1996, pp.757-869.
    [5] T. W. Ebbesen, Carbon Nanotubes: Preparation and Properties. Boca Raton: CRC Press, 1997.
    [6] P. M. Ajayan, J. C. Charlier, A. G. Rinzler, PANS, 1999, 96:14199.
    [7] B. I. Yakobson, R. E. Smalley, American Scientist, 1997, 85:324
    [8] P. J.F Harris, Carbon Nanotubes and Related Structure: New Materials for the Twenty-first Century. Cambridge: Cambridge University Press, 1999
    [9] C. Dekker, Phys. Today, 1999, 52:22.
    [10] P. M. Ajayan, Chem. Rev., 1999,99:1787.
    [11] T.W. Odom, J. L Huang, C. M. Lieber, et al., J. Phys. Chem B, 2000, 104:2794.
    [12] Y. P.Sun, K. F. Fu, Y. Lin, et al., Acc. Chem. Res., 2002, 35:1096
    [13] A. S. Arico, P. Bruce, B. Scrosati, et al., Nat. Mater., 2005,4:366
    [14] R. S. Morris, B. G. Dixon, T. Gennett, et al., J. Power Sources, 2004, 138:277.
    [15] J. H. Chen, W. Z. Li, D. Z. Wang, et al., Carbon, 2002,40:1193.
    [16] G. G Wildgoose, G E. Banks, R. G. Compton, Small, 2006,2:182.
    [17] 杜秉忱,刘长鹏,韩飞等,高等学校化学学报,2004,25:1924.
    [18] 李文震,孙公权,严玉山等,化学进展,2005,17:761.
    [19] Y. L.Yao, Y Ding, L. S. Ye, et al., Carbon, 2006,44:61.
    [20] Y H. Lin, X.L. Cui, C. Yen, et al., J. Phys. Chem. B, 2005, 109:14410.
    [21] W. Z. Li, C. H. Liang, J. S. Qiu, et al., Carbon, 2002,40:791.
    [22] C. Kim, Y. J. Kim, Y. A. Kim, et al., J. Appl. Phys., 2004, 96:5903.
    [23] X. S. Zhao, W. Z. Li, L. H. Jiang, et al., Carbon, 2004,42:3263
    [24] T. Matsumoto, T. Komatsu, K. Arai, et al., Chem. Commun., 2004, 7:840.
    [25] P.J. Britto, K. S. V. Santhanam, A. Rubio, et al., Adv. Mater, 1999, 11:154.
    [26] S.D. Thompson, L. R.Jordan, M Forsyth, Electrochim Acta, 2001,46:1657
    [27] T. Matsumoto, T. Komatsu, H. Nakano, et al., Cata. Today, 2004, 90:27.
    [28] Y Y. Mu, H. Liang, J. Hu, et al., J. Phys. Chem. B, 2005, 109:22212.
    [29] V.Lordi, N. Yao, J.Wei, Chem. Mater., 2001, 13:733.
    [30] Z. Liu, X. Lin, J. Y Lee, et al., Langmuir, 2002, 18:4054.
    [31] K.I.Han, J. S. Lee, S.O. Park, et al., Electrochim. Acta, 2004, 50:787.
    [32] X.Sun, R. Li, D. Villers, et al., Chem. Phys. Lett., 2003, 379:99
    [33] K. Jiang, A. Eitan, L. S. Schadler, et al., Nano Lett., 2003, 3:275
    [34] G Girishkumar, M. Rettker, R. Underhile, et al., Langmuir, 2005,21:8487.
    
    [35] R. V. Hull, L. Li, Y. C. Xing, et al., Chem. Mater., 2006,18:1780.
    
    [36] J. Kong, M. G Chapline, H. Dai, Adv. Mater, 2001,13:1384.
    
    [37] H. C. Choi, M. Shim, S. Bangsaruntip, et al., J. Am. Chem. Soc., 2002,124:9058.
    
    [38] B. M. Quinn, C. Dekker, S. G. Lemay, J. Am. Chem. Soc., 2005, 127:6146.
    
    [39] K. C. Chin, A. Gohel, W. Z. Chen, et al., Chem. Phys. Lett., 2005,409:85.
    
    [40] J. Shi, Z. Wang, H. L. Li, J Nanopart. Res., 2006, 8:743.
    
    [41] K. Motesharei, D. C. Myles, J. Am. Chem. Soc, 1994,116:7413.
    
    [42] C. A. Mirkin, T. A. Taton, Nature, 2000,405:626.
    
    [43] L. T. Chang, C. C. Yen, J. Appl. Polym. Sci., 1995,55:371.
    
    [44] Q. L. Feng, F. Z. Cui, T. N. Kin, J. Mater. Sci. Lett., 1999,18:559.
    
    [45] W. Fritzsche, H. Porwol, A. Wiegand, et al., Nanostruct. Mater, 1998,10:89.
    
    [46] R. J. Beuhler, R. M. Rao, J. Hrbek, et al., J. Phys. Chem. B, 2001,105:5950.
    
    [47] J. Schulz, A. Roucoux, H. Patin, Chem. Rev., 2002,102:3757.
    
    [48] B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Chem. Rev., 2004,104:3893.
    
    [49] X. Sun, Y. Luo, Mater. Lett., 2005,59:3847.
    
    [50] C. H. Walker, J. V. St. John, P. Wisian-Neilson, J. Am. Chem. Soc, 2001,123:3846.
    
    [51] G Lafaye, A. Siani, P. Marecot, et al., J. Phys. Chem. B, 2006,110:7725.
    
    [52] X. Lu, T. Imae, J. Phys. Chem. C, 2007, 111:2416.
    
    [53] A. Henglein, J Phys Chem B 1999,103:9533.
    
    [54] J. R. Scott, L. S. Baker, W. R. Everett, et al., Anal. Chem., 1997,69:2636.
    
    [55] R. L. Garrell, J. E. Chadwick, D. L. Severance, et al., J. Am. Chem. Soc, 1995,117:11563.
    
    [56] J. Huang, J. C. Hemminger, J. Am. Chem. Soc, 1993, 115:3342.
    
    [57] M. Lewis, M. Tarlov, K. Carron, J. Am. Chem. Soc, 1995,117:9574.
    
    [58] M. H. Schoenfisch, J. E. Pemberton, J. Am. Chem. Soc, 1998,120:4502.
    
    [59] K. Okitsu, H. Bandow, Y. Maeda, et al., Chem. Mater, 1996, 8.315.
    
    [60] Y. Hayashi, H. Takizawa, Y. Saijo, et al., Mater. Sci. Forum, 2005,186-487:530.
    
    [61] F. Bensebaa, T. H. Ellis, E. Kruus, et al., Langmuir, 1998,14:6579.
    [62] Y. Mizukoshi, K. Okitsu, Y. Maeda, et al., J. Phys. Chem. B, 1997,101:7033.
    
    [63] A Altomare, R. Caliandro, M. Camalli, et al., J. Appl Cryst., 2004, 37:957.
    
    [64] V. Radmilovic, H. A. Gasteiger, P. N. Ross, J. Catal., 1995, 154:98
    
    [65] V. Tzitzios, V. Georgakilas, E. Oikonomou, et al., Carbon, 2006,44:848.
    
    [66] C.-M. Yang, H. Kanoh, K. Kaneko, et al., Physica. B, 2002, 323:140.
    
    [67] G. Ovejero, J. L. Sotelo, M. D. Romero, et al., Ind. Eng. Chem. Res., 2006,45:2206.
    
    [68] Y.-D. Zhao, W.-D. Zhang, H. Chen, et al., Talanta, 2002, 58:529.
    
    [69] G. Gao, D. Guo, C. Wang, et al., Electrochem. Commun., 2007, 9:1582
    
    [70] C. Batchelor-McAuley, C. E. Banks, A. O. Simm, Jo et al., Analyst, 2006,131:106.
    
    [71] C. P. Jones, K. Jurkschat, A. Crossley, et al., Langmuir, 2007,23:9501.
    
    [72] J. Kruusma, N. Mould, K. Jurkschat, et al., Electrochem. Comm., 2007,9:2330.
    
    [73] D. J. Guo, H. L. Li et al., J. Colloid Interf. Sci., 2005, 286:274.
    [1] A. R. Huggins, Solid State Ionics, 2000, 134:179.
    [2] E. Faggioli, P. Rena, V. Danel, J. Power Sources, 1999, 84:261.
    [3] W. G. Ell, B. E. Conway, W. A. Adams, J Power Sources, 1999, 80:134.
    [4] B. E. Conway, Eletrochemical Supercapacitors, New York: Kluwer Academic Plenum Publishers, 1999.
    [5] H. Ray. Baughman, et al., Science, 2002,297:78.
    [6] 刘献明,硕士学位论文,新疆大学,2002.
    [7] Y. U. Jeong, A. Manthiram, J.Electrochem.Soc, 2002,149:1419.
    [8] N. L. Wu, Mater. Chem. Phys., 2002,75:6.
    [9] N. Li, C. R. Martin, B. Scrosati, Electrochem. Solid State Lett., 2000,3:316.
    [10] N. Li, C. R. Martin, B. Scrosati, J. Power Sources, 2001,240:97.
    [11] C. J. Patrissi, C. R. Martin, J. Electrochem. Soc, 1999,146:3176.
    [12] W. C. West, N. V. Myung, J. F. Whitacre, et al., J. Power Sources, 2004,126:203.
    [13] C.-L. Xu, S.-J. Bao, L.-B. Kong, H.-L. Li, J Solid State Chem., 2006,179:1330.
    [14] E. Frackowiak, F. Be'guin, Carbon, 2001,39:937.
    [15] C. Lin, B. N. Popov, H. J. Ploehn, J. Electrochem. Soc, 2002, 149A167.
    [16] D. Villers, D. Jobin, C. Soucy, et al., J. Electrochem Soc, 2003,150:A747.
    [17] J. I. Hong, I. H. Yeo, W. K. Paik, J. Electrochem. Soc, 2001,148.A156.
    [18] P. Soudan, J. Gaudet, D. Guay, et al., Chem. Mater., 2002,14:1210.
    [19] B. E. Conway, V. Birss, J. Wojtowicz, J. Power Sources, 1997,66:1.
    [20] P.A. Nelson, J. R. Owen, J. Electrochem. Soc, 2003,150:A1313.
    [21] C. Lin, J. A Ritter, B N. Popov, J. Electrochem. Soc, 1998, 145:4097
    [22] N. L.Wu, S.Y.Wang, C. Y. Han, et al., J Power Sources, 2003, 113:1
    [23] N. L.Wu, Mater Chem. Phys., 2002, 75:6
    [24] T. Brousse, D. Be'langer, Electrochem. Solid-State Lett., 2003, 6A244.
    [25] H. Y. Lee, J. B. Goodenough, J. Solid State Chem., 1999,144:220.
    [26] S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc, 2000, 147:444.
    [27] H. Y. Lee, S.W. Kim, H. Y. Lee, Electrochem Solid-State Lett, 2001,4:A19.
    [28] C.C. Hu, T. W. Tsou, Electrochem. Comm., 2002,4:105.
    [29] S. F. Chin, S. C. Pang, M. A. Anderson, J. Electrochem. Soc, 2002, 149A379.
    [30] M. Toupin, T. Brousse, D. Be'langer, Chem. Mater., 2002, 14:3946.
    [31] T. Brousse, M. Toupin, D. Be'langer, J. Electrochem. Soc, 2004, 151:A614.
    [32] J. Jiang, A. Kucernak, Electrochim. Acta, 2002,47:2381.
    [33] C. C. Hu, T. W. Tsou, Electrochim. Acta, 2002,47:3523.
    [34] Y. U.Jeong, A. Manthiram, J. Electrochem. Soc, 2002, 149A1419.
    [35] J.N. Broughton, M.J. Brett, Electrochem. Solid-State Lett., 2002, 5:A279.
    [36] H. Kim, B. N. Popov, J. Electrochem. Soc , 2003, 150:D56.
    [37] C. C. Hu, C. C. Wang, J. Electrochem. Soc, 2003, 150:A1079.
    [38] J. K.Chang, W. T.Tsai, J. Electrochem. Soc, 2003,150A1333.
    [39] F. Fusalba, N. El Mehdi, L. Breau, D. Be'langer, Chem. Mater., 2000, 12:2581.
    [40] R. N. Reddy, R. G. Reddy, J. Power Sources, 2003, 124:330.
    [41] 魏金明,金属腐蚀理论及应用,化学工业出版社,1984
    [42] 李春鸿,表面技术,Vol.26,No.2,1997,pp.5-7.
    [43] F. Keller, M. S. Hunter, D. L. Robinson, J.Electrochem. Soc, 1953, 100:411.
    [44] C. R. Martin, Science, 1994, 266:1961
    [45] H.Masuda, K. Fukuda, Science, 1995, 268:1466.
    [46] H. Masuda, K. Nishio, N. Baba, Jpn. J. Appl. Phys.(2), 1992, 63:1775.
    [47] H.Masuda, K. Nishio, N. Baba,Appl.Phys.Lett, 1995, 63:3155
    [48] Patrick Hoyer, N. Baba, H. Masuda, Appl.Phys Lett., 1995,66:2700
    [49] H. Masuda, M. Satoh, Jpn. J. Appl. Phys., 1996, 35:L126.
    [50] H. Masuda, H. Yamada, M. Satoh, Appl.Phys.Lett, 1997,71:2770.
    
    [51] H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys., 1998, 37.L1340.
    
    [52] H Masuda, K. Yotsuda, M. Ishida, Jpn. J. Appl. Phys., 1998, 37:L1090.
    
    [53] Patrick Hoyer, Langmuir, 1996,12:1411.
    
    [54] D. Roukevitch, T. Bigioni, M. Moskovits, et al., J. Phys. Chem., 1996,100:14037.
    
    [55] D. Roukevitch, A. A. Tager, J. Haruyama, et al., IEEE Trans on Electron Devices,1996,43:1646.
    
    [56] S Shingubara, O. Okino, Jpn. J. Appl. Phys., 1997,36:7791.
    
    [57] Z. Zhang, X. Sun, M. S. Dresselhaus, et al., Appl. Phys. Lett., 1998, 73 :1589.
    
    [58] P. R. Evans, G. Yi, W. Schwarzacher, Appl. Phys. Lett., 2000,76: 481.
    
    [59] A.I. Vorobyova, E. A. Outkina, Thin Solid Films, 1998, 324:1.
    
    [60] A. Mozalev, A. Surganov, S. Magaino, Electrochim. Acta, 1999,44:3894.
    
    [61] A. Mozalev, A. Poznyak, I. Mozaleva, et al., Electrochem. Commun., 2001, 3:299.
    
    [62] A. Mozalev, A. Surganov, H. Imai, Electrochim. Acta, 2001,46:2825.
    
    [63] D. Crouse, Y. Lo, A. E. Miller, et al., Appl. Phys. Lett., 2000,76:49.
    
    [64] J. Zou, J. Wu, Q. Zhu, et al., Bandaoti Xuebao, 2001,21:255.
    
    [65] K. Shimizu, K. Kobayashi, P. Skeldon, et al., Thin Solid Films, 1997,295:156.
    
    [66] H. Habazaki, K. Shimizu, P. Skeldon, et al., Philos. Mag. A, 1996, 73:445.
    
    [67] S. Z. Chu, K. Wada, S. Inoue, et al., J.Electrochem. Soc, 2002,149:B321.
    
    [68] O. Rabin, PR. Herz, Y.M. Lin, et al., Adv. Funct. Mater., 2003,13:631.
    
    [69] M. Tian, S. Xu, J. Wang, et al., Nano Lett., 2005,5:697.
    
    [70] M. S. Sander, L. S. Tan, Adv. Funct. Mater., 2003, 13:393.
    
    [71] Y. Lei, W.K. Chim, H. P. Sun, et al., Appl. Phys. Lett., 2005, 86:103106.
    
    [72] Y. Yang, H. Chen, Y Mei, et al., Solid State Commun., 2002,123:279.
    
    [73] Y. F. Mei, G. G. Siu, Y. Yang, et al., Acta Materialia, 2004, 52:5051.
    
    [74] S. Z. Chu, K. Wada, S. Inoue, et al., J. Phys. Chem. B, 2003,107:10180.
    
    [75] M. T. Wu, I. C. Leu, J. H. Yen, et al., J. Phys. Chem. B, 2005, 109:9575
    
    [76] S. Z. Chu, K. Wada, S. Inoue, et al., Chem. Mater., 2002, 14,4595.
    
    [77] N. Yasui, A. mada, T. Den, Appl. Phys. Lett., 2003, 83:3347.
    [78] 徐彩玲,力虎林,硅基体上纳米有序结构材料的构筑及性能研究,兰州大学毕业论文,2006,4
    [79] 张金中,王中林,刘俊等,自组装纳米结构,化学工业出版社,2005.
    [80] 王良御,廖松生,液晶化学,科学出版社,1988
    [81] J. Jang, J. Bae, Adv. Funct. Mater, 2005, 15:1877.
    [82] Q. Xu, L. Zhang, J. Zhu, J. Phys. Chem. B, 2003, 107:8294.
    [83] S. A. Miller, Y. Y. Young, C. R. Martin, J. Am. Chem. Soc, 2001,123:12335.
    [84] G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed., 2002,41:2446.
    [85] I. Honma, H.S. Zhou, D. Kundu, A. Endo, Adv. Mater, 2000, 12:1529.
    [86] F. Schuth, Chem. Mater, 2001, 13:3184
    [87] T. M. Dellinger, P. V. Braun, Chem. Mater, 2004, 16:2201.
    [88] D. Sun, A. E. Riley, A. J. Cadby, et al., Nature, 2006,441:1126.
    [89] G. S. Attard, P. N. Bartlett, N. R. B. Coleman, et al., Science, 1997,278 838.
    [90] D. D. Zhao, W. J. Zhou, H. L. Li, Chem. Mater, 2007,19:3882.
    [91] P. A. Nelson, J. M. Elliott, G. S. Attard, et al., Chem. Mater, 2002,14:524.
    [92] P. N. Bartlett, B. Gollas, S. Guerin, et al., Chem. Chem. Phys., 2002,4:3835.
    [93] E.-H. Liu, R. Ding, X.-Y. Meng, et al., J. Mater. Sci.: Mater. Electron., 2007,18:1179.
    [94] Y. G. Wang, H. Q. Li, Y Y. Xia, Adv. Mater., 2006, 18:2019.
    [1] B. E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological applications, Kluwer Academic/Plenum Press, New York, 1999, pp.11-31.
    [2] M. Winter, R. J. Brodd, Chem. Rev., 2004,104:4245.
    [3] H. Y. Lee, J. B. Goodenough, J. Solid State Chem., 1999, 144:220.
    [4] D. Liu, Q. Zhang, P. Xiao, et al., Chem. Mater., 2008,20:1376.
    [5] G. Che, B. B. Lakshmi, E. R. Fisher, et al., Nature, 1998, 393:346.
    [6] M. L. Anderson, R. M. Stroud, D. R. Rolison, Nano Lett., 2002,2:235.
    [7] C. R. Sides, C. R. Martin, Adv. Mater., 2005, 17:125.
    [8] K. H. Chang, C. C. Hu, Appl. Phys. Lett., 2006, 88:193102.
    [9] C. Niu, E. K. Sichel, R. Hoch, et al., Appl. Phys. Lett., 1997, 70:1480.
    [10] W. Sugimoto, H. Iwata, Y. Yasunaga, et al, Angew. Chem., Int. Ed., 2003,42:4092
    [11] J. P. Zheng, P J. Cygan, T. R. Jow, J. Electrochem. Soc, 1995, 142:2699.
    [12] C.-C. Hu, K.-H. Chang, M.-C. Lin, et al., Nano Lett., 2006,6 2690.
    [13] J. P. Zheng, P. J. Cygan, T. R. Jow, J. Electrochem. Soc, 1995, 142.2699.
    [14] S. C. Pang, M. A. Anderson, T. W. Chapman, J. Electrochem. Soc, 2000, 147:444
    [15] C. Lin, J. A. Ritter, B. N Popov, J. Electrochem. Soc, 1998, 145:4097
    [16] L. Cao, L. B. Kong, Y. Y. Liang, et al., Chem Commua, 2004,14:1646.
    
    [17] L. Cao, F. Xu, Y. Y. Liang, et al., Adv. Mater., 2004,16:1853.
    
    [18] P. Soudan, J. Gaudet, D. Guay, et al., Chem. Mater., 2002, 14:1210.
    
    [19] A. Zolfaghari, F. Ataherian, M. Ghaemi, et al., Electrochim. Acta, 2007, 52:2806.
    
    [20] K. W. Nam, K. B. Kim, J. Electrochem. Soc., 2002,149:A346.
    
    [21] R. N. Reddy, R. G. Reddy, J. Power Sources, 2004,132:315.
    
    [22] H. S. Kim, N. Branko, B. N. Popov, J. Power Sources, 2002,104:52.
    
    [23] J. W. Long, B. Dunn, D. R. Rolison, et al., Chem. Rev., 2004,104:4463.
    
    [24] G. Che, B. B. Lakshmi, E. R. Fisher, et al., Nature, 1998, 393:346.
    
    [25] T. Xue, C.-L. Xu, D-D. Zhao, et al., J. Power Sources, 2007,164:953.
    
    [26] D. A. Corrigan, R. M. Bendert, J. Electrochem. Soc, 1989,136:723.
    
    [27]C. C. Streinz, S. Motupally, J. W. Weidner, J. Electrochem. Soc., 1995, 142:4051.
    
    [28]C. C. Streinz, A. P. Hartman, S. Motupally, et al., J. Electrochem. Soc, 1995,142:1084.
    
    [29] P. V. Karnath, M. Dixit, L. Indira, et al., J. Electrochem. Soc, 1994,141:2956.
    
    [30] J. H. Jiang, A. Kucernak, Electrochim. Acta, 2002,47:2381.
    
    [31] B. E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological applications, Kluwer Academic/Plenum Press, New York, 1999, ch. 17,pp. 555.
    
    [32] K. C. Liu, M. A. Anderson, J. Electrochem. Soc, 1996, 143:124.
    
    [33] B. Mani, J. P. Neufville, J. Electrochem. Soc, 1988,135:800.
    
    [34] E. E. Kalu, T. T. Nwoga, V. Srinivasan, et al., J. Power Sources, 2001,92:163
    
    [35] W. Sugimoto, H. Iwata, K.Yokoshima, et al., J. Phys. Chem. B, 2005, 109:7330.
    
    [36] P. Krtil, D. Fattakhova, J. Electrochem. Soc, 2001,148:A1045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700