新型横向极板电除尘器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国工业已进入高速发展的阶段,大气污染造成的环境问题越来越严重,治理大气污染物已成为十分紧迫的任务。电除尘器由于效率高、能耗低、能处理大烟气量的高温烟气,是颗粒物污染控制设备中应用最广泛的一种,在大气环境污染控制方面起到了十分重要的作用。但由于其存在体积庞大、一次性投资高、钢材用量多、对于PM10以下微细粉尘捕集效率低等问题,严重制约了其更进一步的应用。
     从高气压(-0.1MPa)非平衡等离子体物理、气体电离放电物理学来分析,目前电除尘器存在的关键问题是电除尘器放电区域离子输运率低,使电除尘器电场中离子浓度仅为106-107/cm3左右,进而使烟尘颗粒荷电量和驱进速度低,是造成电收尘器目前存在问题的主要原因。从带电粒子的运动规律可知,离子在输运过程中需要克服电场对带电粒子的束缚力,因此提高带电粒子的动量是解决离子源输出浓度及输运项低下问题的有效方法。
     论文设计的新型横向极板电除尘器采用一种新的放电除尘结构形式,选用ω型集尘极板,并将放电极设置在迎气流的集尘极间隙出口端。由于流过放电电场的气体流速高达5m/s~20m/s,大大增加了带电粒子动能,使离子有效摆脱了电场的束缚,提高了离子输运率和离子浓度,进而有利于粉尘荷电和除尘效率的提高。
     针对电除尘器存在的问题,论文分别进行了新型横向极板电除尘器理论分析、CFD数值模拟与设计、除尘试验系统设计及试验研究四部分工作。分析了新型横向极板电除尘的相关理论,采用CFD数值技术并结合电除尘器设计方法,设计了一套1000m3/h新型横向极板电除尘试验系统,进行了电除尘器离子输运特性和除尘性能试验研究工作。同时根据数值模拟设计并结合离子输运特性和除尘性能试验的结果,改进和优化了除尘器的设计工艺和参数,设计了一套3000m3/h新型横向极板电除尘试验系统,并进行模拟烟气净化试验,研究新型横向极板电除尘器的技术性能,为该项除尘技术的应用和推广提供依据,为解决电除尘技术现存的问题提供一种有效方法。
     文中在电除尘器结构设计过程中采用计算流体力学(CFD)技术,对课题设计的新型横向极板电除尘器除尘区域内流场进行数值模拟。计算采用SIMPLE算法,用前处理软件ICEM对几何模型进行网格划分,用FLUENT流体仿真软件借助离散相模型考查烟气风速v、粉尘粒径dp、外加电压U三种因素与除尘效率之间的关系,并根据数值分析结果对新型横向极板电除尘器的设计和运行进行优化。模拟设计结果表明,电除尘器内部整体气流分布较好,集尘板间隙处风速较高,可有效减少离子复合,从而提高除尘区域中离子浓度;模拟结果发现,除尘效率随外加电压、粉尘粒径的提高而增大,烟气风速在一定范围内成为了提高除尘效率的有利因素。同时流场分布的模拟结果表明,集尘极板背面风速较小,有利于捕集灰尘。数值模拟结果表明,新型横向极板电除尘器的除尘性能较好,技术经济性较佳。
     此外,模拟设计结果表明,新型横向极板电除尘系统设计时应在灰斗中设置挡板,防止部分烟气从除尘器下部灰斗中流过,并造成二次扬尘,降低除尘器的粉尘除尘效率。当除尘器入口烟气风速v为1.2-4.4m/s时,压力损失不高,v为4.4m/s时,压力损失也只有几百帕,低于中阻力除尘设备的压力损失。为了获得较高的除尘效率,相邻平行集尘极板间距d应选定为90mm左右,除尘器入口烟气风速v为2.5-3.5m/s,外加直流电场电压U为18-20kV。
     在试验研究中,首先建立了1000m3/h试验室规模的新型横向极板电除尘系统,并进行了离子输运特性试验,考察了距放电极距离L、外加电场电压U、烟气速度v、集尘板间距d等因素对自制新型横向极板电除尘装置的离子浓度n。的影响。试验结果表明,在横向极板电除尘系统中,随着风速v的提高,增加了放电电场中离子的动量,产生的离子浓度最高可达9.12x109/cm3,与传统除尘器比较,离子浓度可提高2个数量级以上。由于除尘装置有效的提高了离子输运率,可大大增加尘粒荷电的几率,提高粉尘粒子的荷电量和驱进速度。
     此外,结合离子输运特性试验的结果,进行了模拟烟气净化试验,并考查了外加电压U、有效收尘面积A、烟气流速v、粉尘比电阻p、粉尘浓度C0和粉尘粒度dp等因素对模拟烟气除尘效率η的影响。试验结果表明,当集尘极板间距d=100mm,外加电压U=18.2kV,烟气速度v=2.85m/s,烟尘浓度Co=10.2g/m3,有效除尘面积A=1.12m2时,横向极板电除尘系统除尘效率η可达到99.21%。在保证除尘效率的同时,有效提高了电场内气流速度,对粒径在0-10μm范围内的微细尘粒去除效果良好,捕集效率在90%以上。
     依据数值模拟设计和试验研究结果,对1000m3/h新型横向极板电除尘试验系统进行了改进和优化,设计了一套3000m3/h新型横向极板电除尘试验系统,并依据该套除尘系统进行了除尘性能试验。实验结果表明:与传统结构的电除尘器相比,新型横向极板电除尘器具有较大技术优势。通过理论分析和试验结果可以看出,新型横向极板电除尘器的横截面积和有效收尘面积与传统结构电除尘器相比,缩小了将近2倍,横向极板电除尘器的体积明显减小。同时,横向极板电除尘器的烟气流速高达3.0m/s,除尘区域内气流速度是传统电除尘器的近3倍;同时荷电尘粒在除尘电场中的驱进速度比普通结构的电除尘器提高了近7倍之多,高达188.6cm/s。因此,与传统结构的电除尘器相比,本课题研究设计的新型横向极板电除尘器具有明显的技术经济优势,可有效降低耗费钢材量和一次性投资,有望解决电除尘器存在的技术问题。
Currently, while the industry of our country steped in a highly development stage, the environmental problem caused by the atomosphere pollution had became an urgent task than ever before. How to govern the atomosphere pollution turn to a urgent mission. Because the electrostatic precipitator (ESP) can remove the dust with the high temperature and high humidity, and the ESP has the enormous smoke treating capacity with less pressure loAs, so the ESP is universally accepted as a highly effective equipment. The ESP also play a important role in air pollution control field. However, due to the existence of large volume, a high investment, the amount of steel and more, low efficiency for the fine dust PM10 of the following problems, which seriously restrict its further application.
     From the high pressure (-0.1MPa) non-equilibrium plasma physics, discharge physics to analyze the gas ionization, the current key problems of ESP, is low ion transport in ESP discharge area, so that the ion concentration is only about 106-107/cm3 in the electric field of ESP, thereby enabling the dust particles charge and drift velocity is low, that is the main reason for causing the ESP current problems.
     From the motion equation of charged particles, ions in the transport process is to overcome the shackles of charged particles in the electric field strength, thereby increasing the momentum of charged particles is effective way to solving the problem of ion source output lower for ion concentration and transport items.
     New type ESP with transverse-plate using a new discharge structure, selection of co-type dust collector plates and discharge electrode set in a space welcoming gasflow output, the dust particles velocity through the discharge electric field is up to 5-20m/s, greatly increasing the momentum of charged particles, ions is out of the shackles of the electric field and the effective to improve the rate of ion transport and ion concentration, and thus to dust charged and collecting efficiency.
     In this paper, the reaarcher conduct the study on theroy analysis, numerical simulation and design by computational fluid dynamic (CFD), device design and experimental study respectively. In order to solve the ESP problem, the project designed a new type transverse plate ESP through mending and optimizing the structure of the traditional ESP.And Combined with experimental methods, the ion transport properties of the electrostatic precipitator and dust Experimental research.
     In the design process of the transverse plate ESP, the numerical simulation process was conducted by the Fluent software. The SIMPLE algorithm was uAd to calculate and the geometry model was divided by ICEM, which is one kind of pre-processing software. The relationship of gas velocity, dust particle size and voltage was examined by FLUENT software.
     Then according to the numerical simulation results, the reAarcher optimize the design and structure of the transverA plate ESP. Meanwhile, the simulation results indicated that the gas fluid inside the ESP distribute perferably, and the ion recombination was effective reduced through the high gas velocity between the dust collection plate. The results suggested that with the improvement of applied voltage and dust particle size, collection efficiency was increaAd and gas velocity became a favorable factor to improve collection efficiency in a certain range. So the ion concentration was greatly improved; the results showed that the gas velocity in the reverA of the plate is small to the benefit for collecting dust. According to the simulation results, the transverse-plate ESP has great performent in purify the dust.
     The experimental study was conducted by the Alf-designed transverA plate ESP, the ion transport properties experimental study investigated the effect of the applied voltage U, gas velocity v and the plate interval d on the ion concentration in the ESP. The experimental results indicited that the momentum of the ion increasing with the gas velocity increasing in the transverse plate ESP. The ion concentration in the system could reach 9.12×109/cm3. All of this showed that the device improved the ion generation obviously.
     Combine with the results of the ion transport properties experiment, the study carried the simulate gas purification experiment on the Alf-designed transverse-plate ESP. From the experiment results, the dust collecting efficiency can increaA to above 99.21%, when the distance ofωtype collecting plates is 40mm, initial dust density is 10.2g/m3, working voltage is 18.2kV, the area of effective dust collecting plates is 1.12m2, the gas velocity is 2.85m/s; meanwhile, the collection efficiency of fine particles (particle size distribution is 0 to 10μm) in transverse plate electrostatics precipitator system is above 90% when the other conditions remain certain. Therefore, the length, Action area and volume of ESP are reduced by Averal times compared with the conventional construction ESP and its miniaturization is realized.
     With the traditional structure of the ESP compared to the high speed transverse-plate ESP has a greater advantage.Through theoretical analysis and experimental results can be shown, high velocity transverse-plate ESP dust in the effective area of ESP compare with the traditional structure, nearly twice reduced, lateral plate significantly reduced the volume of ESP. At the same time, gas velocity can reach 3.0m/s or more in high velocity transverse-plate ESP, dust in the region is the traditional ESP up to 3 times; And the drift velocity of charged particals in the electric field is more than the raditional structure ESP of the nearly 7 times, up to 188.6cm/s. Therefore, the research design of high speed horizontal plate electrostatic precipitator technology has obvious economic advantages, the amount of steel consuming less electricity dust removal equipment to achieve the miniaturization.
引文
[1]J K Lee, S Ch Kim, J H Shin, et al. Performance evaluation of electrostatically augmented air filters coupled with a corona precharger[J], Aerosol Science Technology.2001,35 (4):785-791.
    [2]Laurentiu.Drift Velocity of Fine Particles Estimated From Fractional Efficiency Measurements in a Laboratory-Scaled Electrostatic Precipitator[J] IEEE Transactions on Industry Applications,2002,38(6):852-857
    [3]Mizuno. Electrostatic Precipitation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(10):615-624
    [4]Anatol Jaworek, Andrzej Krupa, Tadeusz Czech. Modern electrostatic devices and methods for exhaust gas cleaning:Abrief review[J]. Journal of electrostatics,2007,65(7):133-155
    [5]中国环境保护产业协会电除尘委员会.我国电除尘行业2008年发展综述[J].中国环保产业,2009,7(7):5-7
    [6]JH Kim, Lee HS, HH Kim, et al.Electrospray with electrostatic precipitator enhances fine particles collection efficiency[J]. Journal of electrostatics,2010,68 (4):305-310
    [7]B Han, HJ Kim, YJ Kim. Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion[J]. Science of the total environment,2010,408(21): 5158-5164
    [8]Haque SME, Rasul MG, Khan MMK.Fine particulate emission control by optimizing process parameters of an electrostatic precipitator.Recent advances in energy and environment, ENGLAND:Univ Cambridge,2010:223-228
    [9]Lin GY, Tsai CJ, Chen SC, et al.An Efficient Single-Stage Wet Electrostatic Precipitator for Fine and Nanosized Particle Control[J]. Aerosol science and technology,2010,44 (1):38-45
    [10]A Miller, G Frey, G King, et al.A Handheld Electrostatic Precipitator for Sampling Airborne Particles and Nanoparticles[J]. Aerosol science and technology,2010,44 (6):417-427
    [11]Wang Y, Duan Y, Yang L,et al. Mercury speciation and emission from the coal-fired power plant filled with flue gas desulfurization equipment[J]. Canadian journal of chemical engineering,2010,88(5):867-873
    [12]Zhang J. Close-to-streamline numerical study on gas velocity distribution in industrial scale electrostatic precipitator gas inlet hood[J]. Asia-pacific journal of chemical engineering,2010, 5(4):637-645
    [13]N Noda, H Makino. Influence of operating temperature on performance of electrostatic precipitator for pulverized coal combustion boiler[J]. Advanced powder technology,2010,21 (4):495-499
    [14]K Yasumoto, A Zukeran, Y Takagi, et al.Effect of Electrode Thickness for Reducing Ozone Generation in Electrostatic Precipitator[J]. Electronics and communications in japan,2010, 93 (7):24-31
    [15]纪鹿鸣.新型电尘器的应用与发展[J].硫酸工业,2003,(1):26-29
    [16]NK Meyer, A Lauber, T Nussbaumer, et al.Influence of particle charging on TEOM measurements in the preAnce of an electrostatic precipitator[J]. Atmospheric measurement techniques,2009,2 (1):81-85
    [17]O Blejan, Notingher PV, Dumitran LM, et al.Experimental Study of the Corona Discharge in a Modified Coaxial Wire-Cylinder Electrostatic Precipitator. IEEE transactions on industry applications. New Orleans:42nd Annual Meeting of the IEEE-Industry-Applications-Society, 2010,46(1):3-8
    [18]Wu KX, Zheng YQ. The Analysis and Design of Steel Plant Electrostatic Precipitator Control System baAd on IFIX.2009 international conference on measuring technology and mechatronics automation, Vol I. Zhangjiajie:International Conference on Measuring Technology and Mechatronics Automation,2009:898-900
    [19]Wu Y X, Lieberman M A. The influence of antenna configuration and standing wave effects on density profile in a large area inductive plasma source[J]. Plasma Sources Sci.Technol, 2000,(9):1256-1264
    [20]依成武,曲文明,马帅,等.提高静电除尘器粉尘驱进速度方法研究[J].环境工程,2010,28(4):49-52
    [21]白敏药,依成武,杨波,等.电除尘技术研究现状及趋势[J].环境工程学报,2007,1(8):15-19
    [22]孙健,白敏冬,毛程奇,等.粉尘的电晕荷电物理模型[J].大连海事大学物理学报,2007,3(32):108-111
    [23]周建刚,白敏冬,谷建龙,等.强电场电离等离子体输运特性研究[J].高电压技术.2006,32(2):51-53
    [24]毛程奇,白敏药,依成武,等.电收尘器中带电粒子输运特性的试验研究[J].高电压技术,2007,33(2):182-185
    [25]金国淼.除尘器[M].北京:化学工业出版社,2008
    [26]谭天诺.电除尘器[M].北京:水力水电出版社,1983
    [27]Masuda S., NonogakiY. Detection of Back Discharge in Electrostatic Precipitators[J]. Record of IEE/IAS Annual Meeting,1980.912-917
    [29]王海宁,阮金良,余汉民.电除尘器脉冲供电电源及其应用研究[J].电力环境保护,2001,17(1):13-15
    [30]白希尧,朱克明.预荷电宽极距静电收尘器应用的研究[J].工业安全与防尘,1990,(6):6-11
    [31]阪本清.净化烧结高比电阻烟尘电收尘器研究[J].环境工程,1992,9(3):16-20
    [32]T Watababe. Submicron particle agglomeration by an electrostatic agglomerato[J]r. J. Electrostatics,1995,34:367-383
    [33]J Hautanen. Electrical agglomeration of aerosolparticles in an alternating electric field[J]. Aerosol Sc.i and Techn.,1995,22:181-189
    [34]许德玄.静电除尘荷电的研究[J].环境工程,1997,15(6):25-27
    [35]向晓东,陈旺生,幸福堂,等.交变电场中电凝并收尘理论与试验研究[J].环境科学学报,2000,20(2):187-191
    [36]刘功智,荣伟东,李传贵,等.双极不对称预荷电静电增强过滤除尘技术的应用[J].中国安全科学学报,2001,11(6):62-65
    [37]王连泽,贺美陆,孟亚力.双极荷电粉尘颗粒凝聚的初步研究[J].环境工程,2002,20(3):31-35
    [38]CogheAldo,MantegnaMichele, SotgiaGiorgio. Fluid dynamic aspects of electrostatic precipatators:Turbulence characteristics in scale models[J]. J. Fluids Eng.,2003,125: 694-700
    [39]Zamankhan Parsa,AhmadiGoodarz, Fan Fa-Gung. Coupling effects of the flow and electric fields in electrostatic precipitators[J]. J. App.l Phys.,2004,96:7002-7010
    [40]K.S.P. Nikas, A.A. Varonos, G.C. Bergeles. Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator[J]. Journal of Electrostatics,2005, (63):423-443
    [41]A.A. Varonos, J.S. Anagnostopoulos, G.C. Bergeles. Prediction of the cleaning efficiency of an electrostatic precipitator[J]. Journal of Electrostatics,2002, (55):111-133
    [42]Shah M.E. Haque, M.G. Rasul, M.M.K. Khan, et al. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator[J]. Experimental Thermal and Fluid Science,2008
    [43]B. S. Choi, C. A.J. Fletcher. Computation of particle transport in an electrostatic precipitator[J]. Journal of Electrostatics,1997,40 (41):413-430
    [44]B. S. Choi, C. A. J. Fletcher. Turbulent particle dispersion in an electrostatic precipitato[J]r. Applied Mathematical Modelling,1998,22(12):1009-1030
    [45]A. R. Noorpoor, M. Sadeghi. Experimental and numerical simulation the effect of distribution plates in a mobile electrostatic precipitatory[J]. Amirkabir (Journal of Science and Technology),2003,13 (54 A):71-80
    [46]G. Skodras, S.P. Kaldis, D. Sofialidis, et al. Particulate removal via electrostatic precipitators—CFD simulation[J]. Fuel Processing Technology,2006,87:623-631
    [47]杨衡.提高电收尘器效率的气流流型优化与数值模拟[D].西安:西安建筑科技大学,2004
    [48]党小庆,袁胜利,杨春方,等.电除尘器气流分布计算流体动力学方法初步研究[J].热力发电,2005,(3):12-14
    [49]党小庆,闫东杰,马广大,等。大型电除尘器气流分布数值计算的研究和应用[J].重型机械,2007,(1):27-29
    [50]袁胜利.电除尘器气流分布计算流体动力学方法的试验研究[D].西安:西安建筑科技大 学,2006
    [51]施项.电除尘器烟道的数值模拟研究[D].合肥:合肥工业大学,2007
    [52]黄钊,邓启红,蔡慧煊.线管式静电除尘器性能研究[J].建筑热能通风空调,2007,26(3):95-98+103
    [53]J. Li, W. Cai. Study of the cut diameter of solid-gas Aparation in cyclone with electrostatic excitation[J]. Journal of Electrostatics.2004,60:15-23
    [54]Masuda et al. Electrostntic Precipitation, In:Handbook of Electrostntic ProcesAs[M], Marcel Dekker,1997:441-480
    [55]Maria Jedrusik, Juliusz B. Gajewski, Arkadiusz J. Swierczok. Effect of the particle diameter and corona electrode geometry on the particle migration velocity in electrostatic precipitators[J]. Journal of electrostatics,2001,51:245-251
    [56]J.H. Ji, G.N. Bae, et al.Effect of particle loading on the collection performance of an electret cabin air filter for submicron aerosols[J] Journal of Aerosol Science,2003,34:1493-1504
    [57]Ye Zhuang, Yong Jin Kim, Tai Gyu Lee, Pratim Biswas. Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators[J]. Journal of electrostatics,1999, 48(6):245-260
    [58]白希尧,白敏菂,满书玲.大风速电除尘器的试验研究[J].环境工程,1995,13(1):25-29
    [59]邹永平,周永安,张谷贻.横向极板电收尘器粒子驱进速度的研究[J].环境工程,1998,8(1):26-28,25
    [60]胡满银,李立峰,刘松涛.横向极板电除尘器流场的数值模拟[J].中国电机工程学报,2007,2(27):36-40
    [61]邬长福.收尘极板背风面涡流对横向电除尘器粒子收集的影响[J],环境工程,2002,20(4):39-41
    [62]陈祖云,杨胜强,邬长福,等.纵横复合收尘极板电除尘器除尘性能研究[J].安全与环境学报,2006,6(3):104-108
    [63]Liu,Linmao;LI,Jie;Wang,Haijun,Electtostatic precipitator with transverA electrodes for collecting high resistivity dust,Piscataway,NJ,USA.1996,10:2054-2058
    [64]Yi CW, Chen ZG, Ou HX, et al. Study on ESP with high gas velocity. Progress in environmental science and technology,2007,1:560-564
    [65]依成武,吴春笃,白敏药,等.高风速复合式电收尘器模拟烟气净化试验研究[J].高电压技术,2007,33(2):120-123+140
    [66]Yi Chengwu, Dou Peng, Wu Chundu, et al. Experimental study of transportion characteristic of charged particle in a laboratory scale high velocity electrostatic precipitator.2010 International Conference on Mechanic Automation and Control Engineering, 2010:2038-2042
    [67]Yi CW, Chen P, Wu CD, et al. Experimental Study on Enhancing the Concentration of Ions Generated in the Electrostatic Precipitator. Progress in environmental science and technology, 2009,2:919-923
    [68]营井秀郎(日)著,张海波,张丹,泽.等离子体电子工程学[M].北京:科学出版社,2002
    [69]B Pashaie, R Sankaranarayanan S K Dhali. Experimental Investigation of Microdischarges in a Dielectric-Barrier Discharge [J].IEEE transactions on plasma scieivce,1999, 27(1):22-23
    [70]Zhitao Zhang, Mindong Bai, and Oiaoyuan Pan.Removal of SO2 from Simulated Flue GaAs Using Non-Thermal Plasma Base Microgap Discharge[J]. J. Air & Waste Manage. Assoc., 2006,56:810-815
    [71]D. Leneman,W. Gekelman, and J. Maggs. The plasma source of the Large Plasma Device at University of California[J].Los Angeles. Rev. Sci. Instrum.2006,77:1-10
    [72]D.S. Lee, H.S. Jun, H.Y. Chang. Characterization of a high-frequency inductively coupled plasma source[J]. Thin Solid Films,2009,506:469-473
    [73]白希尧,储金宇,白敏药,等.电除尘器及其电离荷电机制的研究新进展[J].电力环境保护,2007,5(23):39-42
    [74]白敏冬,张芝涛,储金宇,等.电离放电特征参量时空演变规律及其除尘应用的基础研究[J].中国基础科学,2006,2:14-19
    [75]徐学基,诸定昌.气体放电物理[M],上海:复旦大学出版社,1998
    [76]B Eliasson, et al. Coagulation of bipolarly charged aerosols in astack coagulator[J]. J Aerosol Sci,1987,18:869-872
    [77]J Kildes.An experimental investigation for agglomeration of aerosols in alternating electric field[J]. Aerosol Sci. and Techn,1995,23:603-610
    [78]MM R Williams, Loyalka S K.Aerosol science theory and practice[J].New York:Pergamon Press,1991
    [79]孙岩洲,邱毓昌,丁卫东.电源频率对介质阻挡放电的影响[J].高电压技术,2002,28(11):43-53
    [80]庄洪春,孙鹞鸿,彭燕昌.介质阻挡放电产生等离子体技术研究[J].高电压技术,2002,28(12):57-58
    [81]N Gherardi. Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen [J].IEEE Trans on Plasma Science,2001,29(3):536-541
    [82]白希尧,白敏冬,周晓见.羟基药剂治理赤潮研究[J].自然杂志,2002,24(1):1-9
    [83]余汉民,唐敏康.双功能高效电收尘器控制电源的研究[J].通风除尘,1993
    [84]白希尧.气体放电非平衡等离子体化学脱硫脱硝理论基础研究[J].工业安全与防尘.2000,9:14-17
    [85]杨津基.气体放电[M].科学出版社,1983
    [86]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1983
    [87]冯国鸣,谭天佑译.电极几何参数,电场强度对电收尘性能的影响[M].通风除尘,1985
    [88]杨武,荣命哲.低温等离子体空气净化原理及应用[J].电工技术.2000,(3):25-28
    [89]S Masuda, S Hosokawa and XL Tu et al. Destruction of gaseous pollutants by surface-induced plasma chemical process (SPCS) [J]. IEEE Tans Indu Appl.1993,29 (4): 781-786
    [90]侯健,刘先锋,候惠奇,等.低温等离子体技术及其治理工业废气的应用[J].上海环境科学,1999,18(4):151-153
    [91]李国锋,吴彦.脉冲电晕等离子体化学(PPCP)处理有害气体反应器的研究进展[J].环境科学进展,19997(4):54-59
    [92]宫为民,朱爱民,刘辉,等.脉冲电晕放电去NO的反应途径研究[J].中国环境科学,1997,17(4):369-372
    [93]李国鼎.环境工程[M].北京:环境科学出版社,1990
    [94]Christopher R.Mclarnon. Effect of Gas Composition on the NOx Conversion Chemistry in a Plasma[J].SAE,982433
    [95]Ann C. Gentile, Mark[J]. Kushner. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams[J]. Appl. Phys.2009,78 (3):2076-2082
    [96]Anthony R Martin1, James T Shawcrossl and J Christopher Whitehead. Modelling of non-thermal plasma aftertreatment of exhaust gas streams[J]. Phys. D:Appl. Phys.2004, 37:42-49
    [97]Atkinson,R,TuazonE.C.and Carter, W.P.L. Effect of H-Atom Abstraction from the Reaction of the OH Radical with 1-Butene under Atmospheric Conditions. Int[J]. J.Chem. Kinet.,1985, 17:725-732
    [98]Martin C. Air Pollution Control Theory. McGraw-H ill,1976,7(2):159-163
    [99]Eliasson B., et a.l Coagulation of bipolarly charged aerosols in a stack coagulator[J]. J. Aeroso. Sci,1987,18:869-872
    [100]W illiamsM.M.R., Loyalka S.K.AerosolScience Theory and Practice[J]. Pergamon Press, New York,1991
    [101]黄莉群,满书玲.高风速电收尘器的试验研究[J].辽宁城乡环境科技,1996,4(9):23-25
    [102]Hautanen J. et al. Electrical agglomeration of aerosol particles in an alternating electric fild [J].Aerosol Sci and Techn,1995,22:181-189
    [103]Yi, Chengwu,Wang, Yanmin,Qu, Wenming, et al. Numerical simulation for high gas velocity electrostatic precipitator with transverA collecting plates.2010 International Conference on Mechanic Automation and Control Engineering,2010:2098-2101
    [104]依成武,王延民,白希尧,等.CFD技术在电除尘领域的应用研究进展[J].机械设计与制造,2010,(3):66-67
    [105]S.H. Kim, K.W. Lee. Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models[J]. Journal of Electrostatics,1999, (48):3-25
    [106]Y. Zhuang, Y.J. Kim, T.G. Lee, P. Biswas, et al. Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators[J]. Journal of Electrostatics,2000, (48):245-260
    [107]J.H. Park, C.H. Chun. An improved modelling for prediction of grade efficiency of electrostatic precipitators with negative corona[J]. Journal of Aerosol Science,2002, (33): 673-694
    [108]E. Lami, F. Mattachini, I. Gallimberti, et al. A numerical procedure for computing the voltage-current characteristics in electrostatic precipitator configurations[J]. Journal of Electrostatics,1995, (34):385-399
    [109]E. Lami, F. Mattachini,R. Sala, et al. A mathematical model of electrostatic field in wires-plate electrostatic precipitators[J]. Journal of Electrostatics,1997,(39):1-21
    [110]A.A. Varonos, J.S. Anagnostopoulos, G.C. Bergeles. Prediction of the cleaning efficiency of an electrostatic precipitator[J]. Journal of Electrostatics,2002, (55):111-133
    [111]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001
    [112]I. Gallimberti. Recent advancements in the physical modelling of electrostatic precipitators[J]. Journal of Electrostatics,2008, (43):219-225
    [113]H.J. Schmid, L. Vogel. On the modelling of the particle dynamics in electro-hydrodynamic flow fields:I. Comparison of Eulerian and Lagrangian modeling approach[J]. Powder Technology,2003, (136):118-126
    [114]S.H. Kim, H.S. Park, K.W. Lee. Theoretical model of electrostatic precipitator performance for collecting polydisperA particles[J]. Journal of Electrostatics,2009, (50):177-190
    [115]Shah M.E. Haque, M.G. Rasul, M.M.K. Khan, et al. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator. Experimental Thermal and Fluid Science,2008
    [116]B. S. Choi, C. A.J. Fletcher. Computation of particle transport in an electrostatic precipitator[J]. Journal of Electrostatics,1997,40 (41):413-430
    [117]B. S. Choi, C. A. J. Fletcher. Turbulent particle dispersion in an electrostatic precipitator[J]. Applied Mathematical Modelling,1998,22(12):1009-1030
    [118]A. R. Noorpoor, M. Sadeghi. Experimental and numerical simulation the effect of distribution plates in a mobile electrostatic precipitatory[J]. Amirkabir (Journal of Science and Technology),2003,13 (54 A):71-80
    [119]H. K. Versteeg, W. MalalaAkera. An introduction to computational fluid dynamics[M]北京:世界图书出版公司,2000
    [120]H.J. Schmid. On the modelling of the particle dynamics in electrohydrodynamic flow fields: II. Influences of inhomogeneities on electrostatic precipitation[J]. Powder Technology,2008, (136):135-139
    [121]杨衡.提高电收尘器效率的气流流型优化与数值模拟[D].西安:西安建筑科技大学,2004
    [122]党小庆,杨衡,赵听慰,等.利用计算流体动力学(CFD)方法研究电收尘器斜向气流分布.环境工程,2005,23(5):45-46+50
    [123]K.S.P. Nikas, A.A. Varonos, G.C. Bergeles. Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator[J]. Journal of Electrostatics,2005, (63):423-443
    [124]韩占忠Fluent液体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [125]闻建龙,陈汇龙,王军锋,等.荷电两相流动颗粒运动微分方程的建立[J].排灌机械,2003,21(4):43-45
    [126]金国淼.除尘设备.第一版[M].北京:化学工业出版社,2002
    [127]Jaworek A, Krupa A, Czech T. Modern electrostatic devices and methods for exhaust gas cleaning:a brief review[J]. Journal of Electrostatics,2007,65:255-259
    [128]黎在时.电除尘器的选型、安装与运行管理[M].电力设备,2005
    [129]郝吉明,马广大.大气污染控制工程.第二版[M].北京:高等教育出版社出版,2002
    [130]王福军.计算液体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    [131]G. Skodras, S.P. Kaldis, D. Sofialidis, et al. Particulate removal via electrostatic precipitators —CFD simulation[J]. Fuel Processing Technology,2006,87:623-631
    [132]Yi Chengwu, Dou Peng, Wu Chundu, et al. Experimental study of transportion characteristic of charged particle in a laboratory scale high velocity electrostatic precipitator.2010 International Conference on Mechanic Automation and Control Engineering, 2010:2038-2042

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700