燃煤亚微米颗粒的形成和团聚机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤锅炉排放烟气中含有大量的亚微米颗粒,富集了较多的有毒痕量元素,如Hg、As、Se、Cd 和Cr 等,由此所带来的严重环境污染问题已引起了国内外的极大关注。但是由于煤燃烧过程的复杂性、亚微米颗粒生成与排放的介观性、现有除尘装置的局限性,对于燃烧过程中亚微米颗粒的形成机理和有效控制方法的研究一直进展缓慢。因此,对燃烧中亚微米颗粒形成机理及其控制方面开展研究,定量、准确地进行相关的描述,使之能够应用于生产实践,将有助于进一步丰富和完善化石燃料燃烧机理与污染控制理论,对我国能源与环境的可持续发展产生深远的影响。
    本文首先论述燃煤亚微米颗粒的排放对人类及其居住环境所造成的严重危害,说明了研究亚微米颗粒形成机理和控制方法的重要性和必要性。从对燃煤过程中亚微米颗粒形成机理的研究方面入手,系统综述了国内外在数值模拟和实验研究方面所开展的各项工作,分析和比较相关的实验和模拟研究的优势及其不足; 在分析燃煤电站采用的常规控制方法的基础上,对最新的亚微米颗粒团聚方法(如光、声、电、磁、热等)进行分析,提出采用化学团聚促使亚微米颗粒团聚成较大颗粒后加以清除的方法,并以此作为本文的研究思路,进行系统而深入的研究工作。本文主要从以下几个方面开展研究。
    本文基于气溶胶动力学理论,模拟了燃烧过程中亚微米颗粒的形成演化过程。通过描述两类亚微米颗粒的形成:自由分子颗粒和链状分子结构的颗粒,系统分析了亚微米颗粒形成过程中成核机理、冷凝机理、凝聚机理的作用特点和规律。通过模型与不同颗粒形成实验结果的对比,充分证实了该模拟能够定量、准确地反映颗粒物的形成演化。这些工作在国内还属于较少开展的领域,该模型的运用对于认识与描述燃烧过程中亚微米颗粒的形成具有十分积极的意义。
    本文还深入研究了亚微米颗粒富集痕量元素的规律和机理。通过不同煤样的滴管炉燃烧实验,研究和分析了飞灰的主要组成元素、不同挥发性的痕量元素(以砷、铅和铬为例)在不同粒径飞灰颗粒上的富集规律,证实不同粒径颗粒的质量呈双峰分布,砷的含量分布与煤种无关,而与煤中含量、易挥发性密切相关,富集机理主要以化学吸附为主; 铬的分布主要与其赋存形态有关。针对亚微米颗粒富集痕量元素的过程中,亚微米颗粒粒径是否变化的问题,结合亚微米颗粒的形成演化模型,比较系统地分析
Plenty of sub-micron particles emitted from coal-fired boiler are enriched with many trace elements, such as Hg, As, Se, Pb, Cd, and Cr, which would do great harm to environment and mankind health。The serious pollutant problem brings the maximum attention of many science researchers. However little information about the formation mechanism of sub-micron particles and its controlling during the combustion methods was reported because of the complexity of combustion course, microcosmic of sub-micron particles formation and limitation of removing devices. Then the paper carried out systemic research about the formation and controlling of the sub-micron particles enriched with trace elements during the coal combustion, which is helpful for perfecting fossil fuel combustion mechanism and pollution controlling theory and has a far-reaching impact on continuing development of energy sources and environment.
    Firstly, this thesis discusses the serious harm of sub-micron particle emission on human and inhabitation environment, which means it important and necessary to study sub-micron particle formation and controlling method. According to the research work on the formation fundamental theories and control ways of sub-micron particles enriched with trace elements up to date in detail, their advantage and its disadvantages are systematically analyzed about the latest developments in numerical simulation and experiment study on formation theories and control ways (including electricity, lightening, sound, magnetism, heating and so on ) of sub-micron particles. A new way about adopting chemical agglomeration controlling sub-micron from combustion processes is proposed. Based on this idea, the relevant research word follows.
    Based on aerosol theory, a mathematical model about sub-micron particle formation during combustion is developed successfully and the research is lack in our country. The model describes the formation of two sub-micron particles, including free molecule and chain molecule, analyzes the effect rule of nucleation, condensation and coagulation. Through the contrast of model calculation and particle formation experimental result, the model feasibility has been validated and can rationally reflect the formation rule of sub-micron particles. So the model can direct the formation of sub-micron particles during combustion.
    In this thesis, synthetic study about the enrichment of trace elements (including As, Cr
    and Pb) and main elements of fly ash , K and so on) on different diameter of sub-micron particles are carried out. The results through drop coal combustion experiment show that particles mass of different diameter is distributing by two-apex, that As content distribution is independent of coal kinds and is relating with As volatility and content in coal. Cr distribution is main relating with existing form. So the model about the connection of particle diameter and trace element is developed. Through the calculation and validate, calculation is consistent with the test result under the condition of 0 < Kn< ∞, though the connection is not consistent with the weakening volatility of trace element. The study is of meaningful direction for describing the transferring and translation of sub-micron particle enriching with trace element. In order to study the adsorption rule of fly ash composition on As, Al2O3、CaO、MgO and SiO2 are selected and tested about As volatilization and their adsorption to As. At the same time, base on adsorption mechanism and quality diffuse theorya, the model about the adsorption of CaO to As has been developed according to absorb theory and mass pervasion theory. Test result show As vapor can easily react with Cao, MgO and make arsenic-compound. The model can discovery that As gasification rate, translation rate, temperatur, CaO transform rate and CaO particle surface area are important for absorbing As. Both CaO transform rate and CaO particle surface area are first great and after lessening. The model can well direct the study of As adsorption mechanism. A new way about adopting chemical agglomeration controlling sub-micron from combustion processes is proposed to decrease sub-micron particle emission during coal combustion. Three models are developed to study the agglomeration mechanism between sub-micron particles and atomized particles of agglomerator, including particle self-agglomerating physical model without adding agglomerators, agglomerating between ash particles and agglomerator particles, also agglomerating effect forces between ash particles and agglomerator particles, which is proved to be a very useful tool in the process. The first self-agglomerating model results show that particle number, diameter, flow rate and mass are changing with the length of agglomerating tube and the agglomeration is not obvious. The second model results are consistent with the test results and better reflect the effect rules of agglomerator. The effect force model results show that resistance and viscosity force of agglomerator particles have main effect on agglomeration processes, gravitation and elasticity force are in the next place. Finally, In allusion to the issue of efficiently controlling sub-micron particle emissions through agglomeration way in coal combustion, a minitype agglomeration of fly ash stove
    that simulated gas flow is made up in order to do experiment researches. The test results show that the agglomerator adding can greatly decrease gas concentration at the exit and that gas flux、gas concentration、agglomerator flux, PH and concentration are the important factors impacting on the agglomeration of sub-micron particle, which proves the way validity. The agglomeration way can not change running operation of boiler and removing device and is of low investment, simple technique and easy operation.
引文
[1] 陈鹏. 中国煤的分类、性质和用途. 北京:化学工业出版社, 2001: 379~391
    [2] 毛健雄, 毛健全, 赵树民. 煤的清洁燃烧. 北京:科学出版社, 1998, 1~5
    [3] 濮洪九. 推进洁净煤技术产业化是适合国情的能源结构优化措施. 杭州: 中国煤炭学会第三次洁净煤技术研讨会, 2001
    [4] 岑可法. 洁净煤燃烧发电技术报告. 杭州: 中国煤炭学会第二次洁净煤技术研讨会, 2001
    [5] 章名耀, 李大骥, 蔡宁生等.关于我国发展先进燃煤发电技术的建议.动力工程, 1994, 14(2): 1~8
    [6] Horne RA. The Chemistry Of Our Environment,John Wiley & Sons,New York,1978
    [7] 王春梅. 煤燃烧超细颗粒物生成与控制的实验研究.华中科技大学硕士学位论文, 2004
    [8] Victor H B, Margarite C, Drane R G, et al. Mortality and Ambient Fine Particles in Southwest Mexico City. Enviromental Health Perspect, 1998, 106(12): 849~854
    [9] Hornberg C, Maciuleviciute L, Seemayer N H, et al. Induction of Sister Chromatid Exchanges in Human Tracheal Epithelial Cells by the Fraction PM10 and PM2.5 of Airbone Particulate. Toxicol-lett. 1998, 96-97: 215~220
    [10] Dockery D W, Pope C, Xu X, et al. An Association Between Air Pollution and Mortality in Six US City. N J Med. 1993, 329: 1753~1759
    [11] Pope C A, Thum M J, Namboodri M M, etal. Particulate Air Pollution as a predictor of Mortality in a Prospective Study of US Adults. Am J Respire Crit Med. 1995,151: 669~674
    [12] Sloss L L, Smith I M. PM10 and PM2.5: an International Perspective. Fuel Processing Technology. 2000, 65(66): 127~141
    [13] Pekkanen J, Timonen K L, Ruuskanen J etal. Effects of Ultrafine and Fine Particles in Urban Air on Peak Respiratory Flow Among Children with Asthmatic Symptoms. Environmental Research, 1997, 74: 24~33
    [14] Committee of the Medical Effects of Air Pollution. UK. Quantification of the Effects of Air Pollution on Health in the Unite kingdom. London, UK: HMSO, UK Department of Health, 1998, 78
    [15] 魏凤, 张军营, 郑楚光, 赵海波. 煤燃烧过程中细粒子形成机理的研究. 环境污染治理技术与设备. 2004, 5(5): 5—10
    [16] Clarke L B, Sloss L L. Trace Element Emissions from Coal Combustion and Gasification. IEA Coal Research Report. 1992, 356~367
    [17] Xavier Q, Roberto J, Angel L S. Mobility of trace elements from coal and combustion wastes. Fuel, 1996, 75(7):821~838
    [18] 魏凤, 张军营, 王春梅, 郑楚光. 煤燃烧超细颗粒物团聚促进技术的研究进展. 煤炭转化, 2004, 26(3): 27~31
    [19] Ho T C, Chu H W, Hopper J R. Metal volatilization and separation during incineration. Waste Management, 1993, 13:455~466
    [20] Barton R G, Clark W D, Seeker W R. Fate of metals in waste combustion systems. Combust. Sci.and Tech., 1990, 74:327~342
    [21] Kauppinen E I, Pakkanen T A. Coal Combustion Aerosols: a field study. Environ. Sci. Technol., 1990, 24:1811~1818
    [22] Frank M, Greg B. Fate of trace elements in coal-fired power plants. Air & Waste Management, 84th Annual Meeting & Exhibition, 1991:1~22
    [23] Eric G. E, Joann S L. Fundamental studies of metal behavior during solids incineration. Combust. Sci. and Tech., 1992, 85:375~90
    [24] Senior C, Helble J J, Sarofim A F. Emission of Mercury, Trace Elements, and Fine Particles from Stationary Combustion Sources. Fuel Processing Technoloty, 2000, 65(66): 263~288
    [25] Frandsen F, Dam-Johansen K, Rasumussen P. Trace elements form combustion and gasification of coal: an equilibrium approach. Progress Energy Combustion Science, 1994, 20
    [26] 郭欣, 郑楚光, 刘迎晖等. 煤中汞, 砷, 硒赋存形态的研究. 工程热物理学报, 2001, 22(6): 763~766
    [27] Lockwood F C, Yousif S. A Model for the Particulate Matter Enrichment with Toxic Metals in Solid Fuel Flames. Fuel Processing Technology, 2000, 65-66: 439~457
    [28] Sliger R N, Kramlich J C, Marinov N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Processing Technology, 2000, 65(66): 423~438
    [29] 刘晶, 王满辉, 郑楚光. 煤燃烧中汞与含氯气体的反应机理研究. 工程热物理学 报, 2003, 24(1): 161~164
    [30] Sloss L L, Smith I M. Trace element emissions. IEA Coal Research, Printed in Gemini House, England, ISBN92-9029-344-6, 2000, 83~84
    [31] Meij R, Winkel B H Te. The emissions of SO2, Nox, PM, Trace elements and other HAPs of coal-fired power stations in the Netherlands.12th International Conference On Coal Science, 2-6 November, cairns. Australia, 2003
    [32] 郑楚光, 徐明厚, 张军营, 刘晶. 燃煤痕量元素的排放与控制. 湖北科学技术出版, 2002
    [33] 郑楚光(编). 洁净煤技术. 华中理工大学出版社, 1997
    [34] Wei Feng, Zhang Junying, Zheng Chuguang. Simulation of sub-micron particle formation and growth during combustion processes. Progress in Natural Science,2005,15(4):358-362
    [35] 张军营. 煤燃烧有害微量元素的排放与控制. 南京: 南京理工大学博士后研究工作报告, 2001
    [36] Ondov J M, Ragaini R C, Biermann A H. Elemental emissions from a coal-fired power plant. Comparison of a venturi wet scrubber system with a cold-side electrostatic precipitator.Environ. Sci. Techno., 1979, 13(5):598~607
    [37] 程俊峰.燃煤锅炉痕量元素释放、分布与排放的研究.华中科技大学博士学位论文, 2002
    [38] Clarke L B. The fate of trace elements during coal combustion and gasification: an overview. Fuel, 1996, 72(6):731~736
    [39] Xavier Q, Roberto J, Angel L S. Mobility of trace elements from coal and combustion wastes. Fuel, 1996, 75(7):821~838
    [40] Benson S A, Jones M L, Harb J N. Ash formation and Deposition, in Smoot, L. D. Eds, Fundamentals of Coal Combustion: for Clean and Efficient Use. New York: Elsevier, 1993:299~373
    [41] Quann B J, Sarofim A F. Vaporization of Refractory Oxides During Pulverized Coal Combustion, 19th. Symp. (Int.) Combustion, Combustion Institute, 1982:1429~1440
    [42] 郑楚光, 王伯春. 灰炱形成与沉积及其模拟计算. 华中理工大学学报, 1993, 21: 99~105
    [43] Yan L, Gupta R P, Wall T F. A Mathematical Model of Ash Formation during Pulverized Coal Combustion. Fuel, 2002, 81: 337~344
    [44] Lee F C C. Lockwood F C. Modelling ash deposition in pulverized coal-fired applications. Progress in Energy and Combustion Science, 1998, 25(2): 117~132
    [45] 晏蓉, 欧阳中华, 曾汉才. 电厂燃煤飞灰中重金属富集规律的实验研究. 环境科学, 1996, 16(6): 29-33
    [46] 刘晶, 郑楚光, 张军营等. 煤中易挥发痕量元素赋存形态的分析方法与实验研究. 燃烧科学与技术. 2003, 9(4): 295-299
    [47] Zhuang Y, Pratim B. Submicrometer Particle Formation and Control in a Bench-Scale Pulverized Coal Combustor. American Chemical Society, 2001, 3(27): 510~516
    [48] Thompson D, Argent B B. Prediction Of The Prenfier Gasifier And Comparison With Reported With Reported Data. Fuel, 2002, 81: 555~575.
    [49] Frandsen Flemming. Trace Elements From Combustion. PH.D Dissertation, Technical University Of Denmark DK-2800 Lyngby, Denmark, 1995.
    [50] Mueller S F, Imhoff R E. Estimates Of Particle Formation And Growth In Coal-Fired Boiler Exhaust—Ⅰ.Observations.Atmospheric Environment, 1994, 28(4): 595~602
    [51] Mueller S F, Imhoff R E. Estimates Of Particle Formation And Growth In Coal-Fired Boiler Exhaust—Ⅱ.Theory And Model Simulations.Atmospheric Environment, 1994, 28(4): 603~610
    [52] Friedlander S K. Smoke, Dust and Haze.John Wiley & Sons, New York, 1977, 122~145
    [53] Fuchs N A. The Mechanics Of Aerosols(translated By Daisley R E.and Fuchs M.)Pergamon Press, New York, 1964
    [54] Smoluchowski M V. Versuch Einer Mathematischen Theorie der Koagulationskinetik Kolloider Losungen. Z. Phys. Chem., 1918, 92: 144
    [55] Hidy G M, Brock J R.The Dynamics Of Aerocolloidal Systems, Chapter 9, Pergamon Press, Oxford, 1970
    [56] Hirschfelder J, Curtiss J, Bird R.Molecular Theory Of Gases And Liquids, John Wiley, New York, 1951
    [57] Saffman P G, Turner J S.On The Collision Of Drops In Turbulent Clouds.J.Flui Mech. 1956, 1: 16~30
    [58] Pruppacher H R, Klett J D.Microphysics Of Clouds And Precipitation.D.Reidel, The Netherlands, 1978
    [59] Turco R P, Hamill P, Toon O B, et al.A one-Dimensional Model Describing Aerosol Formation And Evolution In The Stratosphere. PartⅠ: Physical Processes And Mathematical Analogs. J. Atmos. Sci. 1979, 36: 699~717
    [60] Turco R P, Hamill P, Toon O B, et al. The Nasa-Ames Research Center Stratospheric Aerosol Model: ⅠPhysical Processes And Computational Analogs . NASA Tech.Publ. 1979, (TP)1362: iii-94,
    [61] Such S H, Brock J R. Evolution Of Atmospheric Aerosol Particle Size Distribution Via Brownian Coalgulation: Numerical Simulation. J.Aerosol Sci., 1979, 10: 581~590
    [62] Gelbard F, Seinfeld J H. Simulation Of Multicomponent Aerosol Dynamics. J. Colloid interf. Sci. 1980, 78: 485-501
    [63] Tsang T H, Brock J R. Aerosol Coagulation In The Plume From A Cross-wind Line Source. Atmospheric Environment, 1982, 16: 2229~2235
    [64] Seigneur C. A Model Of Sulfate Aerosol Dynamics in Atmospheric Plumes. Atmospheric Environment, 1982, 16: 2207~2228
    [65] Warren D R, Seinfeld J H. Simulation Of Aerosol Size Distribution Evolution In Systems With Simultaneous Nucleation, condensation, And Coagulation. Aerosol Sci. Technol., 1985, 4: 31~43
    [66] Toon O B, Turco R P, Westphal D, et al. A multidimensional Model For Aerosol:Description Of Computational Analogs. J. Atmos. Sci. 1988, 45: 2123~2143
    [67] Kim Y P, Seinfeld J H. Numerical Solution Of The Multicomponent Aerosol General Dynamic Equation. In Proc. 3rd Int. Aerosol Conf., Science, Industry, Health And Environment, Pergamon Press, Oxford, 1990, 138~141
    [68] Strom J, Okada K, Heintzenber J. On The State Of Mixing Of Particles Due To Brownian Coagulation.J. Aerosol Sci. 1992, 23: 467~480
    [69] Jacobson M Z, Turco R P, Jensen E J, et al.Modeling Coagulation Among Particles of Different Composition And Size.Atmospheric Environment, 1994, 28(7): 1327~1338
    [70] Davison R L, Natusch D F S, Wallace J R, et al. Trace Elements In Fly Ash-Dependence Of Concentration On Particle Size. Env. Sci. & Techn., 1974, 8(13): 1107~1113
    [71] Naville M, McCarthy J F, Sarofim A F. Size Fraction Of Submicrometer Coal Combustion Aerosol For Chemical Metal Analysis. Atmos. Environ., 1983, 17(12): 2599~2640
    [72] Smith R D, Campbell J A, Nielson K K. Characterization And Formation Of Submicron Particles In Coal-fired Plants. Atmos. Environ., 1979, 13:607~617
    [73] Hald H. Ligev?gtsforhold i Kulforgasningsreaktor. M. Sc.-Thesis, Dept. chem. Eng., Techn. Univ. of Denmark, 1989
    [74] Michelsen M L. Calculation Of Multiphase Ideal Solution Chemical Equilibrium. Fluid Phase Equilibria, 1989, 53: 73~80
    [75] Pedersen S B. Beregning af Kemisk Ligev?gt I Flerfasesystemer.M. Sc.-Thsis,Dept Chen. Eng., Techn. Univ. Of Denmark, 1993
    [76] Kari E.Kiocmatic Coagulation of Charged Droplcts in an Akcroacing Electric Field. Aerosol Sci and Tech, 1995, 23: 422~430
    [77] 向晓东. 现代除尘理论与技术. 北京: 冶金工业出版社, 2002
    [78] Friendlander S K 著. 常晓乐译. 烟、尘和霾[M]. 北京: 科学出版社. 1983
    [79] Eliasson B. Coagulation of Bipolarly Charged Aerosol in a Slack Coagulator[J]. J Aerosol Sci, 1987, 18: 869~872
    [80] Watanabe T. Submicron Particle Agglomeration by an Electrostatic Agglomerator[J]. J Electrostatics, 1995, 34: 367~383
    [81] Hautanen J. Electrical Agglomeration of Aerosol Particles in an Alternating Electric Field[J]. Aerosol Sci and Tech, 1995, 22: 181~189
    [82] Loffler F, Gutsch A. Numerical Simulation of The Electrically Induced Aerosol Agglomeration In The Submicron Range[c]. 6th International Symposium on agglomeration, Nagoyn, Japan, 1993
    [83] 向晓东, 陈旺生, 幸福堂等. 交变电场中电凝并收尘理论与实验研究. 环境科学学报, 2000, 20(2): 28~42
    [84] Song L, Koopmann G H, Hoffmann T L.Experimental and Numerical Analysis of Bimodal Acoustic Agglomeration. J Vibration and Acoustics, 1994, 116(4): 208~214
    [85] Michael V J, Rawling D C. Sonic Agglomeration of Aerosol Particles. Water、Air and Soil Pollution, 1976, 5: 319~334
    [86] Tiwary R, Reethof G. Numerical Simulation of Acoustic Agglomeration and Experimental Verification.Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1987, 109: 185~191
    [87] Groguss P. The Applications of Airborne and Liquid-Borne Sounds to Industrial Technology Ultrasonic. Sci. and Tech., 1964, 12:25~31
    [88] Ricra-F. Ultrasonic Agglomeration of Micron Acrosols Under Standing Wave Conditions. Journal of Sound Vibration, 1986, 110: 413~427
    [89] Reethof G. Acoustic Agglomeration of Power Plant Fly Ash for Environmental and Hot Gas Clean-up. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110: 552~558
    [90] Cheng M T, Lee P S, Berner A. Orthokinetic Agglomeration in an intense Acoustic Field. Journal of Colloid and Interface Science, 1983, 91(1): 176~187
    [91] Hoffmann T L. Experimental and Numerical Analysis of Bimodal Acoustic Agglomeration. Transactions of the ASME. Journal of Vibration and Acoustics, 1993, 115: 232~240
    [92] Rodriguez-maroto J J, Gomez-moreno F J, Martin-espigares M, et al. Acoustic Agglomeration For Electrostatic Retention Of Fly-Ashes At Pilot Scale:Influence Of Intensity Of Sound Field At Different Conditions. J. Aerosol Sci, 1996, 127: 621~622
    [93] 郑世琴, 刘淑艳, 黄虹宾等. 用分形理论处理煤飞灰颗粒在声场中的团聚现象. 燃烧科学与技术, 1999, 5(2): 168~174
    [94] Lind T, Kauppinen E I S, Srinivasachar K, et al. Submicron Agglomerate Particle Formation In laboratory And Full-Scale Pulverized Coal Combustion. J. Aerosol Sci (supplement1), 1996, 127: 361~67
    [95] 许世森. 细微尘粒的预团聚对旋风分离器高温除尘性能影响的实验研究. 动力工程, 1999, 19(4): 309~314
    [96] 何叶青, 周寿增, 宋琪等. Nd-Fe-B 粉末颗粒间的磁团聚现象及有限元模拟计算. 功能材料, 2002, 33(2): 154~157
    [97] Lushnikov A A. Laser induced aerosols. Journal of Aerosol Science, 1996, 133: 377~378
    [98] Di-Stasio S, Massoli P, Lazzaro M. Retrieval of Soot Aggregate Morphology From Light Scattering/Extinction Measurements In A High-Pressure High-Temperature Environment. Journal of Aerosol Science, 1996, 27(6): 897~913
    [99] Di-Stasio S. On The Recognition Of Soot Agglomerate Morphology From Light Scattering / Extinction Measurements. Journal of Aerosol Science(Supplement1), 1996, 27: 713~714
    [100] Di-Stasio S. Observation Of Restructuring Of Nanoparticle Soot Aggregates In a Diffusion Flame By Static Light Scattering. Journal of Aerosol Science, 2001, 132(4): 509~524
    [101] Linak W P, Srivastava R K, Wendt J O L. Sorbent Capture of Nikel, Lead, and Cadmium in a Laboratory Swirl Flame Incinerator.Presented at the Twenty-Fifth Symposium(International) on combustion, Irvine, California, 31 July-5 August 1994, Combustion and Flame, 1995, 100: 241~250
    [102] Gohlke O, Busch M. Reduction of combustion by-products in WTE plants: O2 enrichment of underfire air in the MARTIN SYNCOM process. Chemosphere, 2001, 42: 545~550.
    [103] Xi Chen. Heat and momentum transfer between a thermal plasma and suspended particles for different Knudsen numbers, Thin Solid Films, 1999, 345: 140~145
    [104] Nakanishi Y, Yoshihara Y, Nishiwaki K. Non-catalytic reduction of NO in diesel exhaust with the addition of methylamine. JSAE Review, 2000, 21: 561~566
    [105] Ashish K, Panagiotis D. Christofides, Nonlinear control of spatially inhomogenous aerosol processes, Chemical Engineering Science, 1999, 54: 2669~2678
    [106] Kleindienst T E, Smith D F, Li W, et al. Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol. Atmospheric Environment, 1999, 33: 3669~3681
    [107] James D B, Barbara J T. Secondary organic aerosol formation in cloud and fog droplets, a literature evaluation of plausibility. Atmospheric Environment, 2000, 34: 1623~1632
    [108] Rosner E, Park H M. Thermophoretically Augmented Mass-, Momentum-and Energy Transfer Rates in High Particle Mass Loaded Laminar forced convection Systems. Chemical Engineering Science, 1998, 43(10): 2689~2704
    [109] Wu C Y, Biswas P. Lead species aerosol formation and Growth in Multicomponent High Temperature Environments. J. Aerosol Sci., 1995, 34
    [110] Zeng Taofang, Sarofim A F. Vaporization of arsenic, selenium and antimony during coal combustion. Combustion and Flame, 2001, 12(3): 1714~1724
    [111] Wu C Y. Study of gas phase reaction, aerosol formation and growth dynamics of toxic metal at high temperatures. Doctor dissertation of Philosophy, 1996:57~58
    [112] Seames W S. The partitioning of trace elements during pulverized coal combustion. PH.D, University of Arizona, 2000
    [113] Germani M, Zoller W. Vapor-phase concentrations of arsenic, selenium, bromine, iodine, and mercury in the stack of a coal-fired power plant. Environ. Sci. Technol., 1988, 22: 1079~1085
    [114] Smith R D, Campbell J A, Nielson K K. Concentration dependence upon particle size of volatility element in fly ash. Fuel, 1979, 13(5): 553~558
    [115] Smith R D, Campbell J A, Nielson K K. Volatility of fly ash and coal. Fuel, 1980, 59(9): 661~665
    [116] Uberoi M, Shadman F. Aluminosilicates as potential sorbents for controlling metal emissions. Acs Symposium Series, 1993, 515: 214~222
    [117] Uberol M, Shadman F. High temperature removal of cadmium compounds using solid sorbents. Environ Sci. Technol., 1991, 25(7): 1285~1289
    [118] Uberoi M, Shadman F. Sorbents for removal of lead compounds from hot flue-gases. Aiche Journal , 1990, 36(2): 307~309
    [119] Ho T C, Lee H T, Shiao C C, et al. Metal behavior during fluidized bed thermal treatment of soil. Waste Management, 1995, 15(5/6): 325~334
    [120] Evans J, Williams P T. Heavy metal adsorption onto fly ash in waste incineration flue gas. Trans IchemE. 2000, 78: 40~46
    [121] Linak W P, Srivastava R K. Sorbent capture of nickel, lead and cadmium in a laboratory swirl flame incinerator. Combustion and Flame, 1995, 100(1~2):241~250
    [122] Scotto M V, Uberoi M. Metal capture by sorbents in combustion process. Fuel Processing Technology, 1994, 65(66): 311~341
    [123] Agnihotri R, Chauk S, Mahuli S, et al. Removal using Ca-based sorbents: reaction kinetics. Environ Sci. Technol., 1998, 32(12): 1841~1846
    [124] 张军营, 任德贻, 钟秦等. CaO 对煤中砷挥发性的抑制作用. 燃料化学学报, 2000, 28(3): 198~200
    [125] Wu B C, Jaanu K K, Shadman F. Multifunctional sorbents for the removal of sulfur and metallic contaminants from high-temperature gases. Environ. Sci. Technol., 1995, 29(6): 1660~1665
    [126] Uberoi M, Punjak W, Shadman F. The Kinetics And Mechanism Of Alkali Removal From Flue-Gases By Solid Sorbents. Progress In Energy And Combustion Science, 1990, 16(4): 205~211
    [127] Linak W P, Wendt J O L. Toxic metal emissions from incineration-mechanisms and control. Progress in energy and combustion scicence, 1993, 19(2): 145~185
    [128] Gullett B K, Raghunathan K. Reduction of coal-based metal emissions by furnace sorbent injection. Energy & Fuels, 1994, 8(5): 1068~1076
    [129] Ho T C, Lee H T, Chu H W, et al. Metal capture by sorbents during fluidized-bed combustion. Fuel Processing Technology, 1994, 65(66): 311~341
    [130] 张智慧, 胡俊玲, 曾汉才等. 用固体吸附剂控制燃煤重金属排放及其对SO2、NOx 的影响. 燃料化学学报, 1998, 6: 486~491
    [131] Chen J C, Wey M Y, Lin Y C. The adsorption of heavy metals by different sorbents under various incineration conditions.Chemosphere,1998, 37(13): 2617~2625
    [132] Biswas P, Wu C Y. Control of toxic metal emissions from combustors using sorbents: a review. Journal of the air & waste management association, 1998, 48(2): 113~127
    [133] Dismukes EB.Trace Element Control In Electrostatic Precipitators And Fabric Filters.Fuel Processing Technology, 1994, 65(66): 311~341
    [134] 谭亚军, 朱联锡. 旋流板塔在碱性黑液烟气脱硫中的应用. 环境工程.1998, 16(1): 33~36
    [135] 何光建, 瞿金平, 任鸿烈. 超细粉体填料之间的相互作用. 工程塑料应用, 2003, 31(4): 59~62
    [136] Strenge K. In: bohuslav(Ed.), coagulation and flocculation: theory and applications. Marcel Dekker, New York, 1993: 263~320
    [137] Tang S, Ma Y, Shiu C. Modelling the mechanical strength of fractal aggregates. Colloids and Surfaces, 2001, 180: 7~16
    [138] 张军营, 任德贻, 许德伟等. 煤中微量元素赋存状态研究方法. 煤炭转化, 1998, 6(2): 22~24
    [139] 张军营, 任德贻, 王运泉等. 煤中有机态微量元素含量与煤级关系. 煤田地质与勘探, 2000, 28(6):11~12
    [140] 何光建, 瞿金平, 任鸿烈. 超细粉体填料之间的相互作用. 工程塑料应用, 2003, 31(4): 59~62.
    [141] Naville M, McCarthy J F, Sarofim A F. Size fraction of submicrometer coal combustion aerosol for chemical analysis. Atmos. Environ., 1983, 17(12) :2599~2640
    [142] 候凌云, 候晓春. 喷嘴技术手册.北京:中国石化出版社, 2002:156~174.
    [143] 马青山, 贾瑟. 絮凝化学和絮凝剂. 第1 版, 中国环境科学出版社, 1988
    [144] 永泽满, 滝章. 水处理的高分子科学与技术丛书(下卷)高分子水处理剂. 化学工业出版社. 第1 版. 1985
    [145] 常青. 水处理絮凝学. 第1 版. 化学工业出版社. 2003
    [146] 梁为民. 凝聚与絮凝. 第1 版. 冶金工业出版社. 1987
    [147] 潘才元译. 絮凝技术. 原子能出版社第1 版. 1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700