铌酸盐陶瓷基玻璃陶瓷复合介电材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高技术领域的进步,高储能密度器件的小型化和轻量化已成为业界长期的发展方向并取得了快速发展,导致对兼具高介电常数和高击穿场强的新型储能介电材料的需求非常迫切。近期发展起来的通过可控结晶技术制备的零孔隙率玻璃陶瓷复合介电材料也已成为高储能密度介电材料的重要发展方向之一。相比于传统的烧结介电陶瓷,玻璃陶瓷复合介电材料的显著特点体现在:在保持优异的介电性能的同时,该类材料的耐电击穿的能力更高(高击穿场强),从而可以预见玻璃陶瓷介电复合材料具有更高的介电储能密度,因而在高储能密度陶瓷电容器和高功率脉冲技术等众多领域具有潜在的应用前景。然而,设计并制备出综合性能优异的玻璃陶瓷复合介电材料仍然面临着某些关键工程应用难题。
     由钨青铜结构(A1)4(A2)2Nb10O30和钙钛矿结构MNbO3的陶瓷相以及SiO2玻璃基体组成的铌酸盐基玻璃陶瓷是该类材料研究中备受关注的一个体系。在该类双介电陶瓷相的介电玻璃陶瓷中,对陶瓷相的析出过程开展深入系统的研究将有助于对最终实现玻璃陶瓷显微组织和介电性能的调控,从而为该类材料的工程实际应用提供材料基础性指导,具有重大的实际意义。基于此,本论文将围绕提高材料储能密度这一中心主题,以该类玻璃陶瓷中钨青铜相A位的元素替换及复合为出发点,重点研究由Pb、 Ba和Sr对A位的元素替换及复合所构成的钨青铜陶瓷相成分三角形对玻璃陶瓷结晶过程、材料显微组织以及材料介电行为的影响,以期通过本次论文的系统研究工作达到该类材料关键介电性能调控的目的。在本论文中,作者分析了ANb2O6-NaNbO3-SiO2,A=((1-x)Pb,xSr)(PSNNS)体系,ANb2O6-NaNbO3-SiO2, A=((1-x)Pb,xBa)(PBNNS)体系,ANb2O6-NaNbO3-SiO2,A=((1-x)Ba,xSr)(BSNNS)体系玻璃陶瓷的结晶行为、微观结构和介电性能,并对该体系玻璃陶瓷中钨青铜相与钙钛矿相的互溶行为进行了比较详细的分析,且通过XRD全谱分析的方式讨论了玻璃陶瓷中的这两种析出陶瓷相的结构。
     对于PSNNS体系,研究了其钨青铜相中Sr元素取代Pb元素对其结晶行为,微观结构和介电性能的影响。通过对X射线衍射结果的分析可以看出,当晶化温度低于750℃时,玻璃基体中析出的主要晶相分别为Pb2Nb2O7(x=0),(Pb,Sr)2Nb2O7(0.2≤x≤0.8)及Sr2Nb2O7(x=1.0);而当结晶温度升高到850℃以上时,热处理过程使其析出完全不同的结晶相,x=0时为PbNb2O6+NaNbO3,x=1.0时为SrNb2O6+NaNbO3,当0.2-     类似地,对于PBNNS体系,XRD的分析结果亦表明伴随着晶化温度的升高该体系玻璃基体中的主要晶相发生转变。低晶化温度(700℃-750℃)下,该体系玻璃陶瓷包含钨青铜结构(BaNb2O6)和烧绿石结构(Pb2Nb2O7)的介电相,而当晶化温度上升至850℃以上时,介电相则转变为钨青铜结构的BaNb2O6和PbNb2O6及钙钛矿结构的NaNbO3。TEM微观结构分析表明,随着晶化处理温度的上升析出相的晶粒尺寸在不断增大。在低晶化温度(700℃~750℃)下,该体系玻璃陶瓷介电常数的最大值均出现在Ba取代Pb的百分数y为0.6时。在较高的晶化温度(≥850℃)下,对于所有的样晶介电常数及介电常数的场强依赖性均随取代分数y呈下降趋势。
     随后研究了无Pb的BSNNS体系钨青铜相中中Sr取代Ba对其结晶行为,微观结构和介电性能的影响。XRD的分析结果表明,随着晶化温度的升高玻璃陶瓷中的主要结晶相发生转变。微观结构分析表明,z=0时与z=0.6时的样品中的析出相为球状的纳米尺寸颗粒,而在z=1.0时析出相为典型的枝状纳米晶。有成分玻璃陶瓷的介电常数,介电损耗耗和介电常数的场强依赖性均随晶化温度的升高而变大。对于750℃晶化处理的玻璃陶瓷样品,增加取代分数z值可以引起上述三种介电性能的下降,而当晶化温度高于850℃时,介电常数及其场强依赖性均随取代分数z位的增加而呈现变大的趋势(z=0.6除外),且由于MPB区的的存在使这两个介电性能在z=0.6处发生了异常的增大。
     最后分析和讨论了铌酸盐基玻璃陶瓷中钨青铜(TB)相与钙钛矿(P)相的互溶行为。PbNb2O6-NaNbO3-SiO2与BaNb2O6-NaNbO3-SiO2体系及SrNb2O6-NaNbO3-SiO2体系玻璃陶瓷中TB相与P相的体积比(VolTB/VolP)随晶化处理温度的升高而下降,这是介电常数随晶化处理温度升高而增加的一个重要原因。通过对ANb2O6-ANbO3的互溶过程中A位的的填充情况分析可知,A位的离子半径越接近,这两相的固溶程度越高。低介电常数A2Nb2O7相的出现,提高了高介电常数相ANb2O6的析出温度。A2Nb2O7相在低晶化温度下为稳定存在的相,Nb205的含量对其形成和转化具有十分重要的作用。低温下形成A2Nb2O7相时,多余的Nb205储存在玻璃基体中,而当晶化温度升高时,A2Nb2O7将与玻璃基体中多余的Nb205反应生成ANb2O6。
With the progress in the high-tech field, realization of miniaturized portable high energy density device has become the orientation of long-time development and achieved rapid development, leading to very urgent demand for dielectric materials with both high dielectric constant and high breakdown strength. Recently, zero-porosity glass-ceramic dielectrics prepared by the controlled-crystallization technology play an important role in the field of the high energy density dielectric materials. In contrast with the conventional sintering ceramics, these materials exhibit the advantages of having both high dielectric constant and high breakdown strength. It can be predicted that the glass-ceramic dielectric composites have higher dielectric energy storage density. Thus, these materials are strong candidates for the applications in many areas, such as high energy density ceramic capacitors, high power pulse technology, et al. However, the design and preparation of glass-ceramic dielectrics with comprehensive excellent properties still face some critical engineering problems.
     In the field of dielectric glass-ceramic materials, a large number of studies focus on niobate-based glass-ceramic systems whose typical phases are tungsten-bronze phases (A1)4(A2)2Nb10O30, perovskite phases MNbO3and glass phase SiO2. In these glass-ceramic dielectrics with dual dielectric ceramic phases, in-depth systemic study of the precipitation process of the ceramic phases will contribute to the adjustment of the microstructure and dielectric properties in final glass-ceramics. This study can provide basic guidance of the engineering practical application of these materials, which has great practical significance. Based on this, the central theme of this paper will focus on the improvement in energy density of these materials. Taking the element replacement and composite in A-site of tungsten bronze phases in these glass-ceramics as a starting point, we mainly analyze the influence of the composition triangle variation caused by the replacement and composite of Pb, Ba and Sr in A-site of tungsten bronze ceramic phases on the crystallization process, microstructure and dielectric behaviors of these glass-ceramics. The purpose of this systemic study is to achieve the adjustment of the key dielectric properties of these materials. In this paper, the crystallization, microstructure and dielectric performance of glass-ceramics in ANb2Ob-NaNbO3-SiO2,A=((1-x)Pb, xSr)(PSNNS), ANb2O6-NaNbO3SiO2.A(1-y)Pb,yBa)(PBNNS),ANb2O6-NaNbO3-SiO2.A=((1-z)Ba, zSr)(BSNNS) systems were discussed in detail. Furthermore, we analyzed the solution behavior between tungsten-bronze phase and perovskite phase and the structures of the ceramic phases precipitated in the glass-ceramics were discussed through XRD full profile analysis method.
     For PSNNS system, the element substitution effects of Sr for Pb on the crystallization behavior, microstructure and dielectric performance have been investigated. X-ray diffraction (XRD) analysis revealed a major crystal phase transition in glass matrix as the crystallization temperature increased. At low temperatures (700~750℃), the major crystal phases precipitating in the glass matrix are identified as Pb2Nb2()7(x=0),(Pb, Sr)2Nb2O7(0.2≤x≤0.8) and Sr2Nb2O7(x=1.0); while at higher temperatures (≥850℃), heat treatment produces different crystalline phases, PbNb2O6and NaNbO3for x=0, SrNb2O6and NaNbO3for x=1, and the solid solution of these three phases for0.2≤x≤0.8. TEM results show that the shape of the crystallized ceramic particles gradually varies from sphere to dendrite, leading to the reduction of breakdown strength. At different crystallization temperatures, the dielectric properties of the glass-ceramics show a strong dependence on the chemical composition x. At low temperatures (700~750℃), the dielectric constants of all samples (0≤x≤1) exhibit monotonic variation trend with increasing x and excellent electric-field stability; while at higher crystallization temperatures (≥850℃), owing to the MPB-effect, a maximum of the dielectric constant is found for the composition x=0.6. The substitution effect of Pb and Sr at A-site in tungsten-bronze phase ANb2O6was systematically studied for the purpose of energy storage density optimization. Within the studied substitution range for x=0to x=1.0, the highest energy density of2.27J/cm3is found at x=0.6, which is twice higher than those of the end-products (i.e.0.872J/cm3for x=0and0.988J/cm3for x=1.0).
     Analogically, for PBNNS system, X-ray diffraction (XRD) analysis also revealed a major crystal phase transition in PBNNS glass matrix as the crystallization temperature increased. The glass-ceramics treated at low temperatures (700℃~750℃) contain dielectric phases with tungsten-bronze (BaNb2O6) and pyrochlore (Pb2Nb2O7) structures, while the dielectric phases are transformed to tungsten-bronze ((Ba, Pb)Nb2O6) and perovskite (NaNbO3) structures at higher crystallization temperatures (≥850℃). Corresponding to the result of phase transition, microstructural observation proves increasing crystallite sizes with increasing crystallization temperature. At low temperatures (700~750℃), a maximum of the dielectric constant of the PBNNS glass-ceramic is found for the composition y=0.6; while at higher crystallization temperatures (≥850℃), both of the dielectric constants and the electric-field dependence of dielectric constant exhibit a decreasing trend with increasing;/for all samples (0≤y≤1).
     Furthermore, for lead-free nanostructured BSNNS glass-ceramics, the element substitution influences of Sr for Ba on crystallization process, microstructure and dielectric performance have been investigated. X-ray diffraction (XRD) analysis revealed a major crystal phase transition in the glass matrix as the crystallization temperature increased. TEM bright field observation shows that spherical nanometer-sized particles appear in the samples with z=0and z=0.6, while typical dendritic grains are found in the glass-ceramics with z=1.0. All the glass-ceramics present an increasing trend of dielectric constant, dielectric loss and electric-field dependence of dielectric constant with increasing crystallization temperature. In particular, the increasing z leads to a decrease of these three dielectric properties for the glass-ceramics heat-treated at750℃, while dielectric constant and electric-field dependence of dielectric constant both exhibit an increasing trend with the increasing z except z=0.6and an abnormal increase at z=0.6for the samples heat-treated at above850℃due to MPB performance.
     Finally, the solution behavior between tungsten-bronze (TB) phases and perovskite (P) phases in niobate based glass-ceramics has been analyzed and discussed. For glass-ceramics in PbNb2O6-NaNbO3-SiO2, BaNb2O6-NaNbO3-SiO2and SrNb2O6-NaNbO3-SiO2systems, the decreasing relative volumetric ratios of TB/P (VolTB/Volp) lead to the increasing dielectric constant with the increasing crystallization temperature. From the analysis of the A-site occupation behavior in the ANb2O6-ANbO3solution process, as the A-site ionic radiuses are closer, the solid solution degree of these two phases is higher. The presence of A2Nb2O7phase with low dielectric constant increases the crystallization temperature of ANb2O6phase with high permittivity.A2Nb2O7is a stable phase at low crystallization temperatures. Nb2O5content plays an important role on the formation and transition of A2Nb2O7phase. At low crystallization temperatures,A2Nb2O7phase is formed and the excess Nb2O5is stored in glass phase. When the crystallization temperature increases,ANb2O6is produced by the reaction of A2Nb2O7and the excess Nb2O5existing in glass phase.
引文
[1]Fletcher N. H., Hilton A. D., Ricketts B. W. Optimization of Energy Storage Density in Ceramic Capacitors[J]. Journal of Physics. D:Applied Physics,1996,29(1): 253-258.
    [2]黄佳佳,张勇,陈继春.高储能密度介电材料的研究进展[J].材料导报,2009,23(14):307-311.
    [3]王春立.反铁电材料的应用研究[J].压电与声光,1994,16(2):46-47.
    [4]Chu B. J., Zhou X., Ren K. L., et al. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed[J]. Science,2006,313:334-336.
    [5]West A. R., Adams T. B., Morrison F. D., et al. Novel High Capacitance Materials: BaTiO3:La and CaCu3Ti4O12[J]. Journal of the European Ceramic Society,2004,24: 1439-1448.
    [6]Chowdary K. R., Subbarao E. C. Liquid Phase Sintered BaTiO3[J]. Ferroelectrics,1981, 37(1):689-692.
    [7]Huang J. J., Zhang Y. Liquid Phase Sintering of Barium Titanate Ceramics for High Energy Storage Density Capacitors[J]. Key Engineering Materials,2008,368-372: 40-42.
    [8]Sarkar S. K., Sharma M. L. Liquid Phase Sintering of BaTiO3 by B2O3 and PbB2O4 Glasses and Its Effect on Dielectric Strength and Dielectric Constant[J]. Materials Research Bulletin,1989,24(7):773-779.
    [9]Young A., Hilmas G., Zhang S. C., et al. Effect of Liquid-Phase Sintering on the Breakdown Strength of Barium Titanate[J]. Journal of the American Ceramic Society, 2007,90(5):1504-1501.
    [10]Huebner W., Zhang S. C. High Energy Density Dielectrics for Symmetric Blumleins[C]. In Proceeding of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, New York:IEEE,2002,833-836.
    [11]Jeon H. P., Lee S. K., Kim S. W., et al. Effects of BaO-B2O3-SiO2 Glass Additive on Densification and Dielectric Properties of BaTiO3 Ceramics[J]. Materials Chemistry and Physics,2005,94(2-3):185-189.
    [12]Zhang Q. M., Wang L., Luo J., et al. Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO-SiO2-B2O3 Glass[J]. Journal of the American Ceramic Society,2009,92(8):1871-1873.
    [13]Sutherland A. E., Bridger K.., Fiore E. M., et al High Energy Density Lead Magnesium Niobate-Based Dielectric Ceramic and Process for the Preparation[P]. US:5337209. 1994-08-09.
    [14]Wu R., Du P. Y., Weng W. J., et al. The Structures and Dielectric Properties of Ba0.8 Sr0.2TiO3/Pb0.82La0.18TiO3 Composite Thick Films with Addition of PbO-B2O3 glass[J]. Journal of the European Ceramic Society,2006,26(9):1611-1617.
    [15]Campbell C. K., van Wyk J. D., Rengang C. Experimental and theoretical characterization of an antiferroelectric ceramic capacitor for power electronics[J]. IEEE Transactions on Components and Packaging Technologies,2002,25(2): 211-216.
    [16]Pohl H. Superdielectries Polymers[J]. IEEE Transactions on Electrical Insulation, 1986, El-21(5):683-692.
    [17]Sarjeant W. J., Zimheld J., MacDougall F. M., et al. Capacitors-Past, Present and Future[J]. IEEE Transactions on Plasma Science,1998,26(5):1368-1436.
    [18]Lanceros-Mendeza S., Moreiraa M. V., Manob J. F., et al. Dielectric Behavior in an Oriented β-PVDF Film and Chain Reorientation Upon Transverse Mechanical Deformation[J]. Ferroelectrics,2002,273(1):15-20.
    [19]Bauer F., Fousson E., Zhang Q. M. Recent Advances in Highly Electrostrictive P(VDF-TrFE-CFE) Terpolymers Dielectrics and Electrical Insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13(5):1149-1154.
    [20]Chu B. J., Neese B., Lin M. R., et al. Enhancement of Dielectric Energy Density in the Poly(Vinylidene Fluoride)-Based Terpolymer/Copolymer Blends[J]. Applied Physics Letters,2008,93(15):152903.
    [21]Newnham R. E. Composite Electroceramics[J]. Annual Review of Materials Science, 1986,6:47-68.
    [22]Das-Gupta D. K. Ferroelectric Polymer and Ceramic-Polymer Composites[M]. Aedermannsdorf:Trans Tech Publications,1994:92-93.
    [23]Gregorio R., Cestari M., Bernardino F. E. Dielectric Behaviour of Thin Films of β-PVDF/PZT and β-PVDF/BaTiO3 Composites[J]. Journal of Materials Science,1996, 31(11):2925-2930.
    [24]Chan H. L. W., Cheung M. C., Choy C. L. Study on BaTiO3/P(VDF-TrFE) 0-3 Composites[J]. Ferroelectrics,1999,224(1):113-120.
    [25]Bai Y., Cheng Z.-Y., Bharti V., et al. Fligh-Dielectric-Constant Ceramic-Powder Polymer Composites[J]. Applied Physics Letters,2000,76(25):3804-3806.
    [26]Zhang Z. M., Shen Y., Nan C. W. Dielectric Behavior of Three-Phase Percolative Ni-BaTiP3/Polyvinylidene Fluoride Composites[J]. Applied Physics Letters,2002, 81(25):4814-4816.
    [27]Dou X, L., Liu X. L., Zhang Y., et al. Improved Dielectric Strength of Barium Titanate-Polyvinylidene Fluoride Nanocomposite[J]. Applied Physics Letters,2009, 95(13):13290.
    [28]Li J. J., Claude J., Norena-Franco L. E., et al. Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles[J]. Chemistry of Materials,2008,20:6304-6306
    [29]Kim P., Jones S. C., Hotchkiss P. J., et al. Phosphonic Acid-Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength[J]. Advanced Materials,2007,19(7):1001-1005.
    [30]Beall. G H. Synthesis and Design of Glass Ceramics[J]. Mater Education,1992,14: 315-361.
    [31]陈国华,刘心宇.玻璃陶瓷复合材料的制备、微结构和性能[J].中国有色金属学报,2006,16(5):817-822.
    [32]Du J., Jones B., Lanagan M. Preparation and Characterization of Dielectric Glass-ceramics in Na2O-PbO-Nb2O5-SiO2 System[J]. Materials Letters,2005, 59(22):2821-2826.
    [33]Corning Glass Works. Method of Making a Semicrystalline Body, a Semi-crystalline Body, Article Comprising the Semicrystalline Body, and Method of Making It[P]. US: 905253,1960-07-30.
    [34]杨娟,胡君遂,陈朝辉,堵永国,张为军.微晶玻璃及其在电子元件中的应用[J].电子元件与材料,2002,21(8):26-28.
    [35]福格尔.玻璃化学[M].北京:轻工业出版社,1998:35-45.
    [36]周亚栋.无机材料物理化学[M].武汉:武汉工业大学出版社,1994:96-99.
    [37]Herczog A. Application of Glass-Ceramics for Electronic Componentsand Circuits[J]. IEEE Transactions on Parts, Hybrids, and Packaging.1973, PHP-9:247-255.
    [38]Herczog A. Microcrystalline BaTiO3 by Crystallization from Glass[J]. Journal of the American Ceramic Society,1964,47(3):107-115.
    [39]Gorzkowski E. P., Pan M.-J., Bender B., et al. Glass-Ceramics of Barium Strontium Titanate for High Energy Density Capacitors[J]. Journal of Electroceramics,2007.18: 269-276.
    [40]Shyu J.-J., Wang J.-R. Crystallization and Dielectric Properties of SrO-BaO-Nb2O5-SiO2 Tungsten-Bronze Glass-Ceramics[J]. Journal of the American Ceramic Society,2000,83(12):3135-3140.
    [41]Juma'a Q. A., et al. Advances in Ceramics[A]. Nucleation and Crystallization in Glasses[C]. Westerville:American Ceramic Society Publishing,1982:218-236.
    [42]Pan M.-J., Gorzkowski E.P., Bender B.A., et al. The Effect of Interfacial Polarization on the Energy Density of Ferroelectric Glass-Ceramics[C]. In 15th IEEE International Symposium on the Applications of Ferroelectrics,2006,25-28.
    [43]Gorzkowski E. P., Pan M. J., Bender B. A., et al. Effect of Additives on the Crystallization Kinetics of Barium Strontium Titanate Glass-Ceramics[J]. Journal of the American Ceramic Society,2008,94(4):1065-1069.
    [44]Ozawa T. Kinetic Analysis of Derivative Curves in Thermal Analysis[J]. Journal of Thermal Analysis and Calorimetry,1970,2:301-324.
    [45]Chen J. C., Zhang Y., Deng C. S., et al. Effect of the Ba/Ti Ratio on the Microstructures and Dielectric Properties of Barium Titanate-Based Glass-Ceramics[J]. Journal of the American Ceramic Society,2009,92[6]:1350-1352.
    [46]Chen J. C., Zhang Y., Deng C. S., et al. Improvement in the Microstructures and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics by AlF3/MnO2 Addition[J]. Journal of the American Ceramic Society.2009,92[8]:1863-1866.
    [47]Thakur O. P., Kumar D., Parkash O., et al. Dielectric and Microstructural Behaviour of Strontium Titanate Borosilicate Glass Ceramic System[J]. Bulletin of Material Science, 1995,18:577-585.
    [48]Huang J. J., Zhang Y., Ma T., et al. Correlation between Dielectric Breakdown Strength and Interface Polarization in Barium Strontium Titanate Glass Ceramics[J]. Applied Physics Letters,96(4):042902.
    [49]Zhang Y., Huang J. J., Ma T., et al. Sintering Temperature Dependence of Energy-Storage Properties in (Ba,Sr)TiO3 Glass-Ceramics[J]. Journal of the American Ceramic Society,2011,94(6):1805-1810.
    [50]Mandelcon L., Gurkovich S. R., Radford K. C. Voltage Stabilization of Ceramic Capacitors[C].17th Capacitor and Resistor Technology Symposium, Electronic Components, Assemblies & Materials Association,1997,255-260.
    [51]Layton M. M., Herczog A. Nucleation and Crystallization of NaNbO3 from Glasses in the Na2O-Nb2O5-SiO2 System[J]. Journal of the American Ceramic Society,1967, 50(7):369-375.
    [52]Herczog A. Phase Distribution and Transparency in Glass-Ceramics Based on a Study of the Sodium Niobate-Silica System[J]. Journal of the American Ceramic Society, 1990,73(9):2743-2746.
    [53]Reece M. J., Worrell C. A., Hill G. J., et al. Microstructure and Dielectric Properties of Ferroelectric Glass-Ceramics[J]. Journal of the American Ceramic Society,1996, 79(1):17-26.
    [54]Cheng C. T., Lanagan M., Jones B. Crystallization Kinetics and Phase Development of PbO-BaO-SrO-Nb2O5-B2O3-SiO2-Based Glass-Ceramics[J]. Journal of the American Ceramic Society,2005,88(11):3037-3042.
    [55]Cheng C. T., Lanagana M., Lin J. T., et al. Crystallization Kinetics and Dielectric Properties of Nanocrystalline Lead Strontium Barium Niobates[J]. Journal of Materials Research,2005,20(2):436-446.
    [56]Shyu J. J., Wang J. R. Crystallization and Dielectric Properties of SrO-BaO-Nb2O5-SiO2 Tungsten-Bronze Glass-Ceramics[J]. Journal of the American Ceramic Society,2000,83(12):3135-3140.
    [57]Shyu J. J., Peng H. W. Crystallization and Dielectric Properties of SrO-BaO-Nb2O5-GeO2 Tungsten-Bronze Glass-Ceramics[J]. Journal of Materials Research,2001,16(7):2057-2063.
    [58]Rangarajan B., Jones B., Shrout T., et al. Barium/Lead-Rich High Permittivity Glass-Ceramics for Capacitor Applications[J]. Journal of the American Ceramic Society,2007,90(3):784-788.
    [59]Rangarajan B., Shroue T. R., Lanagan M. T. Glass Ceramic Dielectrics:Energy Storage and Breakdown[C]. In 17th IEEE International Symposium on the Applications of Ferroelectrics,2008,1-2.
    [60]Peng F., Speyer R. F. Devitrification and Dielectric Properties of (Na2O,BaO)-Nb2O5-SiO2 and (K2O,SrO)-Nb2O5-SiO2 Glass-Ceramics[J]. Journal of Materials Research,2007,22(7):1996-2003.
    [61]Zeng Y. K., Qin X. Y., Jiang S. L., et al. Effect of BaF2 Addition on Crystallization Kinetics and Dielectric Properties of B2O3-Nb2O5-SrO-BaO Glass-Ceramics[J]. Journal of the American Ceramic Society,2011,94(2):469-473.
    [62]Pardo L., Duran-Martin P., Mercurio J. P., et al. Temperature Behaviour of Structural, Dielectric and Piezoelectric Properties of Sol-gel Processed Ceramics of The System LiNbO3-NaNbO3[J]. Journal of Physics and Chemistry of Solids,1997,58(9): 1335-1339.
    [63]Sadel A., van der Muhll R., Ravez J., et al. Ferroelectric and Pyroelectric Studies of A Crystal of Composition Li0.02Na0.98NbO3[J]. Ferroelectrics,1983,47:169-175.
    [64]Jaeger R. E., Egerton L. Hot Pressing of Potassium-Sodium Niobates[J]. Journal of the American Ceramic Society,1962,45(5):209-213.
    [65]Darlington N. W., Megaw H. D. The Low-temperature Phase Transition of Sodium Niobate and The Structure of The Low-temperature Phase, N[J]. Acta Crystallographica,1973, B29(10):2171-2185.
    [66]Lefkowitz J., Lukaszewicz K., Megaw H. D. The High-temperature Phases of Sodium Niobate and The Nature of Transitions in Pseudosymmetric Structures[J]. Acta Crystallographica,1966,20:670-683.
    [67]Chen J., Feng D. TEM Study of Phases and Domains in NaNbO3 at Room Temperature[J]. Physica Status Solidi,1988, A 109(1):171-185.
    [68]Chen J., Feng D. In Situ TEM Studies of Para-Ferro Phase Transitions in NaNbO3[J]. Physica Status Solidi,1988, A109(2):427-434.
    [69]Konieczny K., Kajtoch C. Low-frequency Dielectric Dispersion in NaNbO3 Single Crystals[J]. Ferroelectrics,1998,215:65-73.
    [70]Wang X. B., Shen Z. X., Hu Z. P., et al. High Temperature Raman Study of Phase Transitions in Antiferroelectric NaNbO3[J]. Journal of Molecular Structure,1996, 386(1):1-6.
    [71]Magneli A. The Crystal Structure of Tetragonal Potassium Tungsten Bronze[J]. Arkiv for kemi,1949,24:213-221.
    [72]Neurgaonkar R. R., Cory W. K., Oliver J. R., et al. Development and Modification of Photorefractive Properties in The Tungsten Bronze Family Crystals Optical Engineering[J].1987,26(5):392-405.
    [73]Ngai K. L., Reinecke T. L. Model of The Ferroelectric Phase Transition in The Tetragonal Tungsten-Bronze-Structure Ferroelectrics[J]. Physical Review Letters, 197738(2):74-77.
    [74]Vandamme N. S., Sutherland A. E., Jones L., et al. Fabrication of Optically Transparent and Electrooptic Strontium Barium Niobate Ceramics [J]. Journal of the American Ceramic Society,1991,74(8):1785-1792.
    [75]Lee W. J., Fang T. T. Densification and Microstructural Development of The Reaction Sintering of Strontium Barium Niobate [J]. Journal of the American Ceramic Society, 1998,81(4):1019-1024.
    [76]Jaffe B., Jaffe H., Cook W. R. Piezoelectric Ceramics[M]. London:Academic Press, 1971:10-15.
    [77]Isupov V. A. Some Aspects of The Physics of Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystal[J]. Ferroelectrics,1983,46(2):217-226.
    [78]Choi S. W., Shrout T. R., Jang S. J., et al. Dielectric and Pyroelectric Properties in The PMN-PT System[J]. Ferroelectrics,1989,100(1):29-38.
    [79]Yamashita Y. Large Electromechanical Coupling Factor in Perovskite Binary Material System[J]. Japanese Journal of Applied Physics,1994,33:5328-5331.
    [80]Fu H. X., Cohen R. E. Polarization Rotation Mechanism for Ultrahigh Electromechanical Response in Single-crystal Piezoelectrics[J]. Nature,2000,403: 281-283.
    [81]Bellaiche L., Garcia A., Vanderbilt D. Electric-field Induced Polarization Paths in Pb(Zr1-xTix)O3 Alloys[J]. Physical Review B,2001,64:060103.
    [82]Wada S., Suzuki S., Noma T., et al. Enhanced Piezoelectric Property of Barium Titanate Single Crystals with Engineered Domain Configurations[J]. Japanese Journal of Applied Physics,1999,38:5505-5511.
    [83]Wada S., Park S. E., Cross L. E., et al. Engineered Domain Configuration in Rhombohedral PZN-PT Single Crystals and Their Ferroelectric Related Properties[J]. Ferroelectrics,1999,221(1-4):147-155.
    [84]Park S. E., Shrout T. R. Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals[J]. Journal of Applied Physics,1997,82(4):1804-1811.
    [85]Oliver J. R., Neurgaonkar R. R. Ferroelectric Properties of Tungsten Bronze Morphotropic Phase Boundary Systems[J]. Journal of the American Ceramic Society, 1989,72(2):202-211.
    [1]Guo R., Shalla A. S., Randall C. A., et al. Polarization Mechanisms of Morphotropic Phase Boundary Lead Barium Niobate (PBN) Compositions[J]. Journal of Applied Physics,1990,67(3):1453-1460.
    [2]Guo R., Shalla A. S., Randall C. A., et al. Dielectric and Pyroelectric Properties of the Morphotropic Phase Boundary Lead Barium Niobate (PBN) Single Crystals at Low Temperature (10-300 K)[J]. Journal of Applied Physics,1990,67(10):6405-6410.
    [3]Yang Y. F., Liu Y. Y., Meng J., et al. Preparation, Structure and Dielectric Properties of (Ba1-xSrx)2NaNb5O15 Ceramics[J]. Journal of Alloys and Compounds,2008,453: 401-406.
    [4]张国栋.材料研究与测试方法[M].北京:冶金工业出版社,2001:123-174.
    [5]廖寄乔.粉末冶金实验技术[M].长沙:中南大学出版社,2003:287-320.
    [6]祁景玉.X射线结构分析[M].上海:同济大学出版社,2003:1-6.
    [7]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学,2005:117-125.
    [8]孙目珍.电介质物理基础[M].广州:华南理工大学出版社,2005:143-147.
    [1]Reece M. J., Worrell C. A., Hill G. J., et al. Microstructures and Dielectric Properties of Ferroelectric Glass-Ceramics[J]. Journal of the American Ceramic Society,1996, 79(1):17-26.
    [2]张高科,吴伯麟,欧阳世:翕.钨青铜结构铌酸盐晶体的分子设计及其掺杂[J].材料导报,1997,11(3):29-32.
    [3]张高科,吴伯麟,欧阳世.翕.关于钨青铜结构铌酸盐晶体的通式及其阳离子占位探讨[J].人工晶体学报,1996,25(3):261-265.
    [4]Francombe M. H. The Relationship between Structure and Ferroelectricity in Lead Barium Strontium Niobates[J]. Acta Crystallographica,1960,13(2):131-140.
    [5]Jamieson P. B., Abrahams S. C., Bernstein J. L. Ferroelectric Tungsten Bronze-Type Crystal Structures. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78[J]-Journal of Chemical Physics,1968,48(11):5048-5057.
    [6]Shyu J. J., Wang J. R. Crystallization and Dielectric Properties of SrO-BaO-Nb2O5-SiO2 Tungsten-Bronze Glass-Ceramics[J]. Journal of the American Ceramic Society, 2000,83(12):3135-3140.
    [7]Cheng C. T., Lanagan M., Jones B. Crystallization Kinetics and Phase Development of PbO-BaO-SrO-Nb2OrB2O3-SiO2-Based Glass-Ccramics[J]. Journal of the American Ceramic Society,2005,88(11):3037-3042.
    [8]Du J., Jones B., Lanagan M. Preparation and Characterization of Dielectric Glass-Ceramics in Na2O-PbO-Nb2O5-SiO2 system[J]. Materials Letters,2005,59: 2821-2826.
    [9]Layton M. M., Herczog A. Structure and Crystallization of Glasses of Low Network Former Content[J]. Glass Technology,1969,10:50-53.
    [10]Arlt G., Hennings D., With G. Dielectric Properties of Fine-Grained Titanate Ceramics[J]. Journal of Applied Physics,1985,58(4):1619-1625.
    [11]Herezog A. Applications of Glass-Ceramics for Electronic Components and Circuits[J]. IEEE Transactions Parts Hybrids Package,1973,9(4):247-256.
    [12]王磊,杜军,张庆猛,等.SrNb2O6-NaNbO3-SiO2玻璃陶瓷纳米介电复合材料的介电性能研究[J].稀有金属,2010,34(3):373-377
    [13]高健,毛昌辉,唐群,等.Nb205含量对Na2O-PbO-Nb2O5-SiO2玻璃陶瓷体系晶化过程和介电性能的影响[J].稀有金属.2008.32(4):468-472.
    [14]Gao J., Mao C. H., Du J., et al. Effects of Na2O Content on Crystallization and Dielectric Properties of Na2O-PbO-Nb2O5-SiO2 Glass-Ceramic[J]. Rare Metals,2006, 25(z2):246-249.
    [15]Herezog A. Phase Distribution and Transparency in Glass-Ceramics Based on a Study of the Sodium Niobate-Silica System[J]. Journal of the American Ceramic Society, 1990,73(9):2743-2746.
    [16]Shirane G., Pepinsky R. Dielectric Properties and Phase Transitions of Cd2Nb2O7 and Pb2Nb207[J]. Physical Review,1953,92:504.
    [17]Daniels P., Tamazyan R., Kuntscher C. A., et al. The Incommensurate Modulation of the Structure of Sr2Nb207[J]. Acta Crystallographica Section B,2002,58(6):970-976.
    [18]Harrop P. J. Temperature Coefficients of Capacitance of Solids[J]. Journal of Materials Science,1969,4(4):370-374.
    [19]Oliver J. R., Neurgaonkar R. R. Ferroelectric Properties of Tungsten Bronze Morphotropic Phase Boundary Systems[J]. Journal of the American Ceramic Society, 1989,72(2):202-211.
    [20]Ravez J., Perron-Simon A., Hagenmuller P. The Tetragonal Tungsten Bronze Phases: Crystallochemical Rules, Relations between Ferroelectric Properties and Structural Distortions[J](in Fr.), Annales de Chimie, (Paris),1976,1(16):251-268.
    [21]Crossab L. E., Nicholsonac B. J. The Optical and Electrical Properties of Single Crystals of Sodium Niobate[J]. Philosophical Magazine Series 7,46(376):453-466.
    [22]Peng F., Speyer R. F. Devitrification and Dielectric Properties of (Na2O,BaO)-Nb2O5-SiO2 and (K2O,SrO)-Nb2O5-SiO2 Glass-Ceramics [J]. Journal of Materials Research,2007,22(7):1996-2003.
    [23]Guo R., Bhalla A. S., Randall C. A., et al. Dielectric and Pyroelectric Properties of the Morphotropic Phase Boundary Lead Barium Niobate (PBN) Single Crystals at Low Temperature (10-300 K)[J]. Journal of Applied Physics,1990,67(10):6405-6410.
    [24]Guo R., Bhalla A. S., Randall C. A., et al. Polarization Mechanisms of Morphotropic Phase Boundary Lead Barium Niobate (PBN) Compositions[J]. Journal of Applied Physics,1990,67(3):1453-1460.
    [25]Rangarajan B., Jones B., Shrout T., et al. Barium/Lead-Rich High Permittivity Glass-Ceramics for Capacitor Applications[J]. Journal of the American Ceramic Society,2007,90(3):784-788.
    [26]Siegwarth J. D., Lawless W. N., Morrow A. J. Dielectric and Thermal Properties of Pb2Nb2O7 at Low Temperature[J]. Journal of Applied Physics,1976,47(9): 3789-3791.
    [27]Guo R. Y. Ferroelectric Properties of Lead Barium Niobate Compositions Near The Morphotropic Phase Boundary[D]. Pennsylvania:Pennsylvania State University, 1991.
    [28]Xiao X. Y., Xu Y., Zeng Z. G., et al. Effect of A-Site Vacancy Order-Disorder States on Diffuse Phase Transition of The Morphotropic Phase Boundary Pb1-xBaxNb2O6, Ferroelectrics[J]. Journal of Materials Research,1996,11(9):2302-2308.
    [29]Lee M., Feigelson R. S. Ferroelectric Properties of Tetragonal Lead Barium Niobate (Pb1-xBaxNb2O6) Crystals Near The Morphotropic Phase Boundary[J]. Journal of Materials Research,1998,13(5):1345-1350.
    [30]Lee M., Feigelson R. S., Liu A., et al. Photorefractive Properties of Tungsten Bronze Ferroelectric Lead Barium Niobate (Pb1-xBaxNb2O6) Crystals[J]. Journal of Applied Physics,1998,83(11):5967-5962.
    [31]Jaffe B., Jaffe H., Cook W. R. Piezoelectric Ceramics[M]. London:Academic Press, 1971:10-15.
    [1]Jona F., Shirane G., Pepinsky R. Dielectric, X-Ray, and Optical Study of Ferroelectric Cd2Nb207 and Related Compounds[J]. Physical Review,1955,98(4):903-909.
    [2]Shirane G., Pepinsky R. Dielectric Properties and Phase Transitions of Cd2Nb2O7 and Pb2Nb2O7[J]. Physical Review,1953,92:504.
    [3]Siegwarth J. D., Lawless W. N., Morrow A. J. Dielectric and Thermal Properties of Pb2Nb2O7 at Low Temperature[J]. Journal of Applied Physics,1976,47(9): 3789-3791.
    [4]Raju G. G. Dielctrics in Electric Fields[M]. New York:CRC Press,2003:80-82.
    [5]Eyraud P., Eyraud L., Gonnard P., et al. High Technology Ceramics Procedure[A]. Vincenzini P. Materials Science Monographs[C]. Amsterdam:Elsevier Science Publishers,1987:1487.
    [6]Ray S., Gunther E., Ritzhaupt-Kleissl H.-J. Manufacturing and Characterization of Piezoceramic Lead Metaniobate PbNb2O6[J]. Journal of Materials Science,2000, 35(24):6221-6224.
    [7]Pastora M., Goenkab S., Maitia S., et al. Phase Evolution, Dielectric and Impedance Spectroscopic Study of SrNb2O6 Columbite Phase[J]. Ceramics International,2010, 36(3):1041-1045.
    [8]Gaikwada S.P., Samuelb V., Pasricha R., et al. A Low Temperature Route to Prepare BaNb2O6[J]. Materials Letters,2004,58:3700-3702.
    [9]Natarajana N., Samuelb V., Pasrichac R., et al. A Coprecipitation Technique to Prepare BaNb2O6[J]. Materials Science and Engineering B,2005,117:169-171.
    [10]Dhagea S. R., Pasrichab R., Ravi V. Preparation of Ferroelectric BaNb2O6 by The Urea Method[J]. Materials Letters,2005,59:1929-1931.
    [11]Pisarski M. Effect of Hydrostatic Pressure on The Dielectric Permittivity of NaNbO3 Single Crystals[J]. Acta Physica Polonica A,1980,57:693-698.
    [12]石德珂.材料科学基础(第2版)[M].北京:机械工业出版社,2005:149-151.
    [13]Francombe M. H., Lewis B. Structure and Phase Transitions of Ferroelectric Sodium-Lead Niobates and of other Sodium Niobate Type Ceramics[J]. Journal of Electronics and Control,1970,2(4):387-403.
    [14]Ravez M. J., Perron-Simon A., Elouadi B., et al. Evolution de Quelques Proprietes Physiques de Phases de Structure "Bronzes de Tungstene Quadratiques" Par Remplacement de L'element Alcalino-Terreux Par le Plomb[J]. Journal of Physics and Chemistry of Solids,1976,37(10):949-952.
    [15]Reznichenko L. A., Dergunova N. V., Razumovskaya O. N., et al. Physical Properties of NaNbO3-A2+TiO3 and NaNbO3-A2+Nb2O6 Solid Solutions[J]. Inorganic Materials, 2001,37(12):1302-1311.
    [16]Morin D., Colin J. P., Roux G. L., et al. Equilibrium Phase and Characterization of dielectric Niobates Mixed Strontium and Sodium[J]. Materials Research Bulletin, 1973,8(9):1089-1102.
    [17]Almudena T. P., Esther G. G., Ricardo J. R., et al. Method for Modulating The Electrical Properties of Sodium-Niobate-Derived Oxides with A Perovskite-Type Structure Through The Creation of Cation Vacancies[P]. Espana:ES2009000377, 2008-07-24.
    [18]Scott B. A., Giess E. A., O'Kane D. F. Phase Equilibria in the NaNbO3-BaNb2O6 System[J]. Materials Research Bulletin,1969,4(2):107-117.
    [19]Singh S., Draegert D. A., J. E. Geusic. Optical and Ferroelectric Properties of Barium Sodium Niobate[J]. Physical Review B,1970.2(7):2709-2724.
    [20]Carvajal J. R. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction[J]. Physica B:Condensed Matter,1993.192(1-2):55-69.
    [21]Garcia-Gonza'lez E., Torres-Pardo A., Jime'nez R. Structural Singularities in Ferroelectric Sr2NaNb5O15[J]. Chemistry of Materials,2007,19:3575-3580.
    [1]Neurgaonkar R. R., Oliver J. R., Cross L. E. Ferroelectric Properties of Tetragonal Tungsten Bronze Single Crystals [J]. Ferroelectrics,1984,56:31-36.
    [2]Neurgaonkar R. R., Cory W. K., Oliver J. R., et al. Growth and Ferroelectric Properties of Tungsten Bronze Ba2-xSrxK1-yNayNb5O15 (BSKNN) Single Crystals[J]. Journal of Crystal Growth,1989,84:629-637.
    [3]Shrout T. R. Chen H., Cross L. E. Dielectric and Piezoelectric Properties of Pb1-xBaxNb2O6 Ferroelectric Tungsten Bronze Crystals [J]. Ferroelerrrics,1983,56: 45-48.
    [4]Shrout T. R., Cross L. E., Dukin H. A. Ferroelectric Properties of Tungsten Bronze Lead Barium Niobate (PBN) Single Crystals [J]. Ferroelectrics Letters,1983,44: 325-330.
    [5]Du J., Jones B., Lanagan M. Preparation and Characterization of Dielectric Glass-ceramics in Na2O-PbO-Nb2O5-SiO2 System[J]. Materials Letters,2005, 59(22):2821-2826.
    [6]Morin D., Colin J. P., Roux G. L., et al. Equilibrium Phase and Characterization of dielectric Niobates Mixed Strontium and Sodium[J]. Materials Research Bulletin, 1973,8(9):1089-1102.
    [7]Shannon R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides [J]. Acta Crystallographica Section A:Crystal Physics, Diffraction, Theoretical and General Crystallography,1976,32(5):751-767.
    [8]Guo R., Cross L. E., Park S. E., et al. Origin of the High Piezoelectric Response in PbZr1-xTixO3[J]. Physical Review Letters,2000,84(23):5423-5426.
    [9]Guo R., Bhalla A. S., Randall C. A., et al. Dielectric and Pyroelectric Properties of the Morphotropic Phase Boundary Lead Barium Niobate (PBN) Single Crystals at Low Temperature (10-300 K) [J]. Journal of Applied Physics,1990,67(10):6405-6410.
    [10]Guo R., Bhalla A. S., Randall C. A., et al. Polarization Mechanisms of Morphotropic Phase Boundary Lead Barium Niobate (PBN) Compositions [J]. Journal of Applied Physics,1990,67(3):1453-1460.
    [11]Park S. E., Shrout T. R. Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals[J]. Journal of Applied Physics,1997,82(4):1804-1811.
    [12]Singh A. K., Pandey D. Evidence for MB and MC Phases in the Morphotropic Phase Boundary Region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3:A Rietveld Study[J]. Physical Review B,2003,67(6):064102.
    [1]殷之文.电介质物理学(第二版)[M].北京:科学出版社,2003:142-167.
    [2]Dedyk A. I., Nenasheva E. A., Kanareykin A. D., et al. Tunability and Leakage Currents of (Ba,Sr)TiO3 Ferroelectric Ceramics with Various Additives[J]. Journal of Electroceramics,2006,17:433-437.
    [3]Qu Y. Q., Li A. D., Shao Q. Y., et al. Structure and Electrical Properties of Strontium Barium Niobate Ceramics[J]. Materials Research Bulletin,2002,37:503-513.
    [4]Jung H. M., Kang J. H., Yang S. Y., et al. Barium Titanate Nanoparticles with Diblock Copolymer Shielding Layers for High-Energy Density Nanocomposites[J]. Chemistry of Materials,2010,22:450-456.
    [5]Lu J. X. Polymer Nanocomposites with High Dielectric Strength and High Frequency-Performance for Emdedded Passive Applications[J].2008 and the 2008 7th IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. Portable-Polytronic 2008 2nd IEEE International Interdisciplinary Conference on Portable Information Devices,2008,1-6.
    [6]Fletcher N. H., Hilton A. D., Ricketts B. W. Optimization of Energy Storage Density in Ceramic Capacitors [J]. Journal of Physics. D:Applied Physics,1996,29(1): 253-258.
    [7]Dong G. X. Ma S. W., Du J., et al. Dielectric Properties and Energy Storage Density in ZnO-doped Ba0.3Sr0.7TiO3 Ceramics[J]. Ceramics International,2009,35:2069-2075.
    [8]Zhang Q. M., Wang L., Luo J., et al. Ba0.4Sr0.6TiO3/MgO Composites with Enhanced Energy Storage Density and Low Dielectric Loss for Solid-State Pulse-Forming Line[J]. International Journal of Applied Ceramic Technology,2010,7:E124-E128.
    [9]Zhang Q. M., Wang L., Luo J., et al. Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO-SiO2-B2O3 Glass[J]. Journal of the American Ceramic Society,2009,92(8):1871-1873.
    [10]张磊,梁辉,徐廷献,等.钛酸锶钡电介质材料的显微结构和基本性能[J].压电与声光,2002,24(6):468-472.
    [11]Su B., Holmes J. E., Meggs C., et al. Dielectric and Microwave Properties of Barium Strontium Titanate (BST) Thick Films on Alumina Substrates [J]. Journal of the European Ceramic Society,2003,23:2699-2703.
    [12]Wei X. Y., Feng Y. Y., Hang L. M., et al. Dielectric Properties of Barium Stannate Titanate Ceramics under Bias Field[J]. Ceramics International,2004,30:1401-1404.
    [13]杨传任,荀富均,秦广宇,等.BaTiO3系陶瓷电压非线性特性研究[J].硅酸盐学报,1999,27:671-676.
    [14]Arlt G., Hennings D., With G. Dielectric Properties of Fine-Grained Barium Titanate Ceramics[J]. Journal of Applied Physics,1985,58(4):1619-1625.
    [15]Ravez J., Perron-Simon A., Hagenmuller P. The Tetragonal Tungsten Bronze Phases: Crystallochemical Rules, Relations between Ferselectric Properties and Structural Distortions[J]. (in Fr.) Annales De Chimie,1976,1:251-268.
    [16]Crossab L. E., Nicholson B. J. The Optical and Electrical Properties of Single Crystals of Sodium Niobate[J].1955,46(376):453-466.
    [17]Garcia-Gonzalez E., Torres-Pardo A., Jimenez R., et al. Structural Singularities in Ferroelectric Sr2NaNb5O15[J]. Chemistry of Materials,2007,19:3575-3580.
    [18]Singh S., Draegert D. A., Geusic J. E. Optical and Ferroelectric Properties of Barium Sodium Niobate[J]. Physical Review B,1970,2(72):2709-2724.
    [19]Kyoichi K., Akihiko Y. Grain-Size Effects on Dielectric Properties in Barium Titanate Ceramics[J]. Journal of Applied Physics,1976,47(1):371-373.
    [20]Martirena H. T., Burfoot J. C. Grain-Size Effects on Properties of Some Ferroelectric Ceramics[J]. Journal of Applied Physics,1974,7(17):3182.
    [21]Guo R., Bhalla A. S., Randall C. A., et al. Dielectric and Pyroelectric Properties of the Morphotropic Phase Boundary Lead Barium Niobate (PBN) Single Crystals at Low Temperature (10-300 K)[J]. Journal of Applied Physics,1990,67(10):6405-6410.
    [22]Guo R., Bhalla A. S., Randall C. A., et al. Polarization Mechanisms of Morphotropic Phase Boundary Lead Barium Niobate (PBN) Compositions[J]. Journal of Applied Physics,1990,67(3):1453-1460.
    [23]Santos I. A., Garcia D., Eiras J. A., et al. Features of Diffuse Phase Transition in Lead Barium Niobate Ferroelectric Ceramics[J].2003, Journal of Applied Physics,93(3): 1701-1706.
    [24]Chen J. C., Zhang Y., Deng C. S., et al. Effect of the Ba/Ti Ratio on the Microstructures and Dielectric Properties of Barium Titanate-Based Glass-Ceramics[J]. Journal of the American Ceramic Society,2009,92(6):1350-1352.
    [25]Juma'a Q. A., et al. Advances in Ceramics[A]. Nucleation and Crystallization in Glasses[C]. Westerville American Ceramic Society Publishing,1982:218-236.
    [1]Gorzkowski E. P., Pan M.-J., Bender B., et al. Glass-Ceramics of Barium Strontium Titanate for High Energy Density Capacitors[J]. Journal of Electroceramics,2007,18: 269-276.
    [2]Chen J. C., Zhang Y., Deng C. S., et al. Effect of the Ba/Ti Ratio on the Microstructures and Dielectric Properties of Barium Titanate-Based Glass-Ceramics[J]. Journal of the American Ceramic Society,2009,92[6]:1350-1352.
    [3]Chen J. C., Zhang Y., Deng C. S., et al. Improvement in the Microstructures and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics by AlF3/MnO2 Addition[J]. Journal of the American Ceramic Society,2009,92[8]:1863-1866.
    [4]Du J., Jones B., Lanagan M. Preparation and Characterization of Dielectric Glass-ceramics in Na2O-PbO-Nb2O5-SiO2 System[J]. Materials Letters,2005, 59(22):2821-2826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700