快速热扩散炉及快速扩散的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对快速热扩散炉(RTD Furnace)的设计、制造进行了详细描述,研制出了RTD炉样机。通过调试此设备获得了它的升降温曲线和温控PID参数。实验研究了快速热扩散(RTD):通过旋涂磷胶和印刷磷浆两种方式考查了2×4和103×103单晶硅的快速热扩散特性,发现:1)此样机的温度场在空间分布上是均匀的;2)快速热扩散可以比传统扩散快3倍的速度进行扩散;3)在扩散温度和掺杂磷源相同的条件下,与传统扩散相比,快速热扩散将杂质向结更深的地方推进。这些技术和实验结果在国内未见报道。
     本论文采用HF和HNO_3为腐蚀液,在不同温度、添加剂和超声振荡3种情况下来进行研究多晶硅酸腐蚀表面织构化。实验研究发现:通过超声振荡,在单位面积上腐蚀坑密度较大。在1min、HF:HNO_3=12:1的腐蚀条件下,25℃时加Br_2用超声振荡的方式得到的腐蚀效果好。腐蚀坑比较均匀、光滑,单位面积腐蚀坑较多,而且呈收缩型,这将有利于入射光的多次反射,获得较好的表面减反射效果。本研究在国内外未见报道过。
This dissertation discussed the design and manufacture of Rapid Thermal Diffusion (RTD) furnace. RTD in c-Si of 2X4 and 103 X 103 size were studied by experiments in the same RTD furnace. The diffusion carrier concentration profile and junction depth were measured and compared with Conventional Furnace Processing diffusion (CFD). It presented following conclusions: 1) The temperature distribution in quartz chamber of RTD furnace is uniform because square resistance is uniform after RTD; 2) The diffusion velocity of RTD furnace by a factor of three compare to Conventional Furnace Processing diffusion (RTD); 3) If diffusion temperature and doping phosphorus are equivalent, doping phosphorus of RTD are more than of CFD in equivalent distance to the silicon surface. This technology and results have not been reported in China.
    It first researched multicrystalline silicon surface texture by ultrasonic vibration. Selecting the optimal proportion between HF and HNO3, we find the better etching basing on 1min, ultrasonic vibration, 25 , appending Br2 and pits are more uniform on the multicrystalline silicon surface, while better textured surface can be obtained.
引文
[1] 李锦堂,20世纪头脑眼科技发展的回顾与展望[J],太阳能学报,特刊/1999,1999,PP:1-14
    [2] M. A. Green, Solar Cells[M], Prentice-Hall, Inc., Englewood Cliffs, N. J. 07632, 1982, PP: 1-11
    [3] 谢建,刘祖明,李云苍,太阳能利用技术[M],北京:中国农业大学出版社,1999,pp:9-13
    [4] (美)施敏著,刘晓彦,贾霖,康晋锋译,现代半导体器件物理[M],北京:科学出版社,2001,pp:362-368
    [5] 赵玉文,太阳能技术对我国减排CO_2的贡献[A],杭州:中国第七届光伏会议论文集[C],2002/10,PP:368-370
    [6] 刘祖明,晶体硅太阳电池及其电子辐照研究[D],四川大学博士学位论文,2002,PP:16
    [7] 赵玉文,林安中,晶体归太阳电池及材料[J],太阳能学报,特刊/1999,Oct.1999,PP:85-94
    [8] 林安中,王斯成,国内外太阳电池和光伏发电的进展与前景[J],太阳能学报,特刊/1999,Oct.1999,PP:69-74
    [9] 昌金铭,吴建荣,世界光伏产业崛起对我国的启迪[A],杭州:中国第七届光伏会议论文集[C],2002/10,PP:371-374
    [10] 石定寰,发展中国光伏事业的思考[A],杭州:阳光发电论坛论文集[C],2002,PP:1-4
    [11] 施正荣,晶体硅太阳电池的现状和发展[A],杭州:中国第七届光伏会议论文集[C],2002/10.PP:350-353
    [12] J. F. Nijs, Jozef Szlufcik, S. Sivoththaman, etc al., Advanced manufacturing concepts for crystalline silicon solar cells[J], IEEE Trans. On Electron Dev., Vol. 46, NO. 10, Oct. 1999, PP: 1948-1969
    [13] G. Hahn, W. Jooss, M. Spiegel, etc al., Improvement of multicrystalline silicon solar cells by A1-gettering and hydrogen passivation[A], Proc. On 26th IEEE PVSC[C], Anaheim, CA, 1997,
    [14] J. Szlufcik, F. Duerinckx, E. Van Kerschaver, etc al., Simplified industrial type process for high efficiency crystalline silicon solar cells[A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997
    [15] J. Hornstra, H. de Moor, A. Weeber, etc al., First experience with double layer stencil printing for low production solar cells[A], Proc. On 2nd WPVSEC[C], Vienna, Austria, 1998
    [16] K. Shirasawa, K. Fukui, K. Okaka, etc al., Over 17% large area multicrystalline silicon solar cells[A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997
    [17] F. Dernckx, J. Szlufcik, A. Ziebakowski, etc al., Simple and efficient screenprinting process for multicrystalline silicon solar cells based on firing through silicon nitride[A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997
    [18] F. Duerinckx, J. Szlufcik, J. Nijs, etc al., High efficiency, mechanically V-textured, screenprinted multicrystalline silicon solar cells with silicon nitride passivation[A], Proc. On 2nd WPVSEC[C], Vienna, Austria, 1998
    [19] S. R. Wnham, C. B. Honsberg, M. A. Green, Buried contact solar cells [J], Solar energy materials & Solar cells, Vol. 34, 1994, PP. 101-110
    [20] C. B. Honsberg, F. Yun, A. Eong, etc al., 685mv open-circuit voltage laser grooved silicon solar cell[J], Solar energy materials & Solar cells, Vol. 34, 1994, PP. 117-123
    [21] M. A. Green, S. R. Wnham, C. B. Honsberg, etc al., Transfer of buried contact cell laboratory sequences into commercial production[J], Solar energy materials & Solar cells, Vol. 35, 1995, PP: 79-87,
    [22] C. B. Honsberg, S. E. edmiston, A. Fung, etc al. New simplified buried contact process for
    
    Czochralski and multicrystalline wafer[A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997
    [23] R. Einhaus, E. Vazsonyi, J. Szlufcik, etc al., Isotropic texturing of multicrystailine silicon wafers with acidic texturing solutions [A], Proc. On 26th IEEE PVSC[C], Anaheim, CA, 1997
    [24] Yerokhov V., Hezel R., etc al., Development of profitable methods of texturing for silicon solar cells [A], Proc. On 16th EPVSEC, 2000, Glasgow, UK
    [25] C. Zechner, P. Fath, G. Wlleke, etc al., Numerical simulation studies of mechanically textured high efficiency silicon solar cells[A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997,
    [26] K. Fukui, Y. Inomata and K. Shirasawa, Surface texturing using reactive ion etching for multicrystalline silicon solar cell[A], Proc. On 26th IEEE PVSE[C], Anaheim, CA, 1997
    [27] D. S. Ruby, S. H. Zaidi, S. Narayanan, etc al., RIE-Texturing of Multicrystalline Silicon Solar Cells[A], Proc. On 12th PVSEC, 2001, Jeju, Korea. PP: 273-274.
    [28] M. Stefancich, G. Martinelli, M. Butturi, etc al., Effects of chemical texturing on the mechanical resistance of silicon monocrystalline wafers for PV use[A], Proc. On 16th EPVSEC[C], 2000, Glasgow, UK
    [29] S. De Wolf, P. Choulat, E. vazsonyi, etc al., Towards industrial application of isotropic texturing for multi-crystalline silicon solar cells[A], Proc. On 16th EPVSEC, 2000, Glasgow, UK,
    [30] 陈君等,铸造多晶硅太阳电池表面织构化的研究[A],昆明:第六届中国光伏会议论文集[C],2000,10,pp:1-5
    [31] Alexander Ulyashin, Maximilian Scherff, Reza Hussein, etc al., Comparison of multicrystalline silicon surfaces after wet chemical etching and hydrogen plasma treatment: application for the heterojunction solar cells[A], Proc. On 12th PVSEC[C], Jeju, Korea, 2001, PP: 209-210
    [32] 查超麟,刘祖明等,多晶硅酸腐蚀表面织构的研究[J],太阳能学报,增刊/2002,PP:1~4
    [33] R. Einhaus, E. Van Kerschaver, F. duerinckx, etc al., Optimization of a selective emitter process for multicrystalline silicon solar cells to meet industrial requirements [A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997
    [34] S. Sivoththaman, W. Laureys, J. Nijs, etc al., Selective emitter in Si by single step rapid thermal diffusion for photovoltalc Device [J], IEEE Electron Dev. lett.s, Vol. 21, No6, June 2000, pp274-276
    [35] J. Horzel, C. Allebe, J. Szlufcik, S. Sivoththaman, Development of RTP for industrial solar cell processing [J], Solar Energy Materials & Solar Cells, Vol. 72(2002). PP: 263-269
    [36] S. Neol, L. Ventura, A. Slaoui, etc al., Impact of ultraviolet light during rapid thermal diffusion [J], Appl. Phys. Lett. 72(20), 18 May 1998, PP: 2583-2585
    [37] P. B. Grabiec, W. Zagozdzon-wosik, G. Lux, etc al., Kinetics of phosphorus proximity rapid thermal diffusion using spin-on dopant source for shallow junction fabrication [J], J. Appl. Phys. 78(1), July, 1995, PP: 204-211.
    [38] R. Singh, K. C. Cherukuri, L. Vedul, etc al., Low temperature shallow junction formation using vacuum ultraviolet photons during rapid thermal processing[J], Appl. Phys. Lett,. 70(13), 31 March 1997, PP: 1700-1702.
    [39] V. Privitera, F. Priolo, G. Marrino, etc al., The effect of reaction plasma etching on the transient enhanced diffusion of boron in silicon [J], Appl. Phys. Lett., 17(13), 29Sep. 1997, PP: 1834-1836.
    [40] J. Mavoori, R. Singh, S. Narayanan, etc al., Experimental evidence of photoeffects in silicon
    
    rapid isothermal diffusion [J], Appl. Phys. Lett., 65(15), 10 Oct. 1994, PP: 1935-1937.
    [41] S. Sivoththaman, J. Horzel, W. Laureys, etc al., Toward a fast and cost-effective production of industrial size silicon solar cells using rapid thermal annealing and screenprinting[A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997
    [42] S. Sivoththaman, W. Laures, P. De Schepper, etc al., Selective emitters in Si by single step rapid thermal diffusion for photovoltaic devices[J], IEEE electron Dev. Lett., Vol. 21, No.6, June, 2000, PP: 274~276
    [43] 查超麟、刘祖明、陈庭金等,RTP晶体硅太阳电池研究进展[J],云南师范大学学报(自然科学版),vol.31(4)
    [44] A. Rohatgi, Z. Chen, P. Doshi, etc al., High-efficiency silicon solar cells by rapid thermal processing [J], Appl. Phys. Lett., 65(16), 17 Oct. 1994, pp: 2087~2089
    [45] S. Sivoththaman, W. Laureys, J. Nijs and R. Mertens, Rapid thermal annealing of spin-coated phosphoric acid films for shallow junction formation[J], Appl. Phys. Lett., 71(3), 21 July 1997, PP: 392~394
    [46] L. Ventura, S. Noel, A. Lachiq, etc al., Role of aluminum during simultaneous dopants diffusion in a lamp heating furnace [A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997, PP: 108~111
    [47] S. Bourdais, G. Beaucarne, A. Slaoui, etc al., Comparative study of rapid and classical thermal phosphorus diffusion on polycrystalline silicon thin films[J], Solar energy materials & Solar cells, Vol. 65(2001), PP: 487~493
    [48] S. Sivoththaman, W. Laureys, J. Nijs and R. Mertens, Fabrication of large area silicon solar cells by rapid thermal processing [J], Appl. Phys. Lett., Vol. 67, No 16, 16 Oct. 1995, PP: 2335~2337
    [49] R. P. S. Thakur, R. Singh, A. J. Nelson, etc al., Comparative study of phosphosilicate glass on (100) silicon by furnace and rapid isothermal annealing [J], J. Appl. Phys., Vol. 69(1), 1 Jan. 1991, PP: 367~371
    [50] S. Noel, A. Slaoui, S. Peters, etc al., Optimized rapid thermal processing for high efficiency silicon solar cells[J], Solar energy materials & Solar cells, Vol. 65(2001), PP: 495~501
    [51] A. Rohatgi, P. Doshi, S. Kamra, Highest efficiency RTP solar cells by rapid thermal diffusion and oxidation [A], Proc. on 14th EPVSEC[C], Barcelona, Spain, 1997
    [52] L. Pirozzi, G. Arabito, F. Artuso, etc al., Selective emitters in buried contact silicon solar cells: Some low-cost solutions [J], Solar energy materials & Solar cells, Vol. 65(2001), PP: 287~295
    [53] Parag Doshi, Jose Mejia, Keith Tate, and Ajeet Rohatgi, Modeling and Characterization of High-Efficiency Silicon Solar Cells Fabricated by Rapid Thermal Processing, Screen Printing, and Plasma-Enhanced Chemical Vapor Deposition[J], IEEE Trans. on Electron Dev., Vol. 44, No. 9, Sep. 1997, PP: 1417~1424
    [54] L. Debarge, J. C. Muller, B. Forget, etc al., Screen-printed paste and spin-on source applied to selective emitter formation in a single step rapid thermal diffusion step [A], Proc. On 16th EPVSEC[C], 2000, Glasgow, UK
    [55] P. Doshi, J. Mejia, K. Tare, etc al., Integration of screen-printing and rapid thermal processing technologies for silicon solar cell fabrication[J], IEEE Electron Dev. Lett., Vol. 17, No.8, August 1996, PP: 404~406
    [56] J. Horzel, S. Sivoththaman, J. Nijs, etc al., Screen-printed rapid thermal processing (RTP) selective emitter solar cells using a single diffusion step[A], Proc. On 16th EPVSEC[C], 2000
    
    
    [57] P. Doshi, J. Mejia, K. Tate, etc al., High-efficiency silicon solar cells by low-cost rapid thermal processing screen printing, and plasma-enhanced chemical vapor deposition[A], Proc. On 25th IEEE PVSC[C], 1996, Washington, D. C. pp: 421~424
    [58] S. Sivoththaman, W. Laureys, P. De Schepper, etc al., Rapid thermal processing of conventionally and electromagnetieally cast 100 cm~2 multicrystalline silicon [A], Proc. On 25th IEEE PVSC[C], 1996, Washington, D. C, PP: 621~624
    [59] Ji-Weon Jeong, Ajeet Rohatgi, Vijay Yelundur, etc al., Enhanced silicon solar cell performance by rapid thermal firing of screen-printed metals[J], IEEE TRANS. On Electron Dev., VOL. 48, NO. 12, Dec. 2001, PP: 2836~2841
    [60] M. Hilali, J. -W. Jeong, A. Rohatgi, etc al., Optimization of self-doping Ag paste firing to achieve high fill factors on screen-printed silicon solar cells with a 100 Ω/sq. emitter [A], Proc. On 29th IEEE PVSC, New Orleans, May 2002
    [61] A. T. Fiory, Methods in Microelectronics for Rapid Thermal Annealing of Implanted Dopants [A], 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes[C], Edited by B.L. Sopori, NREL/BK-520-30838(August 2001). PP: 102~114
    [62] A. slaoui, A. Lachio, L. Ventura, etc al. Selective emitter formation using optical thermal heating[A], Proc. On 25th IEEE PVSC[C], 1996, Washington, D. C., PP: 397~400.
    [63] R. Schindler, A. Breymesser, H. Lautenschlager, etc al., Single step rapid thermal diffusion for selective emitter formation and selective oxidation [A], Proc. On 25th IEEE PVSC[C], 1996, Washington, D. C., PP: 509~512
    [64] S. Narasimha, A. Rohatgi, Fabrication and characterization of 18.6% efficient multicrystalline silicon solar cells[J],. 1EEE Tran. on Electron Dev., Vol. 45, No. 8, 1998, PP: 1776~1783
    [65] B. Lojek, Early history of rapid thermal processing [A], Paper originally presented at RTP'99 in Colorado Springs[C], September 9, 1999.
    [66] Marcel Lefrancois and Dave Camm, Temperature uniformity during impulse~(TM) anneal[A], 8th International Conference on Advanced Thermal Processing of Semiconductors RTP'2000[C]-Gaithersburg, Maryland, September 20-22, 2000
    [67] Bruce Peuse, Gary Miner, Mark Yam, etc al., Advances in RTP temperature measurement and control[A], Presented at Materials Research Society Symposium[C]- Spring 98
    [68] D. M. Camm and B. Lojek, High power arc lamp RTP system for high temperature annealing applications [A], Paper Presented at 2nd International Rapid Thermal Conference[C], 1994
    [69] http://courses. nus. edu. sg/course/phyweets/Projects98/RTP/Introduction to Rapid Thermal Processing/Introduction Frame-4. htm
    [70] J. F. Nijs, J. Szlufcik, J. Poortmans, etc al., Advanced manufacturing concepts for crystalline silicon solar cells[J], 1EEE Trans. On Electron Dev., Vol.46, No.10, Oct. 1999: 1948~1969
    [71] P. Doshi, J. Moschner, J. Jeong, etc al., Characterization and application of Rapid Thermal oxide surface passivation for the highest efficiency RTP silicon solar cells[A], Proc. on 26th IEEE PVSC[C], Anaheim, CA, 1997
    [72] S. Sivoththaman, J. Horzel, F. Duerinckx, etc al., High throughput processing of large area multicrystalline silicon solar cells by rapid thermal processing and screenpringting[A], Proc. on 2nd WPVSEC[C], Vienna, Austria, 1998
    [73] M. Goris, H. de Moor, A. Weeber, etc al., Emitter diffusion using an IR belt furnace [A], Proc. on 2nd WPVSEC[C], Vienna, Austria, 1998
    [74] J. Horzel, J. Szlufcik, J. Nijs, etc al., High efficiency industrial screen printed selective
    
    emitter solar cells [A], Proc. on 16th EPVSEC[C], 2000, Glasgow, UK
    [75] S. Noel, L. Debarge, H. Lautencshlager, etc al., Rapid thermal processing for highly efficient silicon cells [A], Proc. on 16th EPVSEC[C], 2000, Glasgow, UK
    [76] A. Mrwa, K. Erler M. Ball, etc al., Rapid Thermal Annealed spin-on glasses process for multicrystalline P-N-silicon-solar cells [A], Proc. on 16th EPVSEC[C], 2000, Glasgow, UK
    [77] S. Petters, H. Lautenschlager, W. Warta, etc al., RTP processed 17.5% efficient featuring a record small thermal budget[A], Proc. on 16th EPVSEC[C], 2000, Glasgow, UK
    [78] A. Rohatgi, V. Yelundur, J. Jeong, etc al., Fundamental understanding and implementation of A1-enchanced PECVD SiNx hydrogenation in silicon ribbons [A], Proc. on 12th PVSEC[C], 2001,JEJU, Korea
    [79] J. Szlufcik, F. Duerinckx, J. Horzel, etc al., High-efficiency low-cost integral screenprinting multicrystalline silicon solar cells[A], Proc. on 12th PVSEC, 2001, JEJU, Korea
    [80] L. Debarge, J. C. Muller, R. Monna, Selective emitter Formation With a Single Screenprinting P-doped Paste Deposition Using out-diffusion in a RTP Step[A], Proc. on 12th PVSEC[C], 2001, JEJU, Korea
    [81] A. Ebong, Y. H. Cho, M. Hilali, etc al., Rapid Thermal Technologies for high efficiency silicon solar cells[A], Proc. on 12th PVSEC[C], 2001, JEJU, Korea
    [82] D. Biro, R. Preu, O. Schultz, etc al., Advance diffusion systems for ion contamination in-line Rapid Thermal Processing of silicon solar cells[A], Proc. on 12th PVSEC[C], 2001, Jeju, Korea
    [83] A. Rohatgi, S. Narasimha, A U. Ebong, etc al., Understanding and implementation of Rapid Thermal Technologies for high-efficiency silicon solar cells[J], IEEE Trans. On Electron Dev., Vol. 46.no.10, Oct., 1999. pp: 1970-1977
    [84] Harold J.Hovel 著,赵富鑫,李金其译,太阳电池-《半导体和半金属》从书第11卷[M],北京:四机部第六研究所印,1982/5,PP:43-44
    [85] 安其霖等著,《太阳电池原理与工艺》[M],上海:上海科学技术出版社,1984,PP:
    [86] [美]施敏,超大规模集成电路技术[M],北京:科学出版社,1987,PP:228~232
    [87] 雷永泉,万群,石永康,《新能源材料》[M],天津:天津大学出版社,2000/12,PP:233-239
    [88] 厉玉鸣,化工仪表及自动化[M],北京:化学工业出版社,1981/7,pp:132-140
    [89] 电子工业专用设备设计手册(一般设计资料)[M],北京:国防工业出版社,1979/11,PP:354,360
    [90] 南京工学院主编,电子设备结构设计原理[M],南京:江苏科学技术出版社,pp:94-124,404~409
    [91] 吴永生,方可人,热工测量及仪表[M],北京:电力工业出版社,1981/3,PP:22-39
    [92] 韩爱珍等,半导体化学工艺[M],南京:东南大学出版社,1991,PP:177~178,118~120
    [93] 庄同曾主编,《集成电路制造技术—原理与实践》[M],北京:电子工业出版社,1987,PP:371-375
    [94] 黄汉尧,李乃平,孙青等,半导体器件工艺原理[M],北京:国防工业出版社,PP:84-114
    [95] [美]K.A.杰克逊主编,屠海令,万群等译,半导体工艺(材料科学与技术丛书,第16卷)[M],1999/6,PP:161,467-473
    [96] 中国科学院半导体研究所理化分析中心研究室著,半导体的检测与分析[M],北京:科学出版社,1984,pp:373~386,
    [97] 厦门大学物理系半导体物理教研室编,半导体器件工艺原理[M],人民教育出版社,1077/6:65~134,358,476
    [98] S. Narasimha and A. Rohatgi, Effective passivation of the low resistivity silicon surface by a
    
    rapid thermal oxide/plasma silicon nitride stack [J], Appl. Phys. Lett. Vol. 72, No. 15, 1998, PP: 1872~1874
    [99] S. Noel, L. Ventura, A. slaoui and J. C. Muller, Effects of furnace geometry and UV-light on Rapid Thermal Diffusion of phosphorus in silicon [A], Proc. On 14th EPVSEC[C], Barcelona, Spain, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700