微型水电与电网协同供电技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型水电至今没有一个明确的定义。根据联合国开发计划署“第二次国际小水电会议”的建议,装机容量在100kW以下的水电站称为微型水电。在我国,微型水电一般是指小溪、小河在一定河段长度内,所具有的有效发电势能,可以带动微水电机组发电。它由引水渠、微型水轮机、发电机、稳压稳频控制器、传动装置等组成,独立运行,不需要输变电,直接向农户供电。经全国微水电发展研讨会(2007年7月4日)讨论决定,将单机容量500kW以下的水力发电系统定义为微水电,符合我国国情和国际市场需要。
     由于电网的延伸,在建有微型水电站的地区,用户可以对微型水电和国家电网的电能选择使用,一般丰水期的时候是主要依靠微型水电,枯水期是依靠国家电网。由于微型水电装置的局限性,在使用中会造成相当比例部分的能量浪费,主要体现在两个方面:一,当进水量大于额定值时,通过溢流管道泄放多余流量或者手动关小进水阀,而当负载减小时,利用虚拟负载调速系统消耗多余的电能保持转速为额定转速;二,当进水量小于额定值后(每款具体产品的规定值不同),就不能保证稳压稳频的电压输出,此种情况,用户常弃用微型水电装置而向电网取电。前者是因为能量过剩而消耗在无用负载上,这种情况可以考虑将微水电并到电网上;后者是因为微水电提供的能量不能满足负载而被舍弃。
     微水电并网,可以很好的解决以上的情况,但由于体制的限制,在绝大部分地区尚未实现。本文提出一种新方法,将微水电和电网联结为一体,向用户供电,在现有体制下,能够很充分的利用微水电。
     建立了微水电和电网联结的模型,分析了电网和微水电协同供电的原理,阐述在微水电发出的电能不能够在电压、频率上满足负载要求时,将微水电发出的电能进行不控整流,将电网的电能进行半控整流,再将两部分电能叠加,最后逆变输出给负载。
     在电网电压半控整流模型中,详细分析了交流侧的谐波、谐波对电网的污染,并找出解决方法;直流侧的高次谐波的滤波;输出电压与输入电压关系的数学模型等。在EDA软件multisim、matlab中进行仿真验证,并在试验中得以验证。
     将电网输入电压、微水电发出的电压和最终获得的稳定输出电压构成一个负反馈的闭环系统,通过EDA软件Protel设计出数字式检测控制电路板,调节可控硅的导通角,将输出电压为控制量,使之有一恒定的输出。
     在得到纹波系数符合要求的稳定电压后,再将电能逆变成所需频率的交流电压,提供给负载。
     在对能源动力十分渴求的今天,应当利用起一切可利用的能源,且要在低成本的情况下运行。本文设计出的方案,可以使得微型水电装置得到相当充分的利用,可用于边远地区农村的照明、农副产品的再加工等,对改进微型水电系统和能源的最大化利用都有一定的意义。
There is no a definite circumscription for micro-hydropower today, but as to the second international hydropower conference, micro-hydropower is supposed to the one whose capacity of electricity is less than 100kW. Micro-hydropower commonly means the valid electricity power of stream, river,which could drive the generator. It consists of the diversion channel,micro-turbine, generators, frequency stabilization regulator controller,gear,etc., operating independently with no need for power transmission, power supply directly to the farmers. According to China's national conditions and international market needs, micro-hydropower is defined as the one whose single capacity is below 500kW as the National seminar(July 4,2007) on micro-hydropower development.
     Because of the extension of the electric wire netting, users can choose the electric energy of micro-hydropower or the national electric wire netting in the areas where there are micro- hydropower stations. The micro-hydrpower is chosen in wet reason, the national electric wire netting in dry season usually. Due to the limitations of micro-hydropower plant,there's a considerable proportion of part of the energy wasted when used, mainly reflectes in two aspects:First,when the amount of water intake is greater than the rating, the water would flow through the overflow pipe or manually turn down the inlet valve, and when the load decreases, the speed control system using virtual load power consumption to maintain the speed to the rated. Second, when the amount of water intake less than therating, it can not guarantee that the voltage regulator output and the frequency stabilization,in this case, users often abandon the use of micro-hydropower plant but to the electricity grid. The former one is to consumption of excess energy on the useless load, in this situation it can be considered that excess energy conversion to the power grid; the latter is because the provision of micro-hydro power can not satisfy the load.
     This paper presents a new method to link micro-hydropower and power grid as a whole-electricity-supply, which can be fully utilized micro-hydropower. In this paper, the model of micro hydro-grid is established, the principle of power grids and micro-hydropower synergy supply is analysed. The AC power from generator is through non-controlled rectifier when the voltage and the frequence of the AC power from generator are not stable, the power from the grid is through semi-controlled rectifier,then series connect the two parts,invert the total energy to the load.
     In semi-controlled rectifier voltage model, a detailed analysis of the harmonic of the AC side, harmonic pollution to the grid, the filter of high harmonics of DC side, the mathematical model of output voltage and input voltage is expounded, and find solutions to the problems, which is verified in the simulations in the EDA software multisim, matlab and experiments.
     This system is a negative feedback closed-loop system, the main parameters are input voltage from the power grids, output voltage from the micro-hydropower, and final stable output voltage. Digital detected-control circuit board is designed in the EDA software Protel for regulating of the SCR conduction angle to make sure a constant output voltage. As the voltage as required obtained then is inverted to a certain frequence AC power to the loads.
     Any available energy should be used with low cost on the urgent need for energy nowdays. In this paper, the design of the program, can make micro-hydropower plant to be quite adequate to use, which can be used for lighting in remote rural areas, agricultural and sideline products processing, etc., to improve the micro-hydropower system and maximize the use of energy.
引文
[1]张福良.开发微水电解决边远山区通电问题[J].福建电力与电工,2006.12,26(4)
    [2]刘燕.我国微水电行业的现状与对策[J].农村能源,2000,5:26-29.
    [3]柴恭纯.微水电开发的地位与作用[J].海河水利,1996,(5):2-3.
    [4]岑君秀,朱小华,应芳.我国微水电的现状与发展前景[J].东北水利水电,2000,(1)
    [5]周显恩.浅谈小水电开发中存在的几个问题[J].科学咨询导报,2007(28):128.
    [6]黄东庆.边远山区微水电的探讨[J].江西能源,1993(3)
    [7]宋文平,农云峰.发挥小微电的作用促进山村用电面的普及[J].广西水利水电,1992(2)
    [8]暴兴汉.微水电发电机负荷调节法[J]小水电,2005,(5)
    [9]戴群莉.微机调速器在小型水毫站的应用[J].小水电,2001,(1)
    [10]李永建.适用于风能太阳能互补的正弦波逆变电源研制[D].河北:河北工业大学,2007,6.
    [11]申敏.水轮机调速器的智能控制策略研究[D].重庆:重庆大学,2003,4.
    [12]陈启卷,王学武.水轮机PLC调速器数字测频的研究[J].大电机技术,1994.4:49-52.
    [13]王海卫,魏守平等.水轮机PLC调速器测频环节的新实现[J].中国水利水电,1996.12:43-45.
    [14]徐锦才,董大富,张巍.可再生能源多能互补发电综述[J].小水电,2007,3.
    [15]王志新,刘立群,张华强.风光互补技术及应用新进展[J].电网与清洁能源,2008,24(5).
    [16]廖泽前.电力新能源及其利用[J].广西电力工程,1998,(1).
    [17]顾本文,王明,施晓晖.云南省风能资源的评估研究[J].贵州气象,1999,(1).
    [18]王凡.风能太阳能互补的发电方式[J].华东电力,1999,(4).
    [19]Dorofte C,Borup U, Blaabjerg F. A Combined Two-Method MPPT Control Scheme for Grid-Connected Photovoltaic Systems[C].Power Electronics and Applications,2005 European Conference on.2005,:1-10.
    [16]Mutoh Nobuyoshi,Ohno Masahiro,Inoue Takayoshi. A Control Method to Charge Series-Connected Ultraelectric Double-Layer Capacitors Suitable for Photovoltaic Generate Systems Combining MPPT Control Method[J].IEEE Transactions on Industrial Electronics,2007,54(1):374-383.
    [20]Lohner A,Meyer T,Nagel A.A new panel—integrate—able inverter concept for grid connected photovoltaic systems[A].Proceedings of the IEEE International Symposium on Industrial Electronics [C].Warsaw,Poland:IEEE Inc,1996.827-831.
    [21]茨真.中国西藏新能源开发利用概述[J].能源工程,1996,(1).
    [22]王建华.新能源发电的现状及前景[J].能源工程,1999,(1).
    [23]宋维军.青藏高原小型户用风光互补发电系统的设计方法[J].青海科技,2001,(4).
    [24]陈慧玲.在青海省建设风光互补电站可行性探讨[J].青海科技,2002,(4).
    [25]刘山凤,龙江,方韬.风光互补新能源成新趋势[J].电气技术,2008,12.
    [26]王宇,娄承芝.风光互补电源控制系统的开发与应用[J].电源技术,2007,131(8)
    [27]张兴磊.离网型户用风光互补发电系统中全数字化逆变的研究[D].南京:南京农业大学,2006,6.
    [28]艾斌,李健,刘玉琴,季秉厚.小型户用风光互补发电系统匹配的计算机辅助设计[J].内蒙古大学学报(自然科学版),2000,(3).
    [29]艾斌,杨洪兴,沈辉,廖显伯.风光互补发电系统的优化设计(D CAD设计方法[J].太阳能学报,2003,(4).
    [30]陈亚爱,张卫平,刘元超,程强.风光互补发电系统实验模型的建立[J].北方工业大学学报,2004,(3).
    [31]Vachtsevanos G J, Kalaitzakis K C. Penetration of Wind Electric Conversion System into the Utility Grid.IEEE Transactions on Power Apparatus and Systems,1985,104 (7):36-38.
    [32]Schlveter R A, Park G L. Simulation and Assessment of Wind Array Power Variations Based on Simultaneous Wind Speed Measurements.IEEETransactions on Power Apparatusand Systems,1984, 103 (5):23-26.
    [33]Shigeo Morimoto, Hideaki Nakayama, Masayuki Sanada. Sensorless Output Maximization Control for Variable-speed Wind Generation System Using.IPMSG IEEE Transaction on Industry Application, 2005,41 (1):60-67.
    [34]Schlveter R A, Sigari G, Costi A. Wind Array Power Prediction for Improved Operating Economics and Reliability.IEEE Transactions on Power Apparatus and Systems,1985,104 (7):137~142.
    [35]查超麟,刘祖明,刘元岐,汪懋华,彭银生.微水电光伏互补发电系统设计[J].云南大学学报,2004,24(1).
    [36][英]G.P.哈里森等.微型水电接入电网的新方法[J].水利水电快报,2003,24(9).
    [37]曹太强.基于三相桥式可控整流电路的设计[D].西安:电子科技大学,2004,5.
    [38]魏倩.大功率可控整流电源智能测控系统研究[D].西安:西安理工大学,2005,7.
    [39]任奇.单相光伏逆变系统研究及实现[D].青岛:青岛大学,2008,5.
    [40]张建华,杨鹏.三相半波可控整流电路的计算机仿真[J].电力自动化设备,2002,22(2):4143.
    [41]Z Chen. Compensation Schemes for a SCR Converter in Variable Speed Wind Power Systems.IEEE Transactions on Power Delivery,2004,19 (2):813-821.
    [42]周熠,可控硅三相全控桥数字移相触发系统的实现[J].武汉理工大学学报,2002,26(6):741-743.
    [43]谢运祥,郭辉.三相全控桥触发脉冲的单片机实现方法[J].电工技术杂志,2003,3:66-69.
    [44]田位平,黎普明.晶闸管三相半控整流桥及移相触发环节模型[J].中国农村水利水电,2003,5:72-73.
    [45]张祖昌.一种单片机控制的三相全控桥可控硅整流器的触发电路[J].闽江学院学报,2003,24 (5):21-25.
    [46]陈洁,李玉亮.基于单片机的三相全控桥整流电路触发电路设计[J].机械工程与自动化,2005,131:83-84.
    [47]刘文花.全新的三相全控桥晶闸管触发电路的研究[J].辽宁建材,2004.4:69-70.
    [48]裴云庆,姜桂宾,王兆安.LC滤波的三相桥式整流电路网侧谐波分析[J].电力电子技术,2003,37(3):34-35.
    [49]王益红,崔建明,王成义,赵萍.三相全控桥整流电路谐波分析[J].山东矿业学院学报,1999,18(2):120-122.
    [50]黄发忠,于孝廷.三相桥式全控整流电路中的谐波分析[J].山东科学,2005,18(2):50-54.
    [51]蔡文君,马仲智.Multisim软件对三相电路的仿真研究[J].机械与电子,2007,19:91-92.
    [52]张蓉,数字控制SPWM逆变器研究[D].南京:南京航空航天大学研究生院自动化学院,2006:39-42..
    [53]贺益康,潘再平.电力电子技术[M].科学出版社:北京,2004:45-90,97-109.
    [54]范小波,李萍,张代润.一种基于C8051单片机的SPWM波形实现方案[J].元器件应用,2006,6.
    [55]黄智伟,李传琦,邹其洪.基于NI Multisim的电子电路计算机仿真设计与分析[M].北京:电子工业出版社,2008,1.
    [56]童诗白,华成英.模拟电子技术基础(第三版)[M].北京:高等教育出版社,2000,3.
    [57]阎石,数字电子技术基础(第三版)[M].北京:高等教育出版社.1998,12.
    [58]陈小平,李长杰.]Protel99SE—电子线路CAD应用教程[M].南京:东南大学出版社,2005,6.
    [59]周坚.单片机C语言轻松入门[M].北京:北京航天航空大学出版社,2006,2.
    [60]王为青,陈国钢.单片机Keil Cx51应用开发技术[M].北京:人民邮电出版社,2006,12.
    [61]马忠梅,籍顺心,张凯,马岩.单片机的C语言应用程序设计(第四版)[M].北京:北京航天航空大学出版社,2006,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700