滑模变结构控制在电力电子开关变换器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究内容是:将滑模变结构理论应用于电力电子开关变换器的控制之中。在电力电子开关变换器中,电子电子元件的唯一工作模式便是“开”或“关”的操作,而滑模变结构控制要求频繁、快速地切换系统的控制状态,两者的这一共同特点是利用滑模变结构方法控制电力电子变换器的基础,所以应用滑模变结构理论控制电力变换器是可行的。与经典控制方案(如PWM控制)相比,滑模控制的主要优点是有很强的鲁棒性,这使其具有很好的动态性能。有文献已经证明滑模控制是一种控制电力开关变换器的好方法。本文首次将滑模变结构控制应用于H型桥式DC-DC变换器、三相整流器和三相逆变器中。
     首先,本文将负载、滤波器和开关阵一起考虑,建立了电力电子变换器的数学模型,包括DC-DC变换器、三相整流器和三相逆变器。然后,基于上述模型设计了具有电流环和电压环双闭环结构的滑模变结构控制器,以提高电力电子变换器的鲁棒性和动态性能。
     其次,抖振问题是影响滑模变结构控制广泛应用的主要障碍,本文在深入研究造成系统抖振原因及各种消弱抖振方法的基础上,提出了一种模糊滑模变结构控制器,综合了模糊控制和滑模变结构控制各自的优点,以消弱变结构系统的抖振。
     最后,以仿真实验验证了文中算法的有效性,仿真结果表明:应用滑模变结构理论控制电力变换器不但设计和实现简单,而且效果优良;模糊滑模变结构控制优于传统滑模变结构控制。
This paper is devoted to studies of power electronic switching converters using Sliding Mode Variable Structure Control (SMVSC) theory. Since the "on-off operation mode is the only admissible one for power converters, it does not cause any difficulties when they are controlled by SMVSC which implies high frequency switching in implementation. The main advantage over the classical control schemes (e.g. PWM control) is its robustness for plant parameter variations, which leads to invariant dynamics and steady-state . response in the ideal case. Some literature states that sliding mode control has been presented as a good alternative to the control of switching power converters. SMVSC is firstly applied to H-model bridge DC-DC converter, three-phase rectifier and three-phase inverter in this paper.
    On the basis of the mathematical descriptions of power converters in which load, filter and switching matrix are taken into account together, such as DC-DC converter, three-phase rectifier and inverter, the sliding mode controllers with double closed-loop structures of current and voltage loop are designed to improve the robust and dynamics of power electronic switching converters.
    The chatting problem is the main obstacle to use the variable structure sliding mode control widely. In order to alleviate this phenomenon, the reasons that lead to the chatting and several alleviating chattering methods are discussed and analyzed in detail, and a new chattering alleviation method, a Fuzzy Sliding Mode Variable Structure Controller (FSMVSC), is proposed in this paper. FSMVSC combine the advantages of both fuzzy control and sliding mode variable structure control.
    The proposed algorithms are verified by simulation. The results show that SMVSC for power converters is rather simple and yet quite efficient, and that the advantages of FSMVSC are obvious in comparison with traditional
    
    
    SMVSC.
引文
[1] Amin Suyitno, el al, Variable-structured robust controller by fuzzy logic for servo-motors, IEEE, Tran. Industrial Electronics, Vol.40,No.1, pp80-87, 1993.
    [2] Atsushi Ishigame, et al, Sliding mode Controller design based on fuzzy interface for nonlinear system, IEEE, Tran. Industrial Electronics, Vol.40, No. 1, pp64-70:1993.
    [3] Bose, B.K., Expert system, Fuzzy logic, and Neural network applications in power electronics and motion control, proceedings of the IEEE, Vol.82, No.8, pp1303-1323, 1994.
    [4] Gao, W.B., Variable structure control of nonlinear systems: A new approach, IEEE, Tran. Industrial Electronics, Vol.40, No.1, pp45-55, 1993.
    [5] Hwang, G.C., and, Lin, S.C., A stability approach to fuzzy control design for non-linear systems, Fuzzy Sets and Systems, Vol.48. pp279-287, 1992.
    [6] Jardan, K. R., General analysis of three-phase inverts, IEEE, Tran. Industry and General Aplications, Vol. IGA-5, No.6, pp680-685, 1969.
    [7] King, P.J., and, Mamdani, E.H., The application of fuzzy control systems to industrial processes, Automatic, Vol. 13, pp235-242, 1977.
    [8] Kwatny, H.G., and, Siu, T.L., Chattering in variable structure feedback system. IFAC 10th Triennial World Congress, Munich, 1987.
    [9] Lu, Y.S., and, Chen, S.J., A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo system, IEEE, Tran. Industrial electronics, Vol.41, No.5, pp492-502, 1994.
    [10] Luo, N.S., and Feng, C.B., A new method for suppressing chattering in variable structure feedback control systems, IFAC Nonlinear Control System Design, Capri, Italy, 1989.
    
    
    [11] Palm, R., Robust control by fuzzy sliding mode, Automatic, Vol.30, No.9, pp1429-1437, 1994.
    [12] Rossi, C., and, Tonielli, A., Robust control of permanent magnet motors: VSS techniques lead to simple hardware implementations, IEEE, Tran. Industrial Electronics, Vol.41, No.4, pp451-460, 1994.
    [13] Sabanovic, A., and, Bilalovic, F., Sliding mode control of AC drivers, IEEE, Tran. Industry Applications, Vol.25, No. 1, 1989.
    [14] Sabanovic, A., el al, Back converter regulator operating in the sliding mode, proceedings of PCI April, 1983.
    [15] Sabanovic, A., and Izosimov, D.B., Application of sliding modes to induction motor control, IEEE, Tran. Industry Applications, Vol. IA-17,No.1, pp41-49, 1981.
    [16] Sabanovic, A., and, Sabanovic, N., and, Music, O., Sliding mode control of DC-AC conveners, proceedings of PESC, IEEE, pp560-566, 1986.
    [17] Shao, S.H., Fuzzy self-organizing controller and its application for dynamic processes, Fuzzy Sets and Syslems, No.26, pp151-164, 1988.
    [18] Slotine, J.J., and, Sastry, S.S., Tracking control of non-linear system using sliding surface, with application to robot manipulators, Int. J. Control, Vol. 38, No.2, pp465-492, 1983.
    [19] Slotine, J.J., Sliding controller design for non-linear system, Int. J. Control, Vol. 40, No.2, pp421-434, 1984.
    [20] Utkin, V.I., Sliding mode control design principles and application to electric drivers, IEEE, Tran. Industrial Electronics, Vol.40, No. 1, pp23-36, 1993.
    [21] Utkin, V.I., Sliding Mode and Their Application in Variable Structure, System, MIR PUBLISHERS, Moscow, 1974.
    [22] Ramón O. Cáceres and Ivo Barbi, A Boost DC-AC Converter: Analysis, Design, and Experimentation, IEEE, Trans. on Power Electronics, Vol. 14, No. 1, JANUARY 1999.
    [23] U. Itkis, Control Systems of Variable Structure, New York: Wiley, 1976.
    
    
    [24] R. B. Redley, B. H. Cho, and F. C. Lee, Analysis and interpretation of loop gains of multiloop-controlled switching regulators, IEEE Trans. Power Electronics., Vol. 3, No. 4, pp. 489-498, Oct. 1988.
    [25] Pradeep K. Nandam and Paresh C. Sen, Accessible-states-based sliding mode control of a variable speed drive system, IEEE Trans. on Industry Applications, Vol. 31, No. 4, 1995.
    [26] Fu-jUay Chang, Hsiang-Ju Liao and Shyang Chang, Position control of dc motors via variable structure systems control: A chattering alleviation approach, IEEE Trans. on Industrial Electronics, Vol. 37, No. 6, 1990.
    [27] John Y. Hung, Weibing Gao and James C. Hung,' Variable structure control: A survey, IEEE Trans. on Industrial Electronics, Vol. 40, No. 1,1993.
    [29] Seoul. Guo Qingding, Wang limei and Fu Qiang, A new algorithm of variable structure sliding mode control for AC positions servo system, Proceedings ICPE95, Seoul.
    [30] Suttichai Saetieo, Rajesh Devaraj, and David A. Torrey, The design and implementation of a three-phase active power filter based on sliding mode control, IEEE Trans. on Industry Applications, Vol. 31, No. 5. September/October 1995.
    [31] Amin Suyitno, J.fujikawa and H.kobayashi, Variable-Structured Robust controller By Fuzzy Logic for Servomotors, IEEE Trans. on Industrial Electronics, Vol. 40, No. 1, 1993.
    [32] Duk-Heon Kim and Hack-Seong Kim, Position control system for induction motor using variable structure system with fuzzy sliding surface, Proceedings ICPE95.
    [33] S.P. CHAN, An approach to perturbation compensation for variable structure systems, Automatica, Vol. 32, No. 3, 1996.
    [34] Yasutaka Fujimoto, Atsuo Kawamura, Robust servo-system based on two-degree-of-freedom control with sliding mode, IEEE Trans. on industrial electronics, Vol. 42, No. 3 June 1995.
    
    
    [35] Arie Levant, Sliding order and sliding accuracy in sliding mode control, Int. J., Control, 1993, Vol.58, No. 6.
    [36] G. Bartolini, A. Ferrara and V. I. Utkin, Adaptive sliding mode control in discrete-time systems, Automatica, Vol. 31. No. 5, 1995.
    [37] Hebertt Sira-Ramirez, On the dynamical sliding mode control of nonlinear systems, Int. J. Control, Vol. 58, No. 5, 1993.
    [38] S. V. Baida, Unit sliding mode control in continuous-and discrete-time systems, Int. J. Control, Vol.57, No. 5, 1993.
    [39] Khiang-Wee Lim and Teck-Seng Low, A discrete time variable structure controller for a brushless dc motor drive, IEEE Trans. on industrial electronics, Vol. 38, No. 2, June 1991.
    [40] Reyad E1-Khazali and Raymond Decarlo, Output feedback variable structure control design, Automatica, Vol. 31, No. 6, 1995.
    [41] Seung-Bok Choi, Chae-Cheon Cheong and Dong-Won Park, Moving switching surfaces for robust control of second-order variable structure systems, Int. J. Control, Vol.58, No. 1, 1993.
    [42] 王丰尧.《滑模变结构控制》 机械工业出版社 1995年。
    [43] 高为炳,程勉.变结构控制系统的品质控制.《控制与决策》,No.2,1989.
    [44] 高为炳.《变结构控制理论基础》,中国科学技术出版社,1990.
    [45] 李士勇.《模糊控制和智能控制理论与应用》,哈尔滨工业大学出版社,1990.
    [46] J. P. Karunadasa and A. C. Renfrew, Design and implementation of microprpcessor based sliding mode controller for brushless servomotor, IEE Proceedings-B, Vol. 138, No. 6, 1991.
    [47] Guo Qingding, Fu Qiang and zhang Wanli, A new variable structure sliding mode control of AC servo system based on alleviating the chattering, proceedings ofIPEMC94 Beijing.
    [48] 王勋先,丁刚,韩曾晋.感应电机变频调速的各种解耦控制方法.电气传动,1998(4).
    
    
    [49] 黄念慈,崔颖博.谐振直流环异步电机直接矩控制系统.电力电子技术,1998,11(4)
    [50] Luigi Malesani and Paolo Tomasin. "PWM current control techniques of voltage source converters-A survey" IEEE. IECON'93 Conf. 1993:670~675.
    [51] 王成立,徐展.基于转矩观测器的模糊滑模控制交流伺服驱动系统.电气传动,1998(1).
    [52] 孙毅勇,冯国楠,孙亮.自适应滑模跟踪控制交流伺服系统.电气传动,1998(3).
    [53] Palol Mattavelli, Leopoldo Rossetto and Giorgio Spiazzi. Small-signal analysis of DC-DC converters with sliding mode control, IEEE, Trans. on Power Electronics, Vol. 12, No. 1, Janu 1997.
    [54] Ramon O. Caceres and Ivo Barbi. A boost DC-AC converter: analysis, design, and experimentation, IEEE, Trans. on Power Electronics, Vol. 14, No. 1, Janu. 1999.
    [55] Suttichai Saetieo, Rajesh Devaraj, and David A. Torrey. The design and implementation of a three- phase active power filter based on sliding mode control, IEEE, Trans. on Industry Applications, Vol. 31, No. 5, Sept./Oct. 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700