新型电磁机构的拓扑设计与优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支撑智能电网发展的重要技术基础之一是高压电器的智能化,其中断路器智能操作的实现,对电磁机构的快速性与可控性提出了更高要求,这有赖于新型电磁机构的拓扑设计和参数优化研究。就目前国内外研究现状而言,能综合快速性和可控性两个层面,对电磁机构的拓扑设计与优化分析方法做出系统研究的工作并不多见。本文从电磁机构的拓扑入手,研究四种新型电磁机构的拓扑形式,提出了较为系统的拓扑设计与优化分析方法,为新型电磁机构的发展奠定了理论与技术基础。
     首先针对盘状推斥型快速电磁机构进行理论分析,基于单匝线圈间的相互作用关系推导出该型电磁机构的动态分析模型,并提出一种基于时间和位移双层循环的离散迭代算法,该算法可用于推斥型盘状电磁机构的仿真分析与综合优化设计。但就实现机构的实时可控性而言,这些数学模型与算法还显得相对复杂。
     鉴于旋转电机已具备较为成熟的控制方法,本文提出了基于永磁电动机控制的断路器操动机构方案。通过分析旋转运动与直线运动的转换关系,并综合PID与单神经元控制等方法,建立了该机构运动特性的速度跟踪控制策略,为实现机构的柔性可控提供了方法基础。但由于电动机的电磁惯性以及传动环节的机械惯性较大,并不利于实现机构的快速性。
     为综合利用上述两种电磁机构的优点,本文提出了一种兼顾运动快速性与可控性的电磁机构—音圈电机式快速电磁机构。因采用相对磁导率很小的永磁体使得回路电感显著减小,而利用对称的差动补偿结构则可保持运动过程中的等效电感基本不变,从而简化机构的分析模型。基于电磁学和机械动力学分析,采用等效受控电压源的形式来描述机构电磁与机械特性的复杂耦合关系,为解决电磁机构的解耦分析与控制问题提供了一种新思路。利用PSIM软件建立了基于PWM的速度跟踪控制仿真模型,仿真结果表明,利用电力电子器件和PWM控制方式基本可实现机构分合闸操作的无碰撞反弹,为断路器最佳运动曲线的跟踪控制奠定了方法基础。不过,因存在铁芯、永磁体等性能易受外界较大磁场影响的材料,增加了机构的非线性特征,使控制的准确性在较大电流时难以保证。
     为克服机构中使用非线性磁材料的缺点,并同时考虑可控性对机构拓扑结构的设计要求,本文提出研究一种反绕嵌套螺线管式新型电磁机构。该机构的固定部件和可动部件均由线圈构成,无铁芯亦无永磁。通过分析线圈磁场横向分量的分布规律,提出相互作用系数的概念以描述机构的耦合模型。在拓扑结构确定的情况下,该作用系数为常数,即电磁力与电流的平方成正比,从而大大简化机构的数学分析模型,为实现机构的可控性奠定基础。研制了该电磁机构的物理样机,并开展了仿真和实验研究。
     因受拓扑结构和分析方法多样性的限制,对传统电磁机构性能的评价多采用静态评价指标,缺乏针对机构动态特性的评价参数。本文以电磁学方程为基础,通过分析电磁力与控制电流的关系而提出电磁力灵敏度分析系数,以定量评价电流对电磁力影响程度的变化和电磁机构运动过程的可控性。从使用材料、拓扑结构以及电磁力灵敏度等方面,对三种电磁机构的动态性能进行了比较,指出具有较大数值且为恒定灵敏度系数的电磁机构拓扑,在快速性和可控性方面具有发展前景。本文还详细研究了推斥型盘状电磁机构和反绕嵌套螺线管式电磁机构的相互联系,指出二者在拓扑关系上分别是由单匝线圈沿径向和轴向拓展形成的空间结构,前者灵敏度系数的最大值约为后者的两倍,这为电磁机构的拓扑研究提供了新的方法与理论基础。
One of the key technical foundations of developing smart grid is intelligentized high voltage apparatus, among which the intelligent operation of circuit breakers is mounting more and more urgent demands for preferable speediness and controllability of the electromagnetic mechanisms, and this relies much on topology design and optimization method of novel electromagnetic mechanisms. As regards the state-of-the-art development all over the world, it has rarely been seen systematic research work on topology design and optimization that incorporates both aspects of speediness and controllability of the electromagnetic mechanisms. Starting with topology design, this dissertation concentrates on four novel type electromagnetic mechanisms, and comprehensive methodology is presented to realise topology design and optimal analysis, which establishes both theoretical and technological basis for developing novel electromagnetic mechanisms.
     Theoretical analysis is firstly done regarding the disc-type repulsive fast mechanism, and a dynamic model is deduced based on the coupling interaction between single-turn coils, further, a discrete iterative algorithm is proposed based on double-layer iteration of time and displacement, which can be utilised in the simulation analysis and integrated optimization of the disc-type repulsive mechanism. But for instantaneous controllability of the electromagnetic mechanism, these mathematical models and algorithms are still relatively complicated in practice.
     Many mature control strategies being available for nowadays rotating motors, a permanent magnet motor based control scheme is put forward for possible operation mechanism of circuit breakers. With analysis on the correlation between rotating angle and line displacement, also with integration of PID and single-neutron control methodologies, a control strategy for speed tracking of the mechanism's moving process is presented, which provides referential method for realising flexible controllability of the mechanism. However, due to relatively large electromagnetic inertia of the motor and mechanical inertia of the drive element, it is to some extent difficult to achieve speediness of the mechanism.
     In order to incorporate the advantages of both electromagnetic mechanisms described above, a new mechanism, namely motor coil based repulsive electromagnetic mechanism, is proposed with a view to achieving both speediness and controllability. Here, utilization of permanent magnet with small relative permeability lowers the loop circuit inductance, and adoption of the symmetrical and differential compensation structure maintains a roughly invariable equivalent inductance during the moving process of the mechanism, which gives a preferably simplified analysis model. Based on both electromagnetics and mechanical dynamics, an equivalent controlled voltage source is used to present the complicated coupling relationship between the electromagnetic and mechanical characteristics of the mechanism, which gives a new route to address the decoupled analysis and control issue of electromagnetic mechanisms. The PSIM software is used to establish a PWM-based simulation model for speed tracking control, and the results demonstrates that, with power electronics devices and PWM control, it is feasible and effective to achieve roughly zero collision bounce of the mechanism during its switching operations, which presents methodologies for speed control to track a given optimal movement curve of circuit breaker mechanisms. However in the meantime, adoption of iron core and permanent magnet within the mechanism increases nonlinear behaviour of the mechanism, which creates difficulty in guaranteeing control accuracy.
     To counteract the disadvantages of the nonlinear magnetic materials, and also with consideration of the design requirements from controllability being imposed to electromagnetic mechanism topology, a novel reversely wound and nested solenoid type electromagnetic mechanism is proposed for further investigations. The mechanism is composed of both fixed and moving coils, but without any iron core or permanent magnet. With detailed analysis on the transverse component distribution of the coils' magnetic fields, an interaction coefficient is presented to describe coupling features of the mechanism. Given the mechanism topology, the interaction coefficient is constant, which to great extent will simplify the mathematical model and thereby facilitate controllability of the mechanism. A prototype model of the novel mechanism is designed, further with simulations and experimental studies being carried out.
     Owing to diversity of the electromagnetic mechanisms in both topologies and analysis methodologies, it is much often to use static indexes to evaluate the performance of traditional electromagnetic mechanisms, with very few evaluation specifications with regards to the dynamic characteristics of electromagnetic mechanisms. Based on the fundamental equations of electromagnetics, this dissertation puts forward a definition of magnetism sensitivity coefficient to quantitatively appraise the varied impacts of driving current on the coulomb forces, and also to evaluate the controllability of a mechanism's movement. In terms of materials, topologies and magnetism sensitivity, comparative analysis is carried out regarding to three types of electromagnetic mechanisms, which indicates that, a mechanism with large and also invariable magnetism sensitivity coefficient will foresee prospective advantages in both aspects of speediness and controllability. Further, the topological correlation between the disc-type repulsive mechanism and the reversely wound and nested solenoid type mechanism is studied in details, which shows that both are derived topological configuration from the single-turn coil respectively thorough radial and longitudinal extension, and the magnetism sensitivity coefficient of the former roughly doubles that of the latter one. From the topology point of view, this kind of analysis provides a new route being directed to topology study for developing prospective electromagnetic mechanisms.
引文
[1]刘爱琴,曹领.高压开关设备智能化的探讨[J].安阳工学院学报,2005,(2):25-27.
    [2]李建基.高压开关设备的智能化[J].电气时代,2005,(4):66-69.
    [3]金立军,刘卫东,钱家骊.高压开关设备智能化发展综述[J].电网技术,2002,26(1):55-58.
    [4]Liu Jiaomin,Li Li,Li Yaxuan,et al.Intelligent Circuit Breaker Forecasting and Prewarning System Research[C].5th International Conference on Fuzzy Systems and Knowledge Discovery,Jinan,China,Oct.18-20,2008,5:631-634.
    [5]Li Li,Liu Jiaomin,Wang Jinghong,et al.The Development and Research of Intelligent Circuit Breaker Model Based on ARM7[C].3rd International Conference on Innovative Computing Information and Control,Dalian,China,June 18-20,2008,:192-192.
    [6]Cai Zhiyuan,Yu Li,Ma Shaohua.An intelligent circuit breaker with synchronous closing function based on DSP[C].30th Annual Conference of IEEE Industrial Electronics Society,Busan,Korea,Nov.2-6,2004,2:1536-1539.
    [7]Dupraz,J.P.,Jung,T.,Ficheux A.,et al.Remote supervision for intelligent circuit breakers and gas insulated substations[C].Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,Pittsburgh,USA,July 20-24,2008,:1-8.
    [8]石飞,林莘,徐建源.可靠性技术与智能化高压电器[J].华通技术,2005,(3):15-18.
    [9]邹积岩,王毅.开关智能化的概念与相关的理论问题[J].高压电器,2000,(6):43-46.
    [10]娄杰,李庆民,孙庆森,等.快速电磁推力机构的动态特性仿真与优化设计[J].中国电机工程学报,2005,25(16):23-29.
    [11]Kishida Y,Koyama K,Sasao H,et al.Development of the high speed switch and its application[C].IEEE Thirty-Third IAS Annual Meeting,St.Louis,Missouri,USA,Oct.12-15,1998,3:2321-2328.
    [12]李庆民,刘卫东,徐国政,等.高压快速转换开关的研制[J].高压电器,2003,(6):6-7.
    [13]Niwa Y,Funahashi T,Yokokura K,et al.Basic investigation of a high-speed vacuum circuit breaker and its vacuum arc characteristics[J].IEE Proceedings-Generation,Transmission and Distribution,2006,153(1):11-15.
    [14]Steurer M,Frohlich K,Holaus W,et al.A novel hybrid current-limiting circuit breaker for medium voltage:principle and test results[J].IEEE Transactions on Power Delivery,2003,18(2):460-467.
    [15]钱家骊,袁大陆,徐国政.对1000kV电网操作过电压及相位控制高压断路器的讨论[J].电网 技术,2005,29(10):1-4.
    [16]李庆民,王冠,李清泉.电力系统相控开关技术及其智能控制策略[J].电气开关,2004,(3):42-46.
    [17]Horinouchi K,Tsukima M,Tohya N,et al.Synchronous controlled switching by vacuum circuit breaker(VCB) with electromagnetic operation mechanism[C].Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation,Restructuring and Power Technologies,Hong Kong,China,April 5-8,2004,2:529-534.
    [18]Duan Xiong-ying,Zou Ji-yan,Fang Chun-en.Investigations on control tactics of phasing vacuum switches when synchronized closing capacitor banks[C].20th International Symposium on Discharges and Electrical Insulation in Vacuum,Tours,France,July 1-5,2002,:595-598.
    [19]钱家骊.相位控制高压断路器的动向[J].高压电器,2001,37(1):38-40.
    [20]钱家骊,徐国政,刘卫东.一种解决电压质量问题的高压开关[J].高压开关行业通讯,2002,(7):39-40.
    [21]Ueda T,Morita M,Arita H,et al.Solid-state current limiter for power distribution system[J].IEEE Transactions on Power Delivery,1993,8(4):1796-1801.
    [22]Ericsen.T,Khersonsky.Y,Steimer.P K.PEBB Concept Applications in High Power Electronics Converters Edcsen[C].Power Electronics Specialists Conference,Recife,Brazil,June 16-16,2005,:2284-2289.
    [23]Lu.L,Pytel.S G,Santi.E,etal.Physical modeling of forward conduction in IGBTs and diodes[C].Fourtieth Industry Applications Annual Meeting Hong Kong,China,Oct.2-5,2005,:2635-2642.
    [24]Kimball.J W.A method of including switching loss in electro-thermal simulations[C].Proceedings of the 2004 IEEE Workshop on Computers in Power Electronics,Illinois,USA,August 8-10,2004,:36-42.
    [25]郑敏,李兴源,刘俊勇,等.具有串联补偿作用的新型故障限流器的拓扑结构和仿真[J].中国电机工程学报,1999,19(6):52-55.
    [26]陈刚,江道灼,蔡永华,等.具有旁路电感的新型固态故障限流器的研究[J].中国电机工程学报,2004,24(7):200-205.
    [27]Takeda M,Yamamoto H,Hosokawa Y,et al.A low loss solid-state transfer switch using hybrid switch devices[C].Proceedings of the 3rd International Power Electronics and Motion Control Conference,Beijing,China,2000,1:235-240.
    [28]Tang T.,Burkhart C..Hybrid MOSFET/Driver for ultra-fast switching[C].IEEE International Power Modulators and High Voltage Conference,Nevada,USA,May 27-31,2008,:128-130.
    [29]Wang Shujuan,Tian Yu,Zhang Binrui,et al.Study of a new hybrid switch for the application in the railway[C].IEEE Vehicle Power and Propulsion Conference,Michigan,USA,Sept.3-5,2008,:1-6.
    [30]Polman H.,Ferreira J.A.,Kaanders,M.,et al.Design of a bi-directional 600V/6kA ZVS hybrid DC switch using IGBTs[C].36th IEEE Industry Applications Annual Meeting,Chicago,USA,Sept.30-Oct.4,2001,2:1052-1059.
    [31]Wu J C,Jou H L,Kuen D,et al.Hybrid switch to suppress the inrush current of AC power capacitor [J].IEEE Transactions on Power Delivery,2005,20(1):506-511.
    [32]Braun,C.G.Hybrid power switch concept[C].10th IEEE International Pulsed Power Conference,Albuquerque,New Mexico,July 3-6,1995,2:1488-1493.
    [33]肖茂友,李庆民,娄杰,等.两种经济型故障限流器的工作特性比较[J].电力系统及其自动化学报,2005,17(4):71-75.
    [34]Steurer M,Brechna H,Frohlich K.A nitrogen gas cooled,hybrid,high temperature super-conducting fault current limiter[J].IEEE Trans.on Applied Superconductivity,2000,10(1):840-844.
    [35]董力,李庆民,刘卫东,等.两次电流转移型短路电流限制器的研究[J].电工技术学报,2004,19(3):21-24.
    [36]Lee.B W,Park.K B,Sim.J,et al.Design and Experiments of Novel Hybrid Type Superconducting Fault Current Limiters[J].IEEE Transactions on Applied Superconductivity,2008,18(2):624-627.
    [37]Paul.W,Lakner.M,Ryhner.J,P.et.al.Test of a 1.2 MVA high-tc superconducting fault current limiter[J].Supercond.Sci.Technol,1997,(10):914-918.
    [38]Gromoll.B,Ries.G,Schmidt.W,H.P,et al.Resistive current limiters with ybco films[J].IEEE Transactions on Applied Superconductivity,1997,7(2):828-831.
    [39]Hyun.O B,Kim H R,Sim J,et al.6.6 kV resistive superconducting fault current limiter based on YBCO films[J].IEEE Transactions on Applied Superconductivity,2005,15(2):2027-2030.
    [40]Bock.J,Breuer.F,Walter.H,et al.CURL 10:Development and field-test of a 10 kV/10MVA resistive current limiter based on bulk MCP BSCCO-2212[J].IEEE Transactions on Applied Superconductivity,2005,15(2):1955-1960.
    [41]Rupich.M W.The development of second generation HTS wire at American superconductor[J].IEEE Transactions on Applied Superconductivity,2007,17(2):3379-3382.
    [42]Xie.Y Y,Tekletsadik.K,Hazelton.D,et al.Second generation high-temperature superconducting wires for fault current limiter[J].IEEE Transactions on Applied Superconductivity,2007,17(2):1981-1985.
    [43]Chen.M,Paul.W,Lakner.M,et al.6.4 MVA resistive fault current limiter based on Bi-2212superconductor[J].Physica C,2002,372.376:1657-1663.
    [44]Kraemer.H P,Schmidt.W,Utz.B,et al.Switching behavior of YBCO thin film conductors in resistive current limiters[J].IEEE Transactions on Applied Superconductivity,2003,13(2):2044-2047.
    [45]Hori.T.Study of superconducting fault current limiters using vacuum interrupter driven by magnetic repulsion force for commutating switch[J].IEEE Transactions on Applied Superconductivity,2006,16(4):1999-2006.
    [46]郭相国,张保会.自适应自动重合闸现状与发展[J].继电器,2004,32(16):77-84.
    [47]Mokhtari H,Dewan S B,Iravani M R.Analysis of a static transfer switch with respect to transfer time[J].IEEE Transactions on Power Delivery,2002,17(1):190-199.
    [48]朱鹏程,李勋,康勇,等.统一电能质量控制器策略研究[J].中国电机工程学报,2004,24(8):68-73.
    [49]张秀娟,杨潮,唐志,等.串联型电能质量控制器注入电压的研究[J].中国电机工程学报,2003,23(2):16-20.
    [50]林莘.永磁机构与真空断路器[M].北京:机械工业出版社,2002.
    [51]王勇维.独立气源气动操动机构[J].高压电器,1989,(04):21-27.
    [52]苑舜.高压断路器液压操动机构[M].机械工业出版社,北京:2000.
    [53]李刚,林其雄.高压断路器液压机构故障诊断、分类和处理方法的探讨[J],高压电器,2001,37(4):50-54.
    [54]杜志强.高压断路器速度降低原因分析及正确测试[J].高电压技术,2002,28(5):56-57.
    [55]马志瀛,陈晓宁,徐黎明,等.超高压SF6断路器的智能操作[J].中国电机工程学报,1999,19(7):11-13.
    [56]于干松.永磁真空断路器的发展[J].哈尔滨轴承,2006,27(2):49-51.
    [57]Basu S,Srivastava K D.Analysis of a Fast Acting Circuit Breaker Mechanism Part I:electrical Aspects[J].IEEE Transactions on Power Apparatus and Systems,1972,PAS-91(3):1197-1203.
    [58]Basu S,Srivastava K D.Analysis of a Fast Acting Circuit Breaker Mechanism Part Ⅱ:electrical Aspects[J].IEEE Transactions on Power Apparatus and Systems,1972,PAS-91(3):1203-1211.
    [59]小山健一,竹内敏惠.24kV快速真空断路器的开发[C].电气学会论文志,2001,121B(9):1187-1192.
    [60]Kohyama H.,Wada K.,Ito H.,et al.Development of 550kV and 362kV synchronous switching gas circuit breakers[C].Transmission and Distribution Conference and Exposition,Atlanta,USA,Oct.28-Nov.2,2001,1:597-602.
    [61]Stroica P..Modern methods for synchronous switching of circuit-breakers in 400 kV substations of the Romanian Power System[C].10th Mediterranean Electrotechnical Conference,2000,Lemesos,Cyprus,May 29-31,2000,3:949-953.
    [62]Zhang Ming,Sun Hui.Improvement of an SVC Using an Active Power Filter Connected in Parallel with Synchronous Switched Capacitors[C].2nd IEEE Conference on Industrial Electronics and Applications,Harbin,China,May 23-25,2007,:212-216.
    [63]Tsutada H.,Hirai T.,Kohyarna H.,et al.Development of synchronous switching controller for gas circuit breakers[C].Transmission and Distribution Conference and Exhibition 2002,Yokohama,Japan,Oct.6-10,2002,2:807-812.
    [64]Bhaumik A.K.,Reitan D.K.,Phadke A.G..A Solid-State Synchronous Switch for Use in Transient and Modeling Stuies[J].IEEE Transactions on Instrumentation and Measurement,1967,16(1):81-86.
    [65]Zorngiebel V.,Spahn E.,Buderer,G.,et al.Compact High Voltage IGBT Switch for Pulsed Power Applications[J].IEEE Transactions on Magnetics,2009,45(1):531-535.
    [66]陈振声.快速可控型真空断路器的特性及应用[J].电气技术,2005,(10):35-40.
    [67]李庆民,刘卫东,钱家骊.电磁推力机构的一种分析方法[J].电工技术学报,2004,19(2):20-40.
    [68]Holaus W,Frolich K.Ultra-fast switches-a new element for medium voltage fault current limiting switchgear[C].Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting,New York,USA,Jan.27-31,2002,1:299-304.
    [69]张忠蕾,李庆民,娄杰.电力电子控制电动机操动机构分闸运动特性的仿真分析[J].电网技术,2006,30(18):58-63.
    [70]林莘,徐建源,高会军.永磁操动机构动态特性计算与分析[J].中国电机工程学报,2002,22(6):85-88.
    [71]黄瑜珑,王静君,徐国政,等.配永磁机构真空断路器运动特性控制技术的研究[J].高压电器,2005,41(5):321-323.
    [72]孙弋,马志瀛,金立军.应用电磁开关阀实现断路器智能操作分闸速度调节[J].电网技术,2000,24(7):17-20.
    [73]Anne Bosma,Roberto Cameroni.Introducing a new generation of operating mechanism for high voltage AC circuit breaker[J].Journal of Electronic Engineering,2002,21(3):233-240.
    [74]Anne Bosma,P.O.Thureson.A new reliable operating mechanism for HVAC circuit breakers[J].Transmission and Distribution conference and exposition,2001,:573-577.
    [75]林莘,王德顺,马跃乾.新一代高压断路器直线伺服电动机操动机构[J].电气时代,2007,(2):68-70.
    [76]张涛.非线性系统控制策略的研究[D].浙江大学,2001.
    [77]朱学贵,王毅.为提高分闸能力的永磁操动机构的研究与设计[J].中国电机工程学报,2006,26(7):163-167.
    [78]魏本纪.双稳态永磁操动机构与真空断路器的特性配合问题探讨[J].高压电器,2002,38(1):27-30.
    [79]马信山,张济世,王平.电磁场基础[M].北京:清华大学出版社,1995.
    [80]王家军,赵光宙,齐冬莲.反推式控制在永磁同步电动机速度跟踪控制中的应用[J].中国电机工程学报,2004,24(8):95-98.
    [81]刘栋良,赵光宙.风机类负载下的永磁同步电动机速度反推控制[J].电力系统及其自动化学报,2005,17(2):54-57.
    [82]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [83]王兴华,励庆孚,王曙鸿.永磁无刷直流电机磁阻转矩的解析计算方法[J].中国电机工程学报,2002,22(10):104-108.
    [84]陈振生.现代采用新驱动机构断路器的原理及应用[J].江苏电器,2004,(6):19-21.
    [85]曹昌祺.电动力学[M].北京:高等教育出版社,1961.
    [86]何代华,傅正义,王皓,等.试述永磁材料及软磁材料的研究进展[J].陶瓷工程,2001,(4):30-34.
    [87]王秀和.永磁电机[M],北京:中国电力出版社,2007.
    [88]王宝龄.电磁电器设计基础[M].北京:国防工业出版社,1989.11.
    [89]罗键.系统灵敏度理论导论[M].西安:西北工业大学出版社,1990.
    [90]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2006.5.
    [91]佟为明,许峰,李凤阁.麦克斯韦电磁力公式与某些电磁现象的解释[J].电子器件,2001,24(4):351-357.
    [92]朱平.圆电流空间磁场分布[J].大学物理,2005,24(9):13-16.
    [93]谷定燮.对我国特高压输电系统过电压和绝缘配合的建议[J].高电压技术,1999,25(1):29-32.
    [94]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展[J].高电压技术,2003,29(9):16-18.
    [95]叶昌林.我国超高压输电线路发展现状[J].东方电气评论,1998,12(3):162-165.
    [96]胡毅.特高压输电试验线段及相关技术问题的探讨[J].高电压技术,2004,30(12):37-39.
    [97]钱家骊,刘卫东,关永刚.非超导型故障电流限制器的技术经济分析[J].电网技术,2004,28(9):42-43.
    [98]孙西骅.实现电力电子技术产业化促进电网建设的现代化[J].高电压技术,1996,22(3):38-39.
    [99]赵中原,吕征宇,金高先等.固态限流器晶闸管多路隔离驱动触发系统研制[J],高电压技术,2004,30(4):46-48.
    [100]王章启,姚月娥,王慧,等.从FCL看开关技术发展的新生长点——混合式开关设备[J].高压电器,2003,39(2):23-25.
    [101]李庆民,钱家骊.一种故障电流限制器[P].中华人民共和国专利号:200420038426.8,2005年3月.
    [102]Henry S,Baldwin T.Improvement of Power Quality by Means of Fault Current Limitation[C].Proceedings of the 36th Southeastern Symposium on System Theory,Georgia,USA,March 14-16,2004,:280-284.
    [103]Thomas F G.Shaping the Future of Global Energy Delivery[J].IEEE power & energy magazine,2003,1(5):26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700