三峡电厂大型发电机微机保护装置研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡电厂是世界上最大的发电厂之一,将首次使用我国自主设计制造的七十万千瓦水轮发电机组,以及国内自主研发的发电机组继电保护装置,这对继电保护装置的研制提出了新的挑战。
     论文研究了目前国内外大型发电机微机保护的发展和新成果,借鉴了三峡左岸电厂机组投运以来采用的微机保护装置的运行经验,提出了三峡电厂右岸发电机微机保护装置研制的总体技术方案。该方案对三峡电厂大型发电机的保护进行了进一步的完善和优化,对组屏方案、保护原理配置、保护通道配置等问题进行了研究和论证。
     论文对发电机差动保护进行了研究,提出综合使用采样值差动和相量差动、采用三取二出口逻辑的差动保护实现方案。目前三峡左岸机组采用的差动保护原理是ABB的改进标识积制动式差动原理和SIMENZES带附加制动区的三段式比例差动原理,通过对原理的对比分析,提出了优化后的差动保护实现方案。这一方案提高了装置的灵敏性、快速性,同时也增强了装置的抗干扰能力、抗TA断线、抗TA饱和能力。
     论文对一种新型的切换注入式转子一点接地保护进行了研究。论述了该保护的原理,并且对硬件电路进行了详细分析。重点对影响该注入式转子一点接地保护灵敏度的主要原因进行了分析,得出测量精度主要受励磁电压波动的影响的结论,并提出了改进意见。
     论文给出了装置的硬件设计方案,高性能DSP处理器的应用提高了装置的综合性能。论文重点分析了装置内部通信方案,通过对串行通信方式的局限性的讨论,分析了CAN网在保护装置中的应用情况,提出IEC60870-5-103应用层规范和CAN网综合使用实现装置内部通信的方案。此外论文还对装置的软件设计做出了说明。基于模块化的设计思想提高了保护装置的可靠性、可移植性和可扩展性。
     目前保护装置已经通过了华中科技大学动模实验室和国家电网电力科学研究院动模实验室的测试以及形式测试。
Three Gorges power plant is one of the world's largest power plant. The righ bank plant will use China's self-designed and produced 700,000 kilowatts Hydrogenerator for the first time,at the same time, will use the ptrotection devices independently developed in the domestic.It’s a new challenge to develop the protection devices.
     Papers according to the equipment operating experience had been put into used by left bank of the Three Gorges Power Plant, and the new results of microprecess-based protection of the large generator at home and abroad, work out a new protection device technology overall program for the right bank of the Three Gorges power plant generator. The program for the protection of large generators for the Three Gorges power plant further improved and optimized for the used program.
     Papers research on the generator differential protection, integrated use of sampling differential and phase differential and the same time adopt 2-out of-3-logic of differential protection. At present, the principle used by Three Gorges Left Bank is ABB and SIMENZES differential protection principle.Based on the comparative analysis of the principles, optimization of differential protection is proposed. The program improved the device's sensitivity, speed, also enhance the ability of anti-jamming devices, anti - TA break, Anti - TA saturation capacity.
     Paper research a new type protection of the rotor point grounding. The principle of the protection is discribed, and a detailed analysis of the circuit is explained.
     This paper presents the design of the hardware device, a high-speed DSP process applications to improve device performance. Analysis of the papers focus on internal communications, through the discussion of the limitations of serial communication, CAN is used in protection devices. In addition to the papers also explain software design of the devices. The way based on modular design enhance the reliability of protection, portability and scalability.
     At present, the protection device has been successfully developed by Huazhong University of Science and Technology,and successfully finished the dynamic simulation tests of the Electric Power Research Institute.
引文
[1]尹项根,曾克娥,等.电力系统继电保护原理与应用.武汉:华中科技大学出版社,2001.
    [2]何仰赞,温增银,等.电力系统分析.武汉:华中理工大学出版社,1996.
    [3]陈德树,尹项根.计算机继电保护原理与技术.北京:水利电力出版社,1992.
    [4]陈德树.计算机继电保护原理与技术.北京:水利电力出版社,1992.
    [5]王维俭.电气主设备继电保护原理与应用.第二版.北京:中国电力出版社,2002.
    [6]蒋静华.水轮发电机组运行与维护.北京:水利电力出版社,1992.
    [7]姚晴林.同步发电机及失磁保护.北京:机械工业出版社,1981.
    [8]高景德,王祥珩,李发海.交流电机及其系统的分析.北京:清华大学出版社,1993.
    [9]饶运涛,邹继军,郑勇芸等.现场总线CAN原理与应用技术.北京:北京航空航天大学出版社,2003.6.
    [10]张雄伟. DSP芯片的原理与开发应用.第三版.北京:电子工业出版社,2003.
    [11]黄磊.三峡右岸机组定子故障形式及主保护方案研究:[硕士学位论文].武汉:华中科技大学图书馆,2003.
    [12] V. A. Kinisty. Calculation of Internal Fault Currents in Synchronous Machines, IEEE Trans. PAS, 1965,84(5).
    [13] V. A. Kinisty. Digital Computer Calculation of Internal Fault Currents in a Synchronous Machine, IEEE Trans. PAS, 1968,87(8).
    [14] T. A. Nyamusa, N. A. Demerdash. Transient Analysis of Partial Armature Short-circuit in an Electronically Commutated Permanent Magnet Motor System Using an Integrated Nonlinear Magnetic Field–Network Model, IEEE Trans. EC, 1987,2(1).
    [15]刘沛.大型发变组主保护的发展综述.江苏电网主设备保护学术研讨会文选,2002,06:1~6
    [16]王维俭,刘俊宏.大型发电机变压器继电保护的现状与发展.电力系统自动化,1997,6.
    [17]史世文.元件保护国内外发展综述.电力系统自动化,1996,4.
    [18]邰能灵,侯志俭等.大型水轮发电机组微机保护装置的总体设计.继电器,第29卷,08:28-32
    [19]邰能灵,尹项根,陈德树,等.三峡大型机组内部故障分析与保护配置.见:第7届全国继电保护学术会议.北京: 1997.
    [20]何仰赞.同步电机的内部短路计算,华中工学院学报,1979(1).
    [21]侯煦光,杨顺义.发电机匝间短路计算,电站设备自动化,1979(1).
    [22]王维俭等.发电机内部短路的试验研究及其保护定值的商讨,电力系统自动化,1980(3).
    [23]王维俭.大型汽轮发电机内部短路保护的定值分析,继电器,1980(4).
    [24]姚晴林等.微机型发电机相位比较式纵差动保护,继电器,1990.
    [25]桂林等.大中型发电机主保护方案和配置的定量化设计,电力系统自动化,27(24):50-54
    [26]尹项根,陈德树,周强,等.新型大型发变组主保护方案的研究与试验—微机故障分量功率方向保护的应用.电力系统自动化, 1992, 16 (4) .
    [27]胡玉峰,陈德树,尹项根.采样值差动及其应用.电力系统自动化,2000.3.5 .
    [28] L. N. Walker, M. S. Sachdec. Power System Protection by Mini and Micro Computer Research Conducted in North American, The development in Power System Protection. IEE Conf.Pub.185,1980:93~96.
    [29] J. W. Pope. A Comparison of 100% Stator Ground Fault Protection Scheme for Generator Stator Windings. IEEE Trans. PAS, 1984,103(4).
    [30]袁荣湘,陈德树等.基于故障分量的采样值电流差动保护研究.继电器,28(3):9-14
    [31]林涛,尹项根,陈德树.大型发电机组微机保护与录波系统的硬件设计.电力系统自动化,第21卷,第8期45-47
    [32]高婧,郑建勇,潘震东,电力系统微机保护中改进傅氏算法综合性能研究,继电器,2002,10.
    [33]伍叶凯.一种高灵敏度发电机横差保护方案,电网技术,1997,21(1).
    [34]王维俭,刘俊洪.大型发电机内部短路主保护的发展新动向,电力自动化设备,1994(1).
    [35]王维俭,厚炳蕴.大型机组继电保护理论基础.北京:水利电力出版社,1982.
    [36]周泽昕,邱宇峰.从动模试验情况看微机型发电机变压器保护的现状及存在的问题.继电器,2000,28(7):45~49.
    [37]宋聚忠等.利用负序增量比相构成的新型发电机匝间故障及振荡闭锁保护方案,继电器,1995(4).
    [38]周强,易先举,汪祖禄.三峡左岸电站发电机变压器组保护技术方案,电力系统自动化,1999(11).
    [39]李轶群,吴国旸,张涛.基于模块的可编程保护装置软件设计新概念.电力系统自动化,第26卷第15期:66-68
    [40] P. J. Mcleer et al. A New Technique of Differential Relaying :the-differential Relay. IEEE Trans. PAS, 1982(10).
    [41] Shen Quanrong,Yan wei, Chen jun. Zheng Yuping, Shen Guorong. New technologies in RCS-985 generator transformer protection set. 2003 Asian Conference on Power System Protection, 2003 .
    [42] IEEE Guide for AC Generator Protection. IEEE Std C37.102-1995,1996.
    [43]夏勇军,尹项根.发电机乒乓式转子接地保护电路设计.电力自动化设备, 2004,24(12):52~55
    [44]郭光荣.发电机转子励磁绕组接地保护.电力系统自动化,2003, 27(20):73~76
    [45]柳焕章.发电机失磁保护的原理及整定计算.电力系统自动化,2004,28(14):72~75
    [46]薛伊琴.发电机失磁保护原理的比较和分析.继电器,2005,33(20):33~35
    [47] Shiwen, Shi.Analysis of microcomputer based loss-of-field protection for large generators. Electric Machines and Power Systems, 1996,24(5):467~476
    [48] Philip Moore. An Investigation into the Impedance Characteristics of a synchronous Generator under Loss of Excitation Condition.IEEE Energy Management and PowerDelivery, 1998,2(3):619~624
    [49] Z.Q.Bo, Z.Chen. A nondifferential protection scheme for generator stator windings.IEEE Power Engineering Review, 2001,21(1):49~51
    [50] JOSE A, DE LAO.A new digital filter for phase computation[J].IEEE Transactions on Power System, 1998, 13(2): 1026-1037
    [51] Sachdev M S, Baribeau M A. Anew algorithm for digital impedance relays[J]. IEEE Trans on PAS, 1998,5(6): 2232-2240
    [52] Wen P. A Fast and High-Precision Measurement of Distorted Power Based on Digital Filtering Techniques.IEEE Trans Instrum Meas, 1992, 41(3): 403~406
    [53] P. J. Mcleer et al. A New Technique of Differential Relaying :the-differential Relay. IEEE Trans. PAS, 1982(10).
    [54] Sykes J A, Morrison I F. A Proposed Method of Harmonic Resistant Differential Protection of Transformers by Digital Computer. IEEE Trans. PAS, 1972(3).
    [55] Sachdev M S, Nagpal M. A recursive least error squares algorithm for power system relaying and measurement application.IEEE Trans. on Power Delivery, 1991, 6(3):110~113
    [56] Bhatti. A. Aziz. Performance analysis of microcomputer based differentia protection of UHV lines under selective phase switching.IEEE Transactions on Power Delivery, 1990,5(2):556~566

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700