发电机励磁控制对电力系统超低频振荡抑制作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡电厂和西电东送工程的建设极大地促进了各大电网的互联,提高系统稳定性成为一个日趋重要的问题。励磁控制装置是是同步发电机的重要组成部分,对于维持电力系统稳定有着及其重要的意义。弱联系的电力系统本身固有的薄弱自然阻尼使得电力系统之间有时会产生自发的低频振荡现象。在我国进行全国联网过程中,大量的仿真计算及现场调试结果表明,区域电网之间往往存在0.1至0.2Hz的超低频振荡。另外,呈现负阻尼效应的快速自动电压励磁调节装置的大量普及使用,则更进一步加剧了这一状况。由负阻尼效应引发的振荡幅值可能持续增长,以致破坏系统的稳定,造成巨大的经济损失和灾难性的后果,世界各国不乏惨痛教训之例。
     加强电力系统的网架结构对防止低频振荡是很重要的,但系统是在不断的发展,不断的变化,随时可能发生新的弱联系。单纯依靠加强系统结构来防止弱联系,不仅是不经济的,而且实际上是不可能的。在诸多改善电力系统稳定性的措施中,提高励磁系统的控制性能,被公认为最有效和经济的措施之一。本文介绍了电力系统稳定性问题的由来及其基本理论和基本分析方法,详细阐述了发电机励磁调节对电力系统稳定性的影响。针对电力系统的特点,利用微振荡理论、电机机电暂态的动力学模型以及同步发电机理论,分析了系统产生负阻尼的原因。在动模实验室对产生超低频振荡的原因,PSS对超低频振荡的抑制作用进行了实验验证。仿真分析结合频域和时域分析法,分析了AVR、AVR+PSS1、AVR+PSS2A、AVR+PSS2B、LOEC五种励磁控制策略对超低频振荡(0.14Hz)和典型低频振荡(0.97Hz)的抑制作用。
     本文研究结果表明,采用线性最优励磁控制策略(LOEC)对于电力系统和发电机的安全运行有着十分积极的意义。它可以有效抑制电力系统超低频振荡,使电力系统运行的稳定性有所提高,因而这是一个具有重要的理论和实际应用意义的课题。此外,对于以上所得结果,还有必要对其理论和应用的价值做出更为深入的探讨和评价。
With the implementation of the Three Gorges Project and the project of transmitting electric power from west to east, a large scale power grid is forming. How to improve stability of the grid is an important problem. Excitation controller is a necessary part of the generator set. It’s helpful for improving stability of the power grid. Large-scale power systems in infirm interconnections which inhere weak natural damping sometimes bring a low frequency self-oscillation phenomenon. The interconnection of national power grids in China brings new issues into power system stability and control, especially very low-frequency oscillation(0.13Hz) .In addition, popularizations of fast automatic voltage regulator which show itself negative-damping even more worsen this situation. Rising swing of the low frequency self-oscillation will destroy system stability and cause enormous economic losses and calamitous consequence .There have been lots of biter lessons in the world.
     It is very important to strengthen power net framework for avoiding low frequency self oscillation. But along with the development and variation of power system, a new infirm interconnection of power system may be occur, it is not only of diseconomy but also impossible to avoid weak damping of system only by enhancing configuration of power system. One of the most efficient and economic way among those methods to improve stability of generators, which has been acknowledged generally, is to upgrade the performance of excitation device. In this paper the origination of the problem of power system stability and its principal mathematic analysis method are introduced. Then the effect on the stability of power system by excitation system is discussed in detail. The paper researched the reasons of negative-damping, using theory of small signal and synchronous generator. The reasons that influence very low-frequency oscillation and the inhibiting effect of PSS were proved by experiment in the dynamic simulation laboratory. In order to deeply research the inhibiting effect of the excitation control strategy such as AVR, AVR+PSS1A, AVR+PSS2A, AVR+PSS2B, LOEC, frequency-domain analysis method and time-domain analysis method were combined together. Two characteristic point, one is a typical very low-frequency oscillation (0.13Hz) point and the other is a typical low frequency oscillation point (0.97Hz) were analyzed.
     The quick constringency of low frequency oscillation of generator which realized by LOEC excitation stability strategy is of very positive significance for the safe operation of power system. This excitation stability strategy inhibits very low-frequency oscillation effectively, the stability of power system is improved. The subject is of potential both theoretically and practically. So it is necessary to continue the further study and evaluate on its application both theoretically and practically.
引文
[1]刘取,倪以信.电力系统稳定性与控制综述.中国电机工程学报.1990,10:1~12
    [2]韩英铎,谢小英,崔文进.同步发电机励磁控制研究的现状与走向.清华大学学报. 2001,41(4):142~145
    [3] KUNDUR P. Power system stability and control. Beijing: China Electric Power Press, 2002.
    [4] F.D. Demello, C. Concondia. Concepts of synchronous machine stability as affected by excitation control. IEEE Tran PAS, 1969.6
    [5]卢强,王仲鸿,韩英铎.输电系统最优控制.北京:科学出版社,1987
    [6]程代展.非线性系统的几何理论.科学出版社.1988:70~76
    [7]孙元章,卢强.电力系统非线性控制.北京:科学出版社,1998
    [8]姜惠兰,魏强,唐晓骏,基于模糊神经网络的发电机励磁控制器的研究,电网技术,2005,Vol.19,No.1,50~55
    [9]余翔.基于DSP的同步发电机励磁控制. [硕士学位论文] .华中科技大学电力工程系,2003
    [10]余翔.大型同步发电机励磁控制策略. [博士学位论文] .华中科技大学电气与电子工程学院,2006
    [11]余耀南.动态电力系统.水利电力出版社, 1985
    [12]何仰赞,温增银.电力系统分析.武汉:华中科技大学出版社,2001
    [13]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002
    [14]陆继明,毛承雄,范澍等.同步发电机微机励磁控制.北京:中国电力出版社,2005
    [15]方思立,朱方.电力系统稳定器的原理及其应用.北京:中国电力出版社,1996
    [16] A. Ghosh, G. Ledwich, O. P. Malik et al, Power System Stablizer Based on Adaptive Control Technique, IEEE Trans. On PAS, Vol. 103, No. 8, 1984, Page(s): 1983~1989
    [17] Abdel-Magid Y. L., Abido M. A., Mantawy A. H., Robust tuning of power system stabilizers in multimachine power systems. IEEE Transaction on Power System, 2000,15(2), Page(s): 735~740
    [18] Takashi Hiyama. Real time modal analysis of power systems oscillations. ISCAS 2000, MAY 2000,Geneva,Swizerland
    [19]朱方,刘增煌,高光华.电力系统稳定器对三峡电力系统暂态稳定的影响.中国电机工程学报. 2002,22(11):20~24
    [20]朱方,刘增煌,高光华.电力系统稳定器对三峡输电系统动态稳定的影响.电网技术.2002,26(8): 44~48
    [21]杨立强,王良,赵红光.加速功率性电力系统稳定器的研制.电网技术.2004,28(23):57~60
    [22] K.Kim. Methods for Calculating Oscillation in Large power system. IEEET Trans on P.S. Vol.14, No.4,Nov.1999
    [23]王青,闵勇,张毅威.超低频区间振荡现象的机理分析.继电器.2006,34(12):63~67
    [24]邓集祥,华瑶,韩雪飞.大干扰稳定中低频振荡模式的作用研究.中国电机工程学报. 2003,23(11): 60~64
    [25]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响.中国电机工程学报. 2005,25(11): 6~10
    [26]王铁强,贺仁睦,王卫国.电力系统低频振荡机理的研究.中国电机工程学报. 2002,22(2):21~25
    [27]鲍燕康.电力系统特征值分类和区域振荡控制.电力系统及其自动化. 1994,18(6): 11~13
    [28]陈前,毛承雄,陆继明.基于改进ELMAN神经网络的最优励磁控制器研究.大电机技术.已录用
    [29] Sudou, Y., Takeuchi, A., Kawasaki, M., et al, Development of a parallel PSS for inter-area mode power oscillation damping, Power Engineering Society Summer Meeting, 1999. Volume 1, 1999, Page(s):76 ~ 82
    [30] Yu Yaonan, Vongsurita K, Wedman L N. Application of an Optimal Control Theory to a Power System. IEEE Transaction on PAS, 1970, 89 (1) , Page(s): 52~62
    [31]李勇,吕东晓,黄要桂.葛洲坝二江电厂线性最优励磁控制器建模及参数优化.电力系统自动化,2002,7:56~59
    [32] Liu Chu. Laboratory Verification of An Excitation Control System for An IncreasingPower Transfer Capability, international journal of Electric Power and Energy System. Vol.5 No.2,April 1983
    [33] Plumer, E.S., Optimal control of terminal processes using neural networks, IEEE Transactions on Neural Networks, Volume 7, Issue 2, March 1996, Page(s):408 ~ 418
    [34] Juan J.Sanchez-Gasca, et al. Power System Reduction to Simplify the Design of Damping Controllers for Inter-area Oscillations. IEEE Trans. On P.S. Vol.11.No.3 Au g. 1996
    [35]范澍,毛承雄,陆继明.“基于BP神经网络的最优励磁控制器”.电力系统自动化,第24卷,第8期,2000年4月,PP.29-32
    [36] Fan Shu, Mao Chengxiong, Lu Jiming, Li Weibo, Wang Dan,“Real-time optimal excitation controller using neural network”, 2002 International Conference on Power System Technology Proceedings, PowerCon2002, Oct. 13-17, 2002, Kunming, China, Vol.1, PP.339-343
    [37]范澍,毛承雄,陆继明,基于在线辨识的实时最优励磁控制器,第24卷,第13,2001年7月,电力系统自动化,PP.16-20
    [38] Fan Shu, Mao Chengxiong, Lu Jiming, O.P.Malik. Real-time optimal excitation controller using system identification, Australian Journal of Electrical & Electronics Engineering, 2004, 1(1): 7~13
    [39]胡兆庆,毛承雄,陆继明.基于灰色预测的发电机励磁控制系统.电力系统自动化,2002,Vol. 14,No. 1:30~33
    [40] Hu Zhaoqing, Mao Chengxiong, Lu Jiming, Fan Shu. Grey Excitation Controller for Synchronous Generator. The Journal of Grey System. 2004, Vol.16 (1):51-58
    [41] Lozano, R., Xiao-Hui Zhao, Adaptive pole placement without excitation probing signals, IEEE Transactions on Automatic Control, 1994, Volume 39 , Issue: 1, Page(s): 47 ~ 58
    [42] C.X. Mao, O.P. Malik, G.S. Hope, J. Fan“An adaptive generator excitation controller based on linear optimal control”, IEEE Trans. on Energy conversion Vol.5, No.4, Dec.1990, PP.673-678
    [43] O.P. Malik, Chengxiong Mao,“An adaptive optimal controller and it application to an electric generating unit”, Electrical Power & Energy Systems, Vol.15, No.3, 1993, PP.169-178
    [44] C.X. Mao, K.S. Prakash, O.P. Malik, G.S. Hope, J. Fan,“Implementation and laboratory test results for an adaptive power system stabilizer based on linear optimal control”, IEEE Trans. on Energy Conversion, Vol.5, No.4, Dec.1990, PP.666-672
    [45] C.X. Mao, J. Fan, O.P. Malik, G.S. Hope,“An adaptive excitation controller based on microcomputer”, Microcomputer Applications, Vol.10, N0.1, 1991, PP.17-21
    [46] C.X. Mao, J. Fan, O.P. Malik, G.S. Hope,“Studies of real-time adaptive optimal excitation controller and adaptive optimal power system stabilizer”, IEEE Trans. on Energy Conversion, Vol.7, No.3, Sept. 1992, PP.598-605
    [47]毛承雄.大型同步发电机自适应最优励磁控制. [博士学位论文],华中理工大学电力工程系,1990
    [48]余翔,毛承雄,陆继明等.一种基于数字信号处理器的自适应最优励磁控制器.电力系统自动化,2005(5)
    [49] Yu Xiang, Mao Chengxiong, Lu Jiming et al, An Adaptive Excitation Controller, IEEE/PES Transmission and Distribution Conference and Exhibition 2005: Asia Pacific
    [50] Yu Xiang, Mao Chengxiong, Lu Jiming, Industrial Application of the Adaptive Excitation Controller, University Power Engineering Conference 2006 (UPEC 2006)
    [51] H.A. Moussa, Power System Damping Enhancement by Two-Axis Supplementary Control of Synchronous Generators. IEEE Transactions on Power Apparatus and System, 1985 PAS-104(5): 998~1004
    [52]张耀东.电力系统稳定技术.南京:能源部南京自动化研究所,1991
    [53]于长官.现代控制理论(第二版).哈尔滨:哈尔滨工业大学出版社,1997
    [54]毛承雄,樊俊.双环自适应最优励磁控制器.电力系统自动化学报,1994,Vol. 6, No. 1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700