基于广域测量信息的失步解列判据与控制方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力是国民经济的支柱行业,电力系统能否安全稳定运行关系到国家安全、社会稳定与人民安居。然而,受到自身原因和外部干扰的影响,在电力系统中事故时有发生,特别是造成系统稳定性破坏和不可控恶性连锁反应的故障,不但使电力企业本身蒙受经济损失,而且对电力用户乃至整个社会都会造成严重的影响。因此,保证大规模互联电力系统的安全稳定,防止大面积停电事故的发生是电力系统所面临的一项迫切而重大的任务。失步解列控制作为保证系统安全运行的重要措施,是防止电网崩溃的重要手段。当互联电力系统之间发生失步振荡时,采取合理的解列控制方案,可以有效地防止事故的蔓延,以免系统大停电事故的发生。但是,不合理的解列往往给系统带来更大的混乱,促使系统崩溃。
     各国电力系统的运行实践表明:针对安全稳定破坏事故,无论采取如何严密的防范措施,都难以完全避免,尤其对于由多种不可预计的偶然因素叠加而导致的事故更是防不胜防。针对小概率的罕见事故,在防御措施上,应从防止事故发生向提高事故后的处置能力倾斜,最大程度地减少事故危害。当安全稳定破坏事故发生之后,如何阻止事故的扩大与发展,尽可能减少对用户的不良影响,并为电力系统恢复提供有利的条件,是事故处置方案应予以解决的问题。当电力系统遭受大扰动而失去同步时,恰当的解列措施能够将相互失步的各部分断开,阻止事故蔓延,减少停电范围,防止系统崩溃。因此,失步解列方案是常规安全稳定控制与保护措施的坚强后备。失步解列的关键是能够在系统被动解列之前,准确、及时地把系统解列为若干个各自保持同步运行的子系统。目前,电力系统所采用的各种失步解列方案存在若干问题,包括:1)基于等值两机系统模型,不能准确地刻画大规模互联电力系统的失步特点;2)采用单端测量捕捉失步中心,不能跟踪失步振荡中心的转移;3)难以适应运行方式与故障形态的变化,对未知的失步模式不能可靠地响应。
     针对上述问题,本文在分析电力系统失步后的电气量变化特征与比较多种现有失步解列方案的基础上,提出了基于广域测量信息的失步解列判据与控制系统方案。所提出的解列判据与方案,采用多端量测量,能够准确地跟踪失步振荡中心、识别系统失步状态,对运行方式与故障形态的变化具有较好的自适应性,对不同的失步模式可靠地响应。所采用的分层分布控制结构计及了大规模互联电力系统的特点,具有较强的实用性。论文主要的研究工作和创新性成果如下:
     1.提出了一种基于PMU量测量的改进失步判据。基于单端量的ucosφ判据可以根据振荡中心电压的变化规律来区分失步振荡、同步振荡和短路故障。通过对系统失步时各电气量变化规律和振荡中心特征的分析,可知当系统可以等值为幅值相等的两机系统且各处阻抗角一致时,ucosφ实质上反映了系统振荡电压的最低值。但是,当等值的两机系统幅值不相等时,有可能出现ucosφ没有物理意义的情况,从而无法确定失步振荡中心位置。利用PMU测量的联络线两端电压相角差,辅助识别系统的失步状态,确定失步振荡中心的位置,弥补基于单端量的ucosφ判据的不足。
     对新英格兰10机39节点系统和山东电网进行仿真。利用同调分群结果设置解列点,执行基于PMU量测量的改进失步判据,识别系统的失步状态。仿真结果表明该改进失步判据准确地跟踪失步振荡中心,识别系统失步状态。
     2.提出了一种适用于系统断面的自适应复合解列判据。系统从遭受扰动后发生摇摆到失步是一个复杂的过程,各种参数在不同阶段的特性不同,不同的判据各有利弊。可用不同的判据构成复合判据,互为补充,扬长避短。将系统按失步断面解列是一种有效的方法,它的优点是能根据不同的失步模式按不同的失步断面解列。在分析电力系统失步振荡过程和各种失步解列判据的基础上,提出了一种适用于失步断面的自适应复合解列判据。该复合判据不仅利用主判据ucosφ反映振荡中心电压的变化规律,而且以动作特性独立于振荡中心位置的电流变化量作为辅助判据,可及时检测系统是否失步。主判据与辅助判据相辅相成,可靠地实施解列。
     以山东电网为例进行仿真。根据电力系统调度分层、分区的特点,依照调度分区在线搜索解列断面,即在线搜索失稳部分与剩余部分之间的联络线。利用PMU测量解列断面的多端信息,把基于单端量针对等值两机系统单一线路ucosφ判据转化为系统失步状态判据。仿真结果表明系统断面复合判据对运行方式与故障形态的变化具有较好的自适应性,可靠地响应复杂多机系统的失步模式,准确性高。
     3.提出了一种基于广域测量信息的失步解列控制系统方案。在对现有失步解列方案和电力系统分层分区结构进行分析的基础上,对失步解列措施的协调与配合进行了探讨,指出目前存在的主要问题,提出了一种基于广域测量系统(WAMS)和多Agent的失步解列控制系统方案,着重解决多区域互联电力系统的复杂失步模式。该控制系统采用分层分布结构,由控制中心层、区域控制层和就地执行层三层协调合作,完成失步解列控制的协调优化,保证整个电网的稳定运行。控制中心层收集和处理涉及全系统的综合信息,识别整个电网的运行状况,搜索解列断面,识别区域系统之间的失步振荡,与紧急控制措施协调,并将有关运行方式的信息和解列控制方案下传到区域控制层和就地执行层。根据电网的结构和特点,将整个系统分成若干区域,而区域控制层包括若干区域控制子站,负责采集区域内系统运行信息,进行失步断面的协调优化和断面的失步状态识别,并把必要的信息向就地执行层传送;就地执行层有若干本地解列子站,采集就地信息,实施传统的就地解列控制,同时也可以从主站接收实时的解列控制策略和正确的解列装置动作信息。从而实现各层次既能相对独立工作又能协调一致的分层解列控制方案,较好地解决大规模互联电力系统的解列控制问题。
     针对新英格兰10机39节点系统和“三华“电网进行仿真,结果表明该控制系统方案能够从电力系统全局出发,实时监控系统状态,在线搜索合理的解列策略,实现失步状态的快速识别和解列断面之间解列措施的协调与配合,自动适应系统电网结构与运行方式的变化。
The advancement of interconnected power grids provides strong supports for improvement of socioeconomic situation. Meanwhile, it also brings new challenges to security and stability of power systems. Huge efforts have been made to avoid blackouts worldwide but cascading outages which evolved into catastrophic blackouts still happened. As a result, more and more research on how to deal with unstable conditions of interconnected power system is necessary and resonable. Out-of-Step splitting control is one of important means to defend power systems blackouts, ensure stability and reliability of power systems. When oscillation occurs in interconnected power systems, if proper automatic control actions or operator intervention are not taken decisively, the system may be susceptible to further failures and subsequent cascading. It is imperative to develop new strategies of splitting control schemes to detect instability and take remedial actions to prevent power system from worldwide blackout emergency.
     The long time experiences for power system operation have shown that no matter how strict the requirements for power system stability, and how perfect the measures are, there would be some unpredictable casual faults working together to cause instability. However, the expense for too strict security requirements is very high. When the stability of power system is destroyed, the key question is how to detect and prevent oscillations rationally and quickly, and how to restoration rapidly. In China, when an interconnected grid is subjected to large disturbances and becomes out-of-step, out-of-step splitting control has been used widely as the last resort for preventing widespread blackout. But there are some problems of out-of-step splitting controls: 1) most of the criterions are designed based on equivalent two-machine system model, splitting controls will not be suitable to the interconnected power grids; 2) a lot of conventional out-of-step criterions are based on local signals, which can not follow drift of the dynamics oscillation center and can not be adaptive to the change of system network topology; 3) out-of-step splitting schemes are not able to adjust to complex oscillation conditions.
     In this paper, though analysising the charateristics of electrical parameters of out-of-step interface and current splitting schemes in the actual field, new out-of-step splitting criterions and splitting control schemes based on WAMS information are proposed. The splitting criterion and splitting control scheme of power system have correct functions of initiating the separation equipment, capturing the oscillation center and out-of-step interface, coordinating splitting controls and splitting the out-of-step area from the main system timely and accurately when the out-of-step happens in the interconnected system. The main research work and innovative fruits of the dissertation are as follwing.
     1. Based on the Phasor Measurements Units (PMUs), an adaptive ucosφimproving criterion for out-of-step splitting to obtain quick and selectable disconnecting actions is proposed in the paper. The ucosφout-of-step splitting criterion can identify out-of-step oscillation, short-circuit fault and synchronous oscillation which based on the changing track of the voltage of oscillation center. However, in practical system ucosφmay not able to represent voltage at any location of the out-of-step center and has no specific physical meaning. On the other hand, the ucosφcriterion based on local information may be misjudged because amplitudes of equivalent electric potential of both sides are different in practical system, so the power system might be in a dangerous condition. The change of angle difference of voltage phasor based on PMUs can reflect the out-of-step condition directly. It can help to confirm the location of the oscillation center. The reliability of ucosφsplitting criterion and the accuracy of splitting action are ensured with the assistant of angle difference of voltage phasor.
     In the simulations of the 10 machines 39 buses New England system and a practical Shandong power system, the splitting spots are set by the identification and aggregation of coherent generators and according to the active power balance. The improving out-of-step splitting criterion identifies out-of-step condition of system. Simulation results demonstrate the effectiveness of the proposed approach.
     2 . An adaptive out-of-step detecting composite criterion for out-of-step splitting interface is proposed. When the synchronization loss takes place, disconnecting the interface of out-of-step is considered the main solution to prevent power system from collapse. Through the analysis of the process of asynchronous oscillation and systematic researches on existing out-of-step criterions of power system, making several criterions work together and reusable and taking fully advantage of every criterion are possible. An adaptive out-of-step composite criterion for splitting interface based on WAMS includes the main criterion and the auxiliary criterion. The main ucosφcriterion which reflects the changing track of oscillation center voltage detects the synchronism loss. The auxiliary criterion reflecting changes of three-phase currents ensures the reliability of splitting action which is independent of the oscillation center. These two criterions are used together for determining out-of-step accurately and duly.
     In the simulations of Shandong power system in China, the islanding interface is determined based on power system dispatching area and generator coherency. And the composite criterion can be operated based on the confirmed interface. Simulation results have demonstrated that the proposed criterion can adapt to the changes of operating conditions, capture the position of out-of-step center dynamically and cope with the shortcoming of a single criterion.
     3. An out-of-step splitting control system scheme based on wide area measurement information for power system is proposed in this paper. This system scheme based on WAMS and multi-agent is designed to prevent worldwide collapse of interconnected power system. This system which has distributed hierarchical control structure includes control center level, region control level and local execute level. Three levels are coordinated and cooperated, so the splitting control system can observe power system more comprehensively, identify out-of-step condition correctly, split the out-of-step system duly and ensure the stability of the whole system. The control center level collects and processes the overall informations, searches splitting interfaces online, identifies the out-of-step oscillation between region power systems and coordinates with emergency control. The region control level which includes region splitting stations, identifies the out-of-step oscillation in the region power system and coordinates with out-of-step interfaces. The local execute level which includes local splitting stations, splitting control measures are carried out. Three control levels can work both independently and coordinately to maintain stability of the whole system.
     Simulation results for the 10 machines 39 buses New England system and the practical Huabei-Huazhong-Huadong interconnected power system have demonstrated that the splitting scheme which is easy to be applied in the engineering field can identify the out-of-step condition hierarchically, split the instability area cutting off from the whole system timely and correctly. So the asynchronous oscillation between interconnected power systems will be eliminated and the widespread outages will be averted.
引文
[1]Pourbeik P,Kundur P S,Taylor C W.The Anatomy of a power grid blackout.IEEE Power and Energy Magazine,2006,4(5):22-29.
    [2]刘振亚.特高压电网.北京:中国经济出版社,2005:5.
    [3]薛禹胜.时空协调的大停电防御框架:(一)从孤立防线到综合防御.电力系统自动化,2006,30(1):8-16.
    [4]Andersson G,Donalek P,Farmer R,et al.Causes of the 2003 major grid blackouts in North America and Europe and recommended means to improve system dynamic performance.IEEE Transactions on Power Systems,2005,20(4):1922-1928.
    [5]薛禹胜.综合防御由偶然故障演化为电力灾难—北美8.14大停电的警示.电力系统自动化,2003,27(18):1-5,37.
    [6]U.S.-Canada Power systems outage task force.Final report on the August 14,2003Blackout in the United States and Canada.http://www.ferc.gov/,April,2004.
    [7]唐葆生.伦敦南部大停电及其教训.电网技术,2003,27(11):1-5,12.
    [8]Larsson S,Ek E.The black-out in southern Sweden and eastern Denmark.IEEE PES General Meeting,Denver,USA,2004,2:1668-1672.
    [9]Berizzi A.The Italian 2003 blackout.IEEE PES 2004 General Meeting,Denver,USA,2004,2:1673-1679.
    [10]陈向宜,陈允平,李春艳,等.构建大电网安全防御体系—欧洲大停电事故分析及思考.电力系统自动化,2007,31(1):4-8.
    [11]高鹏,王建全,甘德强,等.电力系统失步解列综述.电力系统自动化,2005,29(19):90-96.
    [12]高鹏,王超,任祖怡,等.考虑次要失步机群的大区电网失步解列配置.电力系统自动化,2006,30(17):50-53,107.
    [13]薛禹胜.现代电网稳定理论和分析技术的研究方向.电力系统自动化,2000,07:1-6.
    [14]赵金利,余贻鑫.电力系统电压稳定分区和关键断面的确定.电力系统自动化,2008,32(17):1-5.
    [15]张鹏飞,薛禹胜,张启平,等.基于PMU实测摇摆曲线的暂态稳定量化分析.电力系统自动化,2004,28(20):17-20,42.
    [16]王梅义,吴竞昌,蒙定中.大电网系统技术(第二版).北京:中国电力出版社,1995.
    [17]袁季修.试论防止电力系统大面积停电的紧急控制—电力系统安全稳定运行的第三道防线.电网技术,1999,23(4):1-4.
    [18]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力.中国电机工程学报,2004,24(7):1-6.
    [19]沈沉,吴佳耘,乔颖,等.电力系统主动解列控制方法的研究.中国电机工程学报,2006,26(13):1-6.
    [20]张保会,张毅刚,刘海涛.基于本地量的振荡解列装置原理研究.中国电机工程学报,2001,21(12):67-72.
    [21]Teng L,Liu W,Yang W,et al.Study on power system separation based on the local electrical quantities.International Conference on Power System Technology,Kunming,China,2002,1:349-354.
    [22]Zhao Q,Sun K,Zheng D,et al.A study of system splitting strategies for island operation of power system:a two-phase method based on OBDDs.IEEE Transactions on Power Systems,2003,18(4):1556-1565.
    [23]方勇杰.电力系统的自适应解列控制.电力系统自动化,2007,31(20):41-44.
    [24]Yang B,Vittal V,Heydt G T.Slow-Coherency based controlled islanding-a demonstration of the approach on the August 14,2003 blackout scenario.IEEE Transactions on Power Systems,2006,21(4):1840-1847.
    [25]宗洪良,孙光辉,刘志,等.大型电力系统失步解列装置的协调方案.电力系统自动化,2003,7(22):72-75.
    [26]Behmccb B A.电力系统过渡状态控制.北京:科学出版社,1989:66.
    [27]高鹏,王建全,周文平.基于无功功率捕捉失步解列断面的理论研究.电力系统自动化,2005,29(5):15-20.
    [28]潘贞存,桑在中,戴方涛,等.电网自动解列的新判据.电力系统自动化,1995,19(7):34-37.
    [29]Centeno V,Phadke A G,Edris A,et al.An adaptive out-of-step relay.IEEE Transactions on Power Delivery,1997,12(1):61-71.
    [30]Hou D,Tziouvaras D A.Out-of-step protection enhancements,IEE International Conference on Developments in Power System Protection,Amsterdam,Netherlands,2004,1:5-10.
    [31]Wang L,Girgis A A.A new method for power system transient instability detection.IEEE Transactions on Power Delivery,1997,12(3):1082-1089.
    [32]高鹏,王建全,周文平,等.视在阻抗角失步解列判据的改进.电力系统自动化,2004,28(24):36-40.
    [33]宗洪良,任祖怡,郑玉平,等.基于ucosψ的失步解列装置.电力系统自动化,2003,27(19):83-85.
    [34]严伟,陆于平,李鹏.一种新的大型发电机失步预测综合保护方案.电力系统自 动化,2000,24(21):52-55.
    [35]高鹏,王建全,周文平,等.捕捉失步断面的实现方案及其仿真.电力系统自动化,2005,29(12):43-47.
    [36]Agematsu S,Imai S,Tsukui R,et al.Islanding protection system with active and reactive power balancing control for Tokyo Metropolitan power system and actual operational experiences,IEE 7th International Conference on Developments in Power System Protection,Amsterdam,Netherlands,2001:351-354.
    [37]滕林.电力系统暂态稳定在线决策算法的研究.[博士学位论文].北京:华北电力大学,2003:39.
    [38]周良松,夏成军,彭波,等.基于PMU的预测型振荡解列初步研究.继电器,2003,29(3):9-13.
    [39]Stanton S E,Slivinsky C,Martin K,et al.Application of phasor measurement and partial energy analysis in stabilizing large disturbances.IEEE Transactions on Power Systems,1995,10(1):297-306.
    [40]Abdelaziz A Y,Irving M R,Mansour M M,et al.Adaptive detection of generator out-of-step conditions in power systems using an artificial neural network.UKACC Conference on Control,Exeter,UK,1996,1:166-171.
    [41]Song X,Jiao S,Liu W,et al.A fuzzy theory based principle to distinguish stable swings and unstable swings in complicated power systems.International Conference on Power System Technology,Beijing,China,1998,2:1091-1095.
    [42]邵俊松,李庚银,周明.电力系统低频振荡分析及振荡解列策略研究综述.电力情报,2000,2:1-5.
    [43]Centeno V,Ree J D L,Phadka A G,et al.Adaptive out-of-step relaying using phasor measurement techniques.IEEE Computer Applications in Power,1993,6(4):12-17.
    [44]Phadke A G.Synchronized phase measurements in power system.IEEE Computer Applications in Power,1993,6(2):42-47.
    [45]Adibi M M,Kafka R J,Maram S,et al.On power system controlled separation.IEEE Transactions on Power Systems,2006,21(4):1894-1902.
    [46]Faucon O,Dousset L.Coordinated defense plan protects against transient instabilities.IEEE Computer Applications in Power,1997,10(3):22-26.
    [47]苗世洪,王少荣,刘沛,等.基于GPS的电网状态监测系统的设计与实现.电力系统自动化,2000,24(12):52-54.
    [48]许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景.电网技术,2005,29(2):44-49.
    [49]Wang Y J,Liu C W,Sue L D,et al.A remedial control scheme protects against transient instabilities based on phasor measurement units(PMUs)-a case study.Proceedings of 2000IEEE Power Engineering Society Summer Meeting,Seattle,USA,2000:1191-1195.
    [50]褚晓东.基于广域测量信息的电力系统暂态稳定预测与控制决策.[博士学位论文].济南:山东大学,2006.
    [51]IEEE Working Group Report.Synchronized sampling and phasor measurement for relaying and control.IEEE Transactions on Power Delivery,1994,9(1):442-452.
    [52]Sotojic D R.Spectral monitoring of power system dynamic performances.IEEE Transactions on Power Systems,1993,8(2):445-451.
    [53]Phadke A G.Synchronized phasor measurements in power systems.IEEE Computer Applications in Power,1993,6(2):10-15.
    [54]Phadke A G,Pickett B,Adamiak M,et al.Synchronized sampling and phasor measurements for relaying and control.IEEE Transactions on Power Delivery,1994,9(1):442-452.
    [55]Wilson R E,Sterlina P S.Verification of measured transmission system phase angles.IEEE Transactions on Power Delivery,1996,11(4):1743-1747.
    [56]Zhang Y,Bose A.Design of wide-area damping controllers for interarea oscillations.IEEE Transactions on Power Delivery,2008,23(3):1136-1143.
    [57]蔡国伟,穆钢,Chan K W,等.基于网络信息的暂态稳定性定量分析—支路势能法.中国电机工程学报,2004,24(5):1-6.
    [58]Padiyar K R,Krishna S.Online detection of loss of synchronism using energy function criterion.IEEE Transactions on Power Delivery,2006,21(1):46-55.
    [59]Bergen A R,Hill D J.Structure preserving model for power system stability analysis.IEEE Transactions on Power Apparatus and Systems,1981,100(1):25-35.
    [60]Taylor C W.The future in on-line security assessment and wide-area stability control.Proceedings of IEEE Power Engineering Society Winter Meeting,2000,Singapore,78-83.
    [61]Bertil I,Per-Olof L.Wide-area protection against voltage collapse.IEEE Computer Application in Power,1997,30-35.
    [62]袁季修.防止电力系统频率崩溃的紧急控制.电力自动化设备,2002,22(4):1-4.
    [63]宋少群.基于广域网和Agent的电网自适应协调保护的研究.[博士学位论文].保定:华北电力大学,2007.
    [64]Taylor C W,Erickson D C,Martin K E,et al.WACS-wide-area stability and voltage control system:R&D and online demonstration.Proceedings of the IEEE,2005,93(5):892-906.
    [65]Wilson D H.Wide-area measurement and control for dynamic stability.IEEE Power Engineering Society General Meeting,2007,1-5.
    [66]Larsson M,Korba P,Zima M.Implementation and Applications of Wide-area monitoring systems.IEEE Power Engineering Society General Meeting,2007,1-6.
    [67]Tsai M S.Development of islanding early warning mechanism for power system.IEEE Proceedings Power Energy Summer meeting,2000,1:22-26.
    [68]易俊,周孝信.电力系统广域保护与控制综述.电网技术,2006,30(8):7-12.
    [69]Sun K,Zheng D,Lu Q.Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods.IEEE Transactions on Power Systems,2003,18(2):912-923.
    [70]宋晓娜,毕天姝,吴京涛,等.基于WAMS的电网扰动识别方法.电力系统自动化,2006,30(5):24-28,73.
    [71]宋方方,毕天姝,杨奇逊.基于广域测量系统的电力系统多摆稳定性评估方法.中国电机工程学报,2006,26(16):38-45.
    [72]Kamwa I,Grondin R,Hebert Y.Wide-area measurement based stabilizing control of large power systems-a centralized/hierarchical approach.IEEE Transactions on Power Delivery,2001,16(1):136-153.
    [73]江全元,邹振宇,曹一家,等.考虑时滞影响的电力系统稳定分析和广域控制研究进展.电力系统自动化,2005,29(3):1-7.
    [74]Chaudhuri B,Majumder R,Pal B.Wide-area measurement based stabilizing control of power system considering signal transmission delay.IEEE Transactions on Power Systems,2004,19(4):1971-1979.
    [75]Xie X R,Xin Y Z,Xiao J Y,et al.WAMS applications in Chinese power systems.IEEE Power and Energy Magazine,2006,4(1):54-63.
    [76]薛禹胜,徐伟,万秋兰,等.关于广域测量系统及广域控制保护系统的评述.电力系统自动化,2007,31(15):1-5,16.
    [77]鞠平,郑世宇,徐群,等.广域测量系统研究综述.电力自动化设备,2004,24(7):37-40,49.
    [78]丁剑,白晓民,王文平,等.电力系统中基于PMU同步数据的应用研究综述.继电器,34(6),2006,78-84.
    [79]中华人民共和国国家经济贸易委员会.电力系统安全稳定导则(DL/755-2001).北京:中国电力出版社,2002.
    [80]沈根才.正确规划电网结构,重视电网稳定性.电力系统自动化,2001,5:38-41.
    [81]段振国,高曙,杨以涵,等.基于图论的电力系统解列策略生成方法.中国电力,1998,31(3):7-9.
    [82]夏道止.电力系统分析(下).北京:水利水电出版社,1995.
    [83]王大光,张明建,林茵,等.福建电力系统失步和失步解列研究.电力系统自动化, 2001,25(19):41-44.
    [84]Demello F P.Concepts of synchronous machine stability as affected by excitation control.IEEE Transactions on PAS,1969,88(4):316-329.
    [85]鲍燕康,Glavitsch H.电力系统特征值分类和区域振荡控制.电力系统自动化,1994,18(6):11-18.
    [86]赵书强.电力系统振荡模式分析与控制的分群等值方法研究.[博士学位论文].保定:华北电力大学,1999.
    [87]夏成军,周良松,彭波,等.关于系统振荡中心偏移的探讨.继电器,2002,30(3):1-4.
    [88]高鹏,王建全,周文平,等.关于振荡中心的研究.电力系统及其自动化学报,2005,17(2):48-53.
    [89]高鹏,杨梅强,任祖怡.一种捕捉失步中心位置的新方法.江苏电机工程,2006,25(3):7-10.
    [90]孙光辉,吴小辰,曾勇钢,等.电网第三道防线问题分析及失步解列解决方案构想.南方电网技术,2008,2(3):7-11.
    [91]余耀南.动态电力系统.北京:水利电力出版社,1985:174.
    [92]许剑冰,薛禹胜,张启平,等.电力系统同调动态等值的述评电力系统.电力系统自动化,2005,29(14):91-95.
    [93]杨靖萍,徐政.基于同调机群识别的动态等值方法的工程应用.电网技术,2005,29(17):68-71.
    [94]You H,Vittal V,Wang X.Slow coherency-based islanding.IEEE Transactions on Power Systems,2004,19(1):483-491.
    [95]褚晓东,刘玉田.转子角测量装置的优化配置.中国电机工程学报,2003,23(9):132-136.
    [96]倪以信,陈寿孙,张宝霖,等.动态电力系统的理论和分析.北京:清华大学出版社,2002,335.
    [97]邓华,高鹏,王建全.关于振荡角的振荡中心电压和ucosψ的变化特征.电力系统及其自动化学报,2007,19(1):68-73.
    [98]方勇杰,范文涛,陈永红,等.在线预决策的暂态稳定控制系统.电力系统及其自动化学报,1999,23(1):8-11,44.
    [99]Chu X D,Liu Y T.Optimal placement of rotor angle transducers for power system stability.Electric Power Systems Research,2003,167(2):133-142.
    [100]王洪涛,刘玉田,邱夕兆.基于分层案例推理的黑启动决策支持系统.电力系统自动化,2004,28(11):49-52.
    [101]张伯明,陈寿孙.高等电力网络分析.北京:清华大学出版社,1996.
    [102]蒙定中.关于发电机承受异步振荡能力的建议.中国电力,2006,39(3):99-101.
    [103]Yusof S B,Rogers G J,Alden R T H.Slow coherency based network partitioning including load buses.IEEE Transactions on Power Systems,1992,8(3):1375-1382.
    [104]Irving M R,Sterling M J H.Optimal network tearing using simulated annealing.International Conference on Generation,Transmission and Distribution,1990,137(1):69-72.
    [105]Orero S O,Irving M R.A genetic algorithm for network partitioning in power system state estimation.IEE UKACC International Conference on Control,Exter,UK,1996,1:162-165.
    [106]刘源祺,刘玉田.基于调度分区的电力系统解列割集搜索算法.电力系统自动化,2008,32(11):20-24.
    [107]刘源祺.基于广域测量信息的电力系统解列研究.[博士学位论文].济南:山东大学,2008.
    [108]Jin M,Sidhu T S,Sun K.A new system splitting scheme based on the unified stability control framework.IEEE Transactions on Power Systems,2007,22(1):433-440.
    [109]薛禹胜.运动稳定性量化理论—非自治非线性多刚体系统的稳定性分析.南京:江苏科学技术出版社,1999:176.
    [110]丛伟,潘贞存,肖静,等.电力系统振荡解列原理的分析和研究.继电器,2003,31(10):51-56.
    [111]周良松,夏成军,彭波,等.电力系统暂态稳定控制系统策略表的应用研究.电网技术,2000,24(1):13-15.
    [112]周伟,李勇汇,陈允平.电力系统稳定控制对策表的实时生成.电力系统自动化,2002,26(2):65-71.
    [113]白杨,高鹏,孙光辉,等.中国南方电网失步解列装置的配合.电力系统自动化,2006,30(7):85-88.
    [114]薛禹胜.建立中国南方电网的协调防御体系.电力系统自动化,2005,29(24):1-5.
    [115]李碧君,许剑冰,徐泰山,等.大电网安全稳定综合防御的工程应用.电力系统自动化,2008,3(5):25-30.
    [116]薛禹胜,徐伟,万秋兰,等.关于广域测量系统及广域控制保护系统的评述.电力系统自动化,2007,31(15):1-5.
    [117]薛禹胜.时空协调的大停电防御框架:(二)广域信息、在线量化分析和自适应优化控制.电力系统自动化,2006,30(2):1-10.
    [118]严登俊,袁洪,高维忠,等.利用以太网和ATM技术实现电网运行状态实时监控.电力系统自动化,2003,27(10):67-70.
    [119]宗洪良,孙光辉,刘志,等.大型电力系统失步解列装置的协调方案.电力系统自动化,2003,27(22):72-75.
    [120]杨炳元,张保会,吴集光.简单电力系统失步运行时对策浅析.继电器,2002,28(2):14-16.
    [121]宋锦海,李雪明,姬长安,等.安全控制装置的发展现状及展望.电力系统自动化,2005,29(23):91-96.
    [122]Quintana V H,M(u|¨)ller N.Partitioning of power networks and application to security control.IEE Proceedings,PartC,Power Generation,Transmission and Distribution,1991,535-545.
    [123]薛禹胜,王达,文福栓,等.关于紧急控制与校正控制优化和协调的评述.电力系统自动化,2009,33(12):1-7.
    [124]薛禹胜.时空协调的大停电防御框架:(三)各道防线内部的优化和不同防线之间的协调.电力系统自动化,2006,30(3):1-10.
    [125]陶先文.南方互联电网自动解列装置分析.电网技术,1996,20(1):33-37.
    [126]曾得文.实现全国电网互联的基本原则和措施建议.中国电力,2000,33(7):38-41.
    [127]王士政.电网调度自动化与配网自动化技术.北京:中国水利水电出版社,2003:10.
    [128]张保会.广域动态信息条件下电网安全紧急控制的研究.电力自动化设备,2005,25(8):1-8.
    [129]Crow M L.Waveform relaxation methods for the simulation of systems of differential/algebraic equations with application to electric power systems.Dissertations,Urbana-Champaign:University of Illinois,1990.
    [130]Michael Wooldridge.多Agent系统引论.第一版,北京:电子工业出版社,2003.
    [131]范玉顺,曹军威.多代理系统理论,方法与应用.第一版,北京:清华大学出版社,2002.
    [132]Talukdar S,Ramesh V C,Quadrel R,et al.Multi-Agent Organization for Real-time Operations,Proceedings of the IEEE,1992,80(5):765-778.
    [133]Lv G Q,Feng Q B.XML-based Agent Communication for Plant Automation.IEEE International Workshop on Factory Communication Systems,2004:301-304.
    [134]Yen J,Yan Y H,Wang B J.Multi-Agent Coalition Formation in Power Transmission Planning.Proceedings of the Thirty-First Hawaii International Coference on System Sciences,1998:433-443.
    [135]陈艳霞,尹项根.基于多Agent技术的继电保护系统.电力系统自动化,2002,26(12):48-53.
    [136]刘红进,袁越,戴宏伟,等.多代理系统及其在电力系统中的应用.电力系统自动化,2001,25(19):45-52.
    [137]Lekkas G P,Avouris N M.A Multi-Agent Technique for Contingency Constrained Optimal Power Flows.IEEE Transactions on Power Systems,1995,25(3):400-414.
    [138]Imai S,Yasuda T.UFLS program to ensure stable island operation.IEEE PES power System Conference and Exposition,New York,USA,2004,1:283-288.
    [139]Wang X M,Vittal V.System islanding using minimal cutsets with minimum net flow,IEEE General Meeting,2004,1:379-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700