广域后备保护原理与通信技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统的快速发展,电力运营市场化的不断推进,电网的结构和运行环境日益复杂,电网安全稳定问题日渐突出。继电保护是保证电力设备运行安全的关键元件,也是整个电网安全保障系统的“第一道防线”,其性能对整个电力系统的安全稳定运行有着重大影响。传统后备保护主要是利用就地单端量信息进行故障的检测判断,不同保护装置之间一般只能通过固有定值进行协调和配合,导致保护装置的适应性差,整定配合复杂,当出现非预期的故障或异常运行工况时,可能造成保护拒动、误动或连锁动作,引发全网性的大面积停电事故。近年来,随着广域同步测量和通信技术的迅速发展和逐步成熟,基于广域测量信息的新型保护系统-广域保护的研究得到了广泛关注。广域测量信息的应用,为大幅提高和改善继电保护的性能提供了新的技术手段,有助于从根本上切实解决现有继电保护存在的适应能力较差、整定配合复杂等难题,提高保护装置在复杂故障和异常运行工况下动作的安全性和可靠性。这对保证电力设备和电网的运行安全,减小大面积停电事故的发生具有非常重要的理论和现实意义。
     本文在国家自然科学基金重点项目“集中决策与分布实现相协调的大电网后备保护系统研究”(50837002)的资助下,针对新型广域后备保护系统原理、网络通信和可靠性等基础性问题进行了深入的研究。
     目前已提出的广域后备保护算法存在采样同步性要求高、广域通信流量较大、故障识别容错性能不强等问题。本文提出了一种具有采样同步性要求低,广域通信流量小,且具有高容错性能的广域后备保护算法新算法。新算法采用集中式广域保护系统结构,当电网发生故障后,区域内各子站通过支路电流群福比较法,确定距离故障元件最近的输电线路,并将该线路故障电流值上传给主站;而主站则根据各子站上传的电流故障分量值以及故障电流分布特性,确定候选可疑故障线路;然后向子站获取这些候选故障线路的保护信息域内的传统保护、方向元件等动作情况,并利用改进的D-S证据理论对该多源证据进行信息融合,最终识别出实际故障线路。仿真算例验证了所提出算法的正确性和良好的信息容错性能。
     随着智能电网发展,智能变电站的各种设备的信息建模及信息交互将在IEC61850框架下统一进行,IEC61850必将成为未来智能电网领域的主要标准之一。但目前IEC61850标准未对广域后备保护通信模型进行描述,这已成为广域后备保护实际应用中亟待解决的一个重要问题。为此,本文首先根据IEC61850标准层层包含的建模方法,提出了广域后备保护IED统一建模方法。然后以一220kV数字化变电站和本文提出的广域后备保护算法为例,给出了遵循IEC61850标准的广域后备保护主站和子站的树型结构模型,以及主站与子站的消息流交互过程。最后建立了广域后备保护信息交换通信服务模型,包括:客户端/服务器传输模型、电气量传输模型和逻辑状态量传输模型。所提出的后备保护通信建模方法具有良好的适应性,信息服务模型具有通信量小,传输可靠性高等特点,可满足不同结构和原理的广域保护的应用要求。
     广域通信系统是广域后备保护信息交互的支撑平台,良好的通信系统对广域后备保护正确地、快速地切除电网故障具有至关重要的作用。但目前的广域通信系统还不能很好地满足广域后备保护需求。因此,本文根据广域后备保护的通信特点设计了变电站和广域通信网络。提出了以太网接入方式的Ethernet over SDH(EOS)传输模式,建立了基于EVPL的广域通信系统的组网结构,并将并行冗余协议PRP用于变电站和广域通信网络,以实现在通信故障下的业务零故障恢复时间。为了评估广域通信系统的性能,提出了基于网络时延、网络时延抖动、吞吐量、带宽利用率、丢包率等参数的评估指标,并以IEEE14节点网络系统为例,对所提出的广域通信系统的整体性能进行了仿真分析,验证了其可行性。
     广域后备保护系统在构建模式、决策原理和实现技术等方面远较传统后备保护复杂,特别是涉及广域范围的网络通信,使得对其进行物理模拟实验研究和性能评估非常困难。本文根据广域后备保护的结构和运行特点,开发了一套基于高层体系结构(HLA)和Agent技术的OPNET-PSCAD/EMTDC联合同步仿真平台WAPSS,为分析评估广域后备保护在网络通信环境下的总体性能提供了一有力的工具。文中详细论述了WAPSS平台的总体结构、各重要组成部分的功能和接口方式以及多Agent的设计,最后以一仿真实例验证了平台的正确性和有效性。
     广域后备保护涉及众多元件,在保护原理、实现方式、作用域等方面较传统保护都有了较大变化,影响其可靠性的因素和环节增加,研究广域后备保护的可靠性具有重要的意义。本文将广域后备保护系统分成多个子系统分别研究,综合考虑各组件的失效和修复过程,应用Markov状态空间法、故障树分析法建立了各子系统和整个系统的可靠性分析模型,最后利用故障树结构函数和蒙特卡罗仿真相结合的方法对广域后备保护系统的可靠性进行了实例评估。
     论文最后对所取得的主要研究成果进行了总结,并对下一步研究工作重点进行了展望。
With the fast development of power systems and the continuous advancement ofelectricity market operation, the structure and operation environment of power gird areincreasing complicated. The relay protection is a critical component to ensure the operationsafety of power equipments, which is also the “first defense line” of the safety guaranteesystem of power grid. The performance of relay protection has significant influence on thesafe and stable operation of the whole power systems. Traditional backup protectionsmainly employ partial information, like local information or port information of theprotected components, for the detection and judgment of fault. The coordination betweendifferent protection devices is realized by fixed settings, which causes poor adaptability ofprotection devices and complicated coordination of settings. In recent years, with the fastdevelopment and gradually maturity of wide area synchronous measurement technique, thestudy of novel wide area backup protection based on wide area measuring information hasattracted extensive attention. The application of wide area measuring information providesa new technical measure to improve the performance of relay protection substantially. It ishelpful to solve the problem of poor adaptability and complicated coordination of settingsof traditional relay protection. It can also improve the safety and reliability of protectiondevices in complicated fault and abnormal operation conditions. It is of very importanttheoretical and practical significance to ensure the operation safety of power equipmentsand power grid and prevent the occurrence of large-scale blackouts
     Supported by the National Natural Science Foundation of China (No.50837002), thefundamental problems such as the principle of novel wide-area backup protection system,network communication and reliability are analyzed and studied in depth.
     So far, one or more of the following problems exist in the proposed wide area back upprotection algorithm: high requirement for sampling synchronism, large amount of widearea communication traffic and low fault tolerance of fault identification. Aimed at these, a novel wide area backup protection algorithm which has low requirement for samplingsynchronism, small amount of wide area communication traffic and high fault tolerance isproposed in this paper. Centralized wide area protection system structure is adopted. Whenfault happens, slave stations in the area identify the transmission line which is nearest tofault element with amplitude comparison of group branch currents. And then the slavestations transmit the fault current of these transmission lines to master station. Then masterstation will choose a few suspected fault lines as candidate lines in accordance withreceived current fault components and their distribution characteristic. After that, masterstation will acquire the operation situations of traditional protections and directioncomponents of these candidate lines from slave stations. In the end, the information fusionof these multi-source evidences is carried out with modified D-S evidence theory toidentify the practical fault line. Simulation results show that the proposed algorithm iscorrect and has good fault tolerance of information.
     With the development of the smart grid, information modeling and informationexchange of intelligent electronic device in the smart substation will be unified under theframework of IEC61850. IEC61850standards will surely become one of the main criteriain the future smart grid field. But for now, the communication model for wide area backupprotection is not described in IEC61850standards, which has been an important problemneeded to be solved in practical application of wide area backup protection. For this reason,a generalized IED modeling procedures in wide area backup protection is presented firstlyaccording to the layer-on-layer modeling method of IEC61850standards. Then taking the220kV digital substation and the proposed algorithm of wide area backup protection forexamples, tree structure of master station and slave stations of wide area back up protectionin accordance with the principles of IEC61850standards are given. And the interactiveprocess model of message flow between master station and slave stations are given. Finally,a communication service model is established, including the transmission model betweenclients and server, the transmission model for analog value, and the transmission model forswitching values. The proposed communication modeling method for backup protectionhas characteristics of good adaptability, small communication traffic of information servicemodel, high transmission reliability. It can satisfy the application requirements of wide area protection with different structures and principles.
     As wide area communication system is the support for information interaction of widearea backup protection, excellent communication system plays a critical role to wide areabackup protection correctly and rapidly removing the failure of power grid. But the existingwide-area communication system still cannot meet the requirements of wide area backupprotection. Therefore, according to the communication features of wide area backupprotection, the communication system for wide area backup protection including wide-areacommunication network and service model is designed. In the communication networkaspect, the Ethernet over SDH (EOS) transmission mode by Ethernet access way isproposed, and the network structure of wide area communication system based on EVPL isestablished. The parallel redundancy protocol (PRP) is adopted for station and wide areacommunication network to realize zero recovery time in communication failure condition.In order to estimate the property of wide area communication system, evaluation indexbased on network time delay, time delay variation, throughput, utilization factor ofbandwidth and packet loss ration is proposed. Taking network system of IEEE14nodes forexample, the overall performance of proposed wide area communication system isanalyzed. The feasibility is verified.
     Wide area backup protection is much more complicated than traditional backupprotection in aspects of construction mode, decision-making principle and implementationtechnique. Specially, it involves wide area communication that makes the physicalsimulation and performance evaluation very difficult. According to the structure andoperation characteristics of wide area backup protection, a synchronous co-simulationplatform called Wide Area Protection Synchronizing Simulator (WAPSS) associated withOPNET and PSCAD/EMTDC based on HLA (High-Level Architecture) and Agent isdeveloped, which provides a effective tool for overall performance analysis and evaluationof wide area backup protection under the environment of network communication. Thestructure of WAPSS platform, the function of important components, interface model andthe Multi-Agent design are discussed in detail. A simulation example is implemented toverify the correctness and availability of the platform.
     Compared with traditional protection, the wide area backup protection which is relatedto numerous components has big change in protection principle, implementation and action scope. Hence, the number of the influence factor of reliability increases. The study on thereliability of wide area backup protection is of important significance. The wide areabackup protection system is divided into several subsystems to study respectively. Withcomprehensive consideration of the failure and repair process of various components, thereliability models of various subsystems and the whole system are built up with utilizationof Markov state-space method and fault tree analysis method. In the end, the reliabilityevaluation of wide area backup protection is carried out by combining fault tree structurefunction and Monte Carlo simulation.
     Finally, the achieved research results are concluded and prospective about the futurestudy is highlighted.
引文
[1]蔡洋.电网调度管理须与电网发展俱进——北美东北电网事故浅析[J].电网技术,2004,28(8):6-9.
    [2]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [3]何大愚.一年以后对美加“8.14”大停电事故的反思[J].电网技术,2004,28(21):1-5.
    [4]赵希正.强化电网安全保障可靠供电——美加“8.14”停电事件给我们的启示[J].电网技术,2003,27(10):1-7.
    [5]高翔,庄侃沁,孙勇.西欧电网“11.4”大停电事故的启示[J].电网技术,2007,31(1):25-31.
    [6]蔡洋.电网事故的回顾与分析及对电网调度管理的建议[J].电网技术,2007,31(11):6-10.
    [7]王克英,穆钢,陈学允.计及PMU的状态估计精度分析及配置研究[J].中国电机工程学报,2001,21(8):29-33.
    [8]丁军策,蔡泽祥,王克英.基于广域测量系统的混合量测状态估计算法[J].中国电机工程学报,2006,26(2):58-63.
    [9] C.G.Wang,B.H.Zhang,Z.G.Hao,et al,“A novel Real-Time SearchingMethod for Power System Splitting Boundary,”IEEE Trans.Power Syst.,vol.25,no.4,pp.1902-1909,Nov.2010.
    [10] J.Li,C.C.Liu,and K.P.Schneider,“Controlled partitioning of a power networkconsidering real and reactive power balance,” IEEE Trans.Smart Grid.,vol.1,no.3,pp.261-269,Dec.2010.
    [11] X.N.Lin,H.L.Weng,Q.Zou,et al,“The frequency closed-loop controlstrategy of islanded power systems,” IEEE Trans.Power Syst.,vol.23,no.2,pp.796-803,May.2008.
    [12] P.Mercier,R.Cherkaoui,and A.Oudalov.Optimizing a battery energy storagesystem for frequency control application in an isolated power system.IEEETrans.Power Syst.,vol.24,no.3,pp.1469-1477,Aug.2009.
    [13] S.Corsi,“Wide area voltage protection,” IET Gener.Transm.Distrib.,vol.4,no.10,pp.1164-1279,Oct.2010.
    [14] A.G.Beccuti,T.H.Demiray,G.Andersson,et al.A lagrangian decompositionalgorithm for optimal emergency voltage contro.IEEE Trans.Power Syst.,vol.25,no.4,pp.1769-1779,Nov.2010.
    [15] Y.Serizawa,M.Myoujin,ete.Wide Area Current Differential Backup ProtectionEmploying Broadband Communications and Time Transfer Systems [J].IEEE Transon power Deliver,1998,13(4).
    [16]丛伟,潘贞存,赵建国,等.基于电流差动原理的广域继电保护系统[J].电网技术,2006,30(5):91-95.
    [17] Zhiqin He,Zhe Zhang,Wei Chen,et al.Wide-Area Backup Protection AlgorithmBased on Fault Component Voltage Distribution[J].IEEE Transactions on PowerDelivery,2011,26(4):2752–2760.
    [18]何志勤,张哲,尹项根等.基于故障电压比较的广域后备保护新算法[J].电工技术学报,2012,27(7):274-283.
    [19]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008,28(22):77-81.
    [20]李振兴,尹项根,张哲等.分区域广域继电保护的系统结构与故障识别[J].中国电机工程学报,2011,31(28):95-103.
    [21] J.C.Tan,P.A.Crossley,P.G.McLaren,et al.Sequential Tripping Strategy for aTransmission Network Back-Up Protection Expert System [J].IEEE Transactionson Power Delivery,2002,17(1):68-74.
    [22]汪旸,尹项根,张哲等.基于遗传信息融合技术的广域继电保护[J].电工技术学报,2010,25(8):174-179.
    [23]从伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究.中国电机工程学报,2006,26(21):8-14.
    [24]汪旸,尹项根,张哲等.适应智能电网的有限广域继电保护分区与跳闸策略[J].中国电机工程学报,2010,30(7):1-7.
    [25]苏盛,段献忠,曾祥君,等.基于多agent的广域电流差动保护系统[J].电网技术,2005,29(14):15-19.
    [26]刘新东,江全元,曹一家.N–1条件下不失去可观测性的PMU优化配置方法[J].中国电机工程学报,2009,29(10):47–51.
    [27] J.Ma,J.L.Li,J.S.Thorp,et al.A fault steady state component-based widearea backup protection algorithm.IEEE Trans.Smart Grid.,vol.2,no.3,pp.468-475,Sep.2011.
    [28] C.H.Liang,C.Y.Chung,K.P.Wong,et al.Parallel optimal reactive powerflow based on cooperative co-evolutionary differential evolution and power systemdecomposition.IEEE Trans.Power Syst.,vol.22,no.1,pp.249-257,Feb.2007.
    [29] I.Kamawa,A.K.Pradhan,G.Joos,et al.Fuzzy partitioning of a real powersystem for dynamic vulnerability assessment.IEEE Trans.Power Syst.,vol.24,no.3,pp.1356-1365,Aug.2009.
    [30]李智欢,李银红,段献忠.无功优化协同进化计算的控制变量分区方法研究.中国电机工程学报,2009,29(16):28-34.
    [31] S.Das,A.Abraham,and A.Konar.Automatic clustering using an improveddifferential evolution algorithm,” IEEE Trans.Syst.,Man,Cybern.A,vol.38,no.1,pp.218-237,Jan.2008.
    [32]尹项根,汪旸,张哲.适应智能电网的有限广域继电保护分区与跳闸策略.中国电机工程学报,2010,30(7):1-7.
    [33]李振兴,尹项根,张哲,等.有限广域继电保护系统的分区原则与实现方法.电力系统自动化,2010,34(19):48-52.
    [34]何志勤.基于故障元件识别的智能电网广域后备保护关键技术研究[D].华中科技大学,2012.
    [35] R.Ramaswami,M.J.Damborg,and S.S.Venkata.coordination of directionalovercurrent relays in transmission systems-a subsystem approach. IEEETrans.Power Del.,vol.5,no.1,pp.64-70,Jan.1990.
    [36]曹国臣,蔡国伟,王海军.继电保护整定计算方法存在的问题与解决对策.中国电机工程学报,2003,23(10):51-56.
    [37] E.Orduna, F.Garces, and E.Handschin.Algorithmic-knowledge-based adaptivecoordination in transmission protection.IEEE Trans.Power Del.,vol.18,no.1,pp.61-65,Jan.2003.
    [38]马静,叶东华,王彤,等.电力系统多区域复杂环网的最小断电集计算[J].中国电机工程学报,2011,31(28):104-111.
    [39] G.D.Rokefeller,C.L.Wagner,J.R.Linders,et al.Adaptive transmissionrelaying concepts for improved performance,” IEEE Trans.Power Del.,vol.3,no.4,pp.1446-1458,Oct.1988.
    [40] Y.L.Zhu,S.Q.Song,and D.W.Wang.Multiagents-based wide area protectionwith best-effort adaptive strategy.Int J Elect.Power Energy Sys.,vol.31,no.2,pp.94-99,Feb.2009.
    [41]张亚刚.基于广域信息的电力系统故障定位方法研究[D].华北电力大学,2012.
    [42] S.Sheng,K.K.Li,W.L.Chan,Z.X.Jun and D.X.Zhong.Agent-basedself-healing protection system.IEEE Trans.Power Del.,vol.21,no.2,pp.610-618,Apr.2006.
    [43]苏盛,K.K.Li,W.L.Chan,等.广域电流差动保护区划分专家系统[J].电网技术,2005,29(3):55-58.
    [44]丛伟,潘贞存,赵建国,等.基于电流差动原理的广域继电保护系统[J].电网技术,2006,30(5):91-95.
    [45] Tong X Y,Wang X R,Hopkinson K M.The modeling and verification ofpeer-to-peer negotiating multi-agent colored petri nets for wide-area backupprotection[J].IEEE Transactions on Power Delivery,2009,24(1):61-72.
    [46]王阳光,尹项根,游大海,等.遵循IEC61850标准的广域电流差动保护IED[J].电力系统自动化,2008,32(2):53-57.
    [47]高湛军,潘贞存,卞鹏,等.基于IEC61850标准的微机保护数据通信模型[J].电力系统自动化,2003,27(18):43-46.
    [48]范建忠,战学牛,王海玲.基于IEC61850动态建立IED模型的构想[J].电力系统自动化,2006,30(9):76-79.
    [49]章坚民,朱炳锉,赵舫,等.基于IEC61850的变电站子站系统建模与实现[J].电力系统自动化,2004,28(21):43-48.
    [50]古锋.继电保护及故障信息系统通信模型研究[J].电网技术,2007,31(7):73-77
    [51]童晓阳,王晓茹,丁力,等.采用IEC61850构造变电站广域保护代理的信息模型[J].电力系统自动化,2008,32(5):63-67.
    [52]王阳光,尹项根,游大海,等.遵循IEC61850标准的广域电流差动保护IED[J].电力系统自动化,2008,32(2):53-57.
    [53]高会生.电力通信网可靠性研究[D].华北电力大学博士论文,2009.
    [54]王冬青,何飞跃.基于多协议标记交换网络的电力系统信息综合传输方法[J].电网技术,2008,32(16):9-15.
    [55]王阳光.应对灾变的广域保护信息处理及通信技术研究[D].华中科技大学博士论文,2010.
    [56]汪旸.高压电网有限广域智能保护研究[D].华中科技大学博士论文,2009.
    [57]肖萍萍,吴健学.SDH原理与应用[M].北京:人民邮电出版社,2008:146-153.
    [58]王健全,杨万春,张杰,等.城域MSTP技术[M].北京:机械工业出版社,2005:1268-1274.
    [59] Giovanini R,Hopkinson K,Coury D,et al.A Primary and backup cooperativeprotection system based on wide area agents[J].IEEE Transactions on PowerDelivery,2006,21(3):61-72.
    [60] Hopkinson K,Wang Xiaoru,Giovanini R,et al.EPOCHS:a platform foragent-based electric power and communication simulation built from commercialoff-the-shelf components[J].IEEE Transaction on Power Systems,2006,21(2):548-558.
    [61] Borowski J,Hopkinson K,Humphries J,et al.Reputation-Based Trust for aCooperative Agent-Based Backup Protection Scheme[J].IEEE Transactions onSmart Grid,2011,2(2):287-301.
    [62]陆志峰,阳少华。多元件备用系统可靠性计算研究[J].中国电机工程学报,2002,22(6):52-55,61.
    [63]王钢,丁茂生,李晓华,等.数字继电保护装置可靠性研究[J].中国电机工程学报,2004,24(7):47-52.
    [64] Bilintor R,Tatla J.Composite generation and transmission system adequencyevaluation including protection system failure modes[J].IEEE Trans on PowerApparatus and Systems,1983,102(6):1823-1830.
    [65] Anderson P. An improved reliability model for redundant protectivesystem-Markov models[J].IEEE Transactions on Power Systems,1997,12(2):573-578.
    [66] Kumm J,Hou D.Predicting the optimum routine test interval for protectiverelays[J].IEEE Transactions on Power Delivery,1995,10(2):659-665.
    [67] Yu Xingbin, Singh C. A practical approach for integrated power systemvulnerability analysis with protection failures[J].IEEE Transactions on PowerSystems,2004,19(4):1811–1820.
    [68]张沛超,高翔.全数字化保护系统的可靠性及元件重要度分析[J].中国电机工程学报,2008,28(1):77-82.
    [69] V.Skendzic,I.Ender,G.Zweigle,IEC61850-9-2Process Bus and Its Impact onPower System Protection and Control Reliability,2007,http://www.selinc.com/techpprs.htm.
    [70] L.Andersson,K.P.Brand,C.Brunner,et al.Reliablity inverstigations for SAcommunication architectures based on IEC61850. in: IEEE Power TechRussia.2005,1-7.
    [71]朱林,陈金富,段献忠.数字化变电站冗余体系结构的改进及其可靠性和经济性评估[J].电工技术学报,2009,24(10),147-151.
    [72]王志强,刘文霞,范勇峰,等.广域测量系统可靠性研究框架[J].电力系统自动化,2008,32(24):1-4.
    [73] Wang Yang,Li Wenyuan,Lu Jiping.Reliability analysis of phasor measurementunit using hierarchical markov modeling[J].Electric Power Components andSystems,2009(37):517-532.
    [74]赵鑫,卢继平,汪洋,等.基于PMU硬软件概率模型的WAMS可靠性评估[J].电力系统自动化,2009,33(16):19-23.
    [75] Wang Yang,Li Wenyuan,Lu Jiping,et al.Evaluating multiple reliability indicesof regional networks in wide area measurement system[J].Electric Power SystemsResearch,2009(79):1353-1359.
    [76]彭静,卢继平,汪洋,等.广域测量系统通信主干网的风险评估[J].中国电机工程学报,2010,30(4):84-90.
    [77] Zhi-Hui Dai,Zeng-Ping Wang,Yan-Jun Jiao.Reliability Evaluation of theCommunication Network in Wide-Area Protection[J].IEEE transaction powerdelivery,2011,26(4),2523-2530.
    [78]朱国防,陆于平.线路差动保护的相移制动能力研究[J].中国电机工程学报,2009,29(10):84-90.
    [79]吴崇昱,孙雷波,张军.一种基于软实时通信的广域保护原理[J].电力自动化设备,2006,26(12):21-24.
    [80]国家电网公司.Q/GDW441—2010智能变电站继电保护技术规范[S].北京:中国电力出版社,2011.
    [81] JOUSSELME A L,GRENIER D,BOSSE E.A new distance between two bodiesof evidence [J].Information Fusion,2001,2(2):91–101.
    [82]苗锐.基于随机集的不确定性信息融合方法在风力发电机组故障诊断中的应用
    [D].上海:华东理工大学,2011.
    [83] M.A.Pai,Energy Function Analysis for Power System Stability.Boston,MA:Kluwer,1989,pp.223-227.
    [84]张志丹,黄小庆,曹一家,等.基于虚拟局域网的变电站综合数据流分析与通信网络仿真[J].电网技术,2011,35(5):204-209.
    [85]窦晓波,胡敏强,吴在军,等.数字化变电站通信网络的组建与冗余方案[J].电力自动化设备,2008,28(1):38-43.
    [86] Serizawa Y,Myoujin M,Kitamura K,et al.SDH-Based Time Synchronous Systemfor Power System Communications[J].IEEE Transaction on Power Delivery,1998,13(1):59–65.
    [87]胡志祥,谢小荣,肖晋宇等.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39-43.
    [88]辛建波,段献忠.基于DiffServ网络实现变电站信息综合传输[J].电力系统自动化,2005,29(5):69–73.
    [89]熊慕文,涂光瑜,罗毅等.基于权重与预丢弃策略的变电站信息综合传输[J].电力系统自动化,2006,30(8):52-56.
    [90] Eissa M M,Masoud M E,Elanwar M M M.A Novel Back Up Wide AreaProtection Technique for Power Transmission Grids Using Phasor MeasurementUnit [J].IEEE Transactions on Power Delivery,2010,25(1):270–278
    [91] Quanyuan Jiang,Xingpeng Li,Bo Wang.PMU-Based Fault Location UsingVoltage Measurements in Large Transmission Networks[J].IEEE Transactions onPower Delivery,2012,27(3):1644–1652.
    [92]刘新东,江全元,曹一家.N–1条件下不失去可观测性的PMU优化配置方法[J].中国电机工程学报,2009,29(10):47–51.
    [93] Andersson L.,Brand K.P.,Brunner C.,等.Reliability investigations for SAcommunication architectures based on IEC61850.2005IEEE Russia Power Tech,St.Petersburg,Russia,2005.
    [94] IEC62439.High availability automation networks.2008.
    [95] Hubert Kirrmann,Peter Rietmann,Steven Kunsman.Standard IEC61850-Network Redundancy using IEC62439.Protection,Automation and Control (PAC),2008,1(3):39-44.
    [96]樊陈,倪益民,窦仁辉,等;智能变电站过程层组网方案分析[J].电力系统自动化,2011,35(18),67-71.
    [97]易永辉,王雷涛,陶永健.智能变电站过程层应用技术研究[J].电力系统保护与控制,2010,38(21):1-5.
    [98]王文龙,刘明慧.智能变电站中SMV网和GOOSE网共网可能性探讨[J].中国电机工程学报,2011,31增刊,55-59.
    [99]李高望,鞠文云,段献忠等,电力调度数据网传输特性分析[J].中国电机工程学报,2012,32(22):141–148.
    [100] Glenn Parsons. G.ethsrv–Ethernet over Transport-Ethernet ServiceCharacteristics[S].Canda:ITU-T,2003.
    [101]中华人民共和国信息产业部.YD/T1474-2006基于SDH的多业务传送节点(MSTP)技术要求–––内嵌多协议标记交换(MPLS)功能部分[S].北京:北京邮电大学出版社,2008.
    [102]中华人民共和国信息产业部.YD/T1171-2001IP网络技术要求–––网络性能参数与指标[S].北京:人民邮电出版社,2002.
    [103]王波,周志伟.网络模拟软件NS2与OPNET的剖析比较[J].计算机系统应用,2010,19(6):90-95.
    [104]周彦,戴剑伟.HLA仿真程序设计[M].北京:电子工业出版社,2002:16-54.
    [105] S. Strassburger. On the HLA-based coupling of simulation tools[J]. inProc.European Simulation Multiconf,1999.
    [106]陈敏.OPNET网络仿真[M].北京:清华大学出版社,2004:294-300.
    [107]史忠植.智能主体及其应用[M].北京:科学出版社,2000:30-37.
    [108]刘文霞,罗红,张建华.WAMS通信业务的系统有效性建模与仿真[J].中国电机工程学报,2012,32(16):144-150.
    [109] Birnbaum Z W.On the importance of different components in a multicomponentsystem[C].In Multivariate Analysis.Academic,SanDiego,1969.
    [110] Fussell J B. How to hand-calculate system safety and reliabilitycharacteristics[J].IEEE Trans.Rel.,1975,24(3);169-174.
    [111] EPRI.PSA application guide[Z]. EPRI TR-105396,Electric Power ResearchInstitute,1995.
    [112]金星,洪延姬.系统可靠性与可用性分析方法[M].北京:国防工业出版社,2007:100-112.
    [113]杨为民,盛一兴.系统可靠性数字仿真[M].北京:北京航空航天大学出版社,1990:12-54.
    [114]彭正标,袁竹林.基于蒙特卡罗法的脱硫塔内气固流动数值模拟[J].中国电机工程学报,2008,28(14):6-14.
    [115] Billinton R,Li W.Reliability assessment of electric power systems using MonteCarlo methos[M].New York,USA:Plenum Press,1994:33-72.
    [116]刘洋,周家启,谢开贵,等.基于Beowulf集群的大电力系统可靠性评估蒙特卡罗并行仿真[J].中国电机工程学报,2006,26(20):9-14.
    [117] Hung-Yau Lin,Sy-Yen Kuo,Fu-Min Yeh.Minimal cutset enumeration and networkreliability evaluation by recursive merge and BDD [C].Proceedings of the EighthIEEE International Symposium on Computers and Communication (ISCC2003),30June-3July2003,Kiris-Kemer,Turkey,2:1341–1346.
    [118]所旭,张萍.微机继电保护软件可靠性探讨[J].继电器,2004,32(12):43-46.
    [119] Musa J D,Iannino A and Okumoto K.Software Reliability:Measurement,prediction,Application[M].New York:McGraw Hill,1987:190-197.
    [120]戴志辉.继电保护可靠性及其风险评估研究[D].华北电力大学博士论文,2012.
    [121] Bowles,J B.A Combined Hardware Software and Usage Model of NetworkReliablity and Availability.1990.Proceedings of Ninth Annual InternationalPhoenix Conference on Computers and Communications.21-23March1990Pages:649-654.
    [122] Musa J D,Iannino A and Okumoto K.Software Reliability:Measurement,prediction,Application[M].New York:McGraw Hill,1987:190-197.
    [123]陈少华,马碧燕,雷宇等.综合定量计算继电保护系统可靠性[J].电力系统自动化,2007,31(15):111-115.
    [124]刘思革.基于风险评估理论的输电网络扩展规划研究[D].上海:上海交通大学,2009.
    [125]彭正标,袁竹林.基于蒙特卡罗法的脱硫塔内气固流动数值模拟[J].中国电机工程学报,2008,28(14):6-14.
    [126]国家电力监管委员会电力可靠性管理中心.电力可靠性技术与管理培训教材[M].北京:中国电力出版社,2007:53-54.
    [127]陈德树.继电保护运行状况评价方法的探讨[J].电网技术,2000,24(3):1-2,65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700