含电动汽车的电力系统运行问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺、环境污染等问题的日益加剧,促使动力电气化成为未来交通行业的主要发展趋势。目前,电动汽车的研究与推广已经成为各国政府、汽车制造厂商所关注的焦点。电动汽车的应用在缓解能源、环境等问题的同时,将对电力系统的运行与管理产生深远的影响,其影响涉及到配电、输电、发电以及调度通信系统等多个层面。鉴于此,本文以含电动汽车的电力系统运行问题作为主要研究内容,所做工作和所取得的成果归纳如下:
     提出利用配电网络重构技术来缓解电动汽车所带来的不利影响,以提高配电网接纳电动汽车的能力。配网重构模型涉及降低有功损耗、改善电压质量和平衡变压器负载等多个优化目标,采用模糊集理论处理多目标之间的权衡问题,并使用量子粒子群优化算法进行求解。此外,构建了以负荷峰谷差最小为目标的电动汽车协调充电模型,对比分析了不控充电模式和协调充电模式下配网负荷曲线的特性。算例结果表明,采用网络重构技术可有效地缓解电动汽车所带来的不利影响,提高配电网接纳电动汽车的能力。
     提出考虑不确定性因素的配电网鲁棒性综合优化模型,该模型将不确定性环境中网损分布标准差的越限惩罚与网损期望值之和作为目标函数。考虑的不确定性因素包括电动汽车的出行时间、负荷功率以及配网中小型风电场的有功出力,优化手段包括网络重构、投切电容器以及调节有载调压变压器档位。算例分析表明,所提出的配电网鲁棒性综合优化模型可有效减少不可行解的产生,并能保障优化方案在不确定性环境中的鲁棒性。
     分析了含电动汽车的输电网潮流的概率分布特性。以全美家用车辆调查的数据为蓝本,考察了首次出行时刻、返家时刻和日行驶里程3方面数据之间的相关性,并采用Copula函数对其相关性进行描述。采用蒙特卡洛法计算电动汽车充电负荷的分布,在此基础上,对含有电动汽车的输电网概率潮流进行计算与分析。算例结果表明,Copula函数可有效地拟合车辆行驶数据之间的相关性。协调充电策略将电动汽车的充电负荷安排在晚间负荷低谷时段,但随着电动汽车数量的增多,该时段的充电负荷激增,部分节点的电压分布以及部分线路的功率分布将产生显著的变化。
     分析了电动汽车的充、放电行为对机组组合优化的影响。在协调充电模型的基础上,对各时段电动汽车的反向放电能力进行估算。算例分析表明,电动汽车的大规模接入将对电力系统的机组组合优化产生影响,其影响主要取决于电动汽车的充电负荷特性和电动汽车的反向放电特性两方面。对电动汽车采取不同的调控方案,将使机组组合的优化结果具有明显的差异性。采用以负荷峰谷差最小化为目标的协调充电方式,将使负荷曲线更加平整,机组的出力调整更为灵活,促使发电成本减少。利用电动汽车的反向放电能力为电网提供旋转备用,可减少传统机组的备用量,从而进一步降低发电成本。
     建立了电力调度数据网的数据传输模型,定义了数据包拥塞率并将其作为评估信息拥塞程度的指标。模型计及了调度数据网中信息流向的特点,考虑了垂直信息流和随机信息流2种典型的信息流模式。分析了具有星型结构和网状结构的调度数据网的传输特性,并通过模拟核心节点和关键线路遭受攻击的场景,进一步对比了2种结构的调度数据网在遭受攻击时的传输特性变化。仿真结果表明:电力调度数据网的传输特性与拓扑结构有着紧密的关系。正常情况下,星型网络比网状网络具有更优的传输性能,其缓解信息拥塞的能力更强;遭受攻击后,星型网络和网状网络的传输特性呈现不同程度的恶化,其中星型网络恶化得更为严重,表现出较强的脆弱性。
The increasing energy shortage and environmental pollution make the electrificationof transportation become major trends. In recently, the research and promotion of electricvehicles has become the focus of governments and automobile manufacturers. Theapplication of electric vehicle will alleviate the problem of energy shortage andenvironmental pollution, and it also significantly affects the operation and management ofthe power grid, which involves many levels such as distribution system, transmissionsystem, generation system and Electric power dispatching data network. In view of this, theoperation of power systems integrating electric vehicles is chosen to be the research topic,and the research work and outputs of the thesis are listed as follows:
     The strategy of improving the distribution system's ability to accept electric vehiclebased on network reconfiguration technology is proposed, which is used to mitigate theimpact of electric vehicle on the power system. Multi-objective distribution networkreconfiguration model is proposed, and its objective involves reducing power loss,improving the voltage quality and load balance of the transformers. Fuzzy sets are used tohandle the multi-objective, and the quantum-inspired binary particle swarm algorithm isused to solve the optimal problem. In addition, coordinated charging model aiming tominimize the peak-valley load is proposed, and the load profile of distribution with electricvehicles' charging load is analyzed. The simulation results show that it is effective toalleviate the adverse effect from electric vehicle by using distribution networkreconfiguration technique, which will be of great helpful for improving the ability ofdistribution network to access electric vehicle.
     Robust comprehensive optimization for distribution system considering theuncertainties is proposed, which uses the sum of standard deviation punishment and meanvalue of power loss in uncertain environment as objective function. The uncertaintiescontain the travel time of electric vehicle, load power and active power output of the small-sized wind farms in distribution network, and the control means include networkreconfiguration, capacitor switching, regulating positions of on-load transformer changer.The simulation results show that the robust optimization will effectively reduce thegeneration of infeasible solutions, and maintain the robustness of solutions in the uncertainenvironment.
     The probabilistic power flow of transmission grid with electric vehicles is analyzed.Based on the national household travel survey, the correlation between the first travel time,the returning time and day mileage is investigated, which is described by the copulafunction. Monte Carlo method is used to calculate the distribution of the electric vehicles'charging load, and the probabilistic power flow of transmission system with electricvehicles is analyzed. The simulation results show that Copula function can effectively fitthe correlation between the travel datas. Night coordinated charging strategies can beeffectively arrange the charging load of electric vehicles into the time interval with lowload, however, with the increasing of electric vehicles, the charging load will increasesignificantly, and the voltage distribution of part of nodes and power distribution of partlines will have significant change.
     The impact of charging and discharging behavior of electric vehicles on the unitcommitment is analyzed. Based on the coordinated charging strategy, the inverse dischargecapacities of electric vehicles are estimated. Simulation results show that applying differentcharging and discharging schemes to electric vehicle will obviously impact theoptimization results of unit commitment, which depends on the characteristics of chargingand discharging of electric vehicle. Applying different charging and discharging schemeswill obviously impact the optimization results of unit commitment. The proposedcoordinated charging strategy makes the load profile become flat, which generates lessgeneration cost. Utilizing inverse discharging capacity of electric vehicle as spinningreserves will reduce the reserve requirement from the traditional units and further lower thegeneration cost.
     The data transmission model was built, and the packet congestion rate was used asinformation congestion indicator in this paper. Meanwhile, the model took the direction of information flow into account and defined two typical information flow modes, which werevertical information flow and random information flow. The transmission characteristics ofelectric power dispatching data network (EPSDDN) with star and mesh structure wereinvestigated. Furthermore, the transmission characteristics of two EPSDDNs under attackswere investigated with removal of the core nodes and the key links. Simulation resultshows that, there is a close relationship between the transmission characteristic ofEPSDDN and network structure. In the normal case, the star network has betterperformance than the mesh network because of its outstanding capability to relieve theinformation congestion; while under attacks, the transmission performance of twoEPSDDNs show varying degrees of deterioration, and the star network exposes muchhigher vulnerability than the mesh network does.
引文
[1] Boulanger A G, Chu A C, Maxx S, et al. Vehicle electrification: Status and issues.Proceedings of The IEEE,2011,99(6):1116-1138.
    [2] Ungar E, Fell K. Plug In, Turn On, and Load Up. IEEE Power and EnergyMagazine,2010,8(3):30-35.
    [3]王锡凡,邵成成,王秀丽,等.电动汽车充电负荷与调度控制策略综述.中国电机工程学报,2013,33(1):1-10.
    [4] Callaway D S, Hiskens I A. Achieving controllability of electric loads. Proceedingsof The IEEE,2011,99(1):184-199.
    [5] Rotering N, Ilic M. Optimal charge control of plug-in hybrid electric vehicles inderegulated electricity markets. IEEE Transactions on Power Systems,2011,26(3):1021-1029.
    [6] Sortomme E, Hindi M M, Macpherson S D J, et al. Coordinated charging of plug-inhybrid electric vehicles to minimize distribution system losses. IEEE Transactionson Smart Grid,2011,2(1):198-205.
    [7] Kempton W, Tomic J. Vehicle-to-grid power fundamentals: Calculating capacityand net revenue. Journal of Power Sources,2005,144(1):268-279.
    [8] Kempton W, Tomic J. Vehicle-to-grid power implementation: From stabilizing thegrid to supporting large-scale renewable energy. Journal of Power Sources,2005,144(1):280-294.
    [9] Clement-Nyns K, Haesen E, Driesen J. The impact of vehicle-to-grid on thedistribution grid. Electric Power Systems Research,2011,81(1):185-192.
    [10] Fan Z. A distributed demand response algorithm and its application to PHEVcharging in smart grids. IEEE Transactions on Smart Grid,2012,3(3):1280-1290.
    [11] Davis B M, Bradley T H. The efficacy of electric vehicle time-of-use rates inguiding plug-in hybrid electric vehicle charging behavior. IEEE Transactions onSmart Grid,2012,3(4):1679-1686.
    [12] Verzijlbergh R A, Grond M O W, Lukszo Z, et al. Network impacts and costsavings of controlled EV charging. IEEE Transactions on Smart Grid,2012,3(3):1203-1212.
    [13] Sortomme E, El-Sharkawi M A. Optimal Scheduling of Vehicle-to-Grid Energy andAncillary Services. IEEE Transactions on Smart Grid,2012,3(1):351-359.
    [14] Quinn C, Zimmerle D, Bradley T H. The effect of communication architecture onthe availability, reliability, and economics of plug-in hybrid electric vehicle-to-gridancillary services. Journal of Power Sources,2010,195(5):1500-1509.
    [15] Ekman C K. On the synergy between large electric vehicle fleet and high windpenetration-An analysis of the Danish case. Renewable Energy,2011,36(2):546-553.
    [16] Liu C, Wang J, Botterud A, et al. Assessment of Impacts of PHEV ChargingPatterns on Wind-Thermal Scheduling by Stochastic Unit Commitment. IEEETransactions on Smart Grid,2012,3(2):675-683.
    [17]罗卓伟,胡泽春,宋永华,等.电动汽车充电负荷计算方法.电力系统自动化,2011,35(14):36-42.
    [18] Di Wu, Aliprantis D C, Gkritza K. Electric Energy and Power Consumption byLight-Duty Plug-In Electric Vehicles. IEEE Transactions on Power Systems,2011,26(2):738-746.
    [19] Weiller C. Plug-in hybrid electric vehicle impacts on hourly electricity demand inthe United States. Energy Policy,2011,39(6):3766-3778.
    [20]宋永华,阳岳希,胡泽春.电动汽车电池的现状及发展趋势.电网技术,2011,35(4):1-7.
    [21] Lukic S M, Cao J, Bansal R C, et al. Energy storage systems for automotiveapplications. IEEE Transactions on Industrial Electronics,2008,55(6):2258-2267.
    [22] Scrosati B, Garche J. Lithium batteries: Status, prospects and future. Journal ofPower Sources,2010,195(9):2419-2430.
    [23] Pecas Lopes J A, Soares F J, Rocha Almeida P M. Integration of electric vehicles inthe electric power system. Proceedings of The IEEE,2011,99(1):168-183.
    [24] Pieltain Fernandez L, Gomez San Roman T, Cossent R, et al. Assessment of theimpact of plug-in electric vehicles on distribution networks. IEEE Transactions onPower Systems,2011,26(1):206-213.
    [25] Di Wu, Aliprantis D C, Gkritza K. Electric energy and power consumption bylight-duty plug-in electric vehicles. IEEE Transactions on Power Systems,2011,26(2):738-746.
    [26] Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybridelectric vehicles on a residential distribution grid. IEEE Transactions on PowerSystems,2010,25(1):371-380.
    [27] Steen D, Tuan L A, Carlson O, et al. Assessment of Electric Vehicle ChargingScenarios Based on Demographical Data. IEEE Transactions on Smart Grid,2012,3(3):1457-1468.
    [28] Ashtari A, Bibeau E, Shahidinejad S, et al. PEV charging profile prediction andanalysis based on vehicle usage data. IEEE Transactions on Smart Grid,2012,3(1):341-350.
    [29] Wang J, Liu C, Ton D, et al. Impact of plug-in hybrid electric vehicles on powersystems with demand response and wind power. Energy Policy,2011,39(7, SI):4016-4021.
    [30] Qian K, Zhou C, Allan M, et al. Modeling of load demand due to EV batterycharging in distribution systems. IEEE Transactions on Power Systems,2011,26(2):802-810.
    [31] Ashtari A, Bibeau E, Shahidinejad S, et al. PEV Charging Profile Prediction andAnalysis Based on Vehicle Usage Data. IEEE Transactions on Smart Grid,2012,3(1):341-350.
    [32] Rautiainen A, Repo S, Jarventausta P, et al. Statistical charging load modeling ofPHEVs in electricity distribution networks using national travel survey data. IEEETransactions on Smart Grid,2012,3(4):1650-1659.
    [33]宫鑫,林涛,苏秉华.插电式混合电动汽车充电对配电网的影响.电网技术,2012,36(11):30-35.
    [34]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法.电网技术,2010,34(11):126-130.
    [35]郑竞宏,戴梦婷,张曼,等.住宅区式电动汽车充电站负荷集聚特性及其建模.中国电机工程学报,2012,32(22):32-38.
    [36] Lojowska A, Kurowicka D, Papaefthymiou G, et al. Stochastic modeling of powerdemand due to EVs using Copula. IEEE Transactions on Power Systems,2012,27(4):1960-1968.
    [37] Vlachogiannis J G. Probabilistic constrained load flow considering integration ofwind power generation and electric vehicles. IEEE Transactions on Power Systems,2009,24(4):1808-1817.
    [38] Hadley S W. Impact of plug-in hybrid vehicles on the electric grid [Online].Available:http://apps.ornl.gov/~pts/prod/pubs/ldoc3198-plug-in-paper-final.pdf.
    [39] Gomez J C, Morcos M M. Impact of EV battery chargers on the power quality ofdistribution systems. IEEE Transactions on Power Delivery,2003,18(3):975-981.
    [40] Fabian Corasaniti V, Beatriz Barbieri M, Liliana Arnera P, et al. Hybrid active filterfor reactive and harmonics compensation in a distribution network. IEEETransactions on Industrial Electronics,2009,56(3):670-677.
    [41] Taylor J, Maitra A, Alexander M, et al. Evaluation of the impact of plug-in electricvehicle loading on distribution system operations. IEEE Power Energy SocietyGeneral Meeting,2009.
    [42] Putrus G A, Suwanapingkarl P, Johnston D, et al. Impact of electric vehicles onpower distribution networks. IEEE Vehicle Power And Propulsion Conference,2009.
    [43] Maitra A, Kook K S, Taylor J, et al. Grid impacts of plug-in electric vehicles onHydro Quebec's distribution system. IEEE PES Transmission and DistributionConference and Exposition,2010.
    [44] Roe C, Meisel J, Meliopoulos A P, et al. Power system level impacts of PHEVs.42rd Hawaii International System Sciences,2009.
    [45] Farmer C, Hines P, Dowds J, et al. Modeling the impact of increasing PHEV loadson the distribution infrastructure.43rd Hawaii International Conference on SystemSciences HICSS,2010.
    [46] Brooks A, Lu E, Reicher D, et al. Demand dispatch. IEEE Power and EnergyMagazine,2010,8(3):20-29.
    [47]曾鸣.电力需求侧管理.北京:中国电力出版社,2001.
    [48]张艳馥.需求侧管理(DSM)激励机制理论研究[博士学位论文].北京:华北电力大学,2006.
    [49] US Energy Information Administration. Electric power annual [Online].Available:http://www.eia.gov/electricity/annual/html/epa_01_02.html.
    [50] Epri. Transportation electrication-A technology overview1021334Final Report.2011.
    [51]李秋硕,肖湘宁,郭静,等.电动汽车有序充电方法研究.电网技术,2012,36(12):32-38.
    [52] Masoum A S, Deilami S, Moses P S, et al. Smart load management of plug-inelectric vehicles in distribution and residential networks with charging stations forpeak shaving and loss minimisation considering voltage regulation. IET Generation,Transmission Distribution,2011,5(8):877-888.
    [53] Richardson P, Flynn D, Keane A. Optimal charging of electric vehicles inlow-voltage distribution systems. IEEE Transactions on Power Systems,2012,27(1):268-279.
    [54]罗卓伟,胡泽春,宋永华,等.换电模式下电动汽车电池充电负荷建模与有序充电研究.中国电机工程学报,2012,32(31):1-10.
    [55] He Y, Venkatesh B, Guan L. Optimal scheduling for charging and discharging ofelectric vehicles. IEEE Transactions on Smart Grid,2012,3(3):1095-1105.
    [56] Deilami S, Masoum A S, Moses P S, et al. Real-time coordination of plug-inelectric vehicle charging in smart grids to minimize power losses and improvevoltage profile. IEEE Transactions on Smart Grid,2011,2(3):456-467.
    [57]李正烁,孙宏斌,郭庆来,等.计及碳排放的输电网侧“风–车协调”研究.中国电机工程学报,2012,32(10):7-41.
    [58]于大洋,黄海丽,雷鸣,等.电动汽车充电与风电协同调度的碳减排效益分析.电力系统自动化,2012,36(10):14-18.
    [59] Ferreira H L, Costescu A, L'Abbate A, et al. Distributed generation and distributionmarket diversity in Europe. Energy Policy,2011,39(9):5561-5571.
    [60] Kempton W, Kubo T. Electric-drive vehicles for peak power in Japan. EnergyPolicy,2000,28(1):9-18.
    [61] Saber A Y, Venayagamoorthy G K. Intelligent unit commitment withvehicle-to-grid-A cost-emission optimization. Journal of Power Sources,2010,195(3):898-911.
    [62]蔡秋娜,文福拴,薛禹胜,等.基于SCUC的可入网混合电动汽车优化调度方法.电力系统自动化,2012,36(1):38-46.
    [63] Tomic J, Kempton W. Using fleets of electric-drive vehicles for grid support.Journal of Power sources,2007,168(2):459-468.
    [64] Galus M D, Koch S, Andersson G. Provision of Load Frequency Control by PHEVs,Controllable Loads, and a Cogeneration Unit. IEEE Transactions on IndustrialElectronics,2011,58(10):4568-4582.
    [65] Andersson S, Elofsson A K, Galus M D, et al. Plug-in hybrid electric vehicles asregulating power providers: Case studies of Sweden and Germany. Energy Policy,2010,38(6):2751-2762.
    [66] White C D, Zhang K M. Using vehicle-to-grid technology for frequency regulationand peak-load reduction. Journal of Power Sources,2011,196(8, SI):3972-3980.
    [67] Ota Y, Taniguchi H, Nakajima T, et al. Autonomous distributed V2G(vehicle-to-grid) satisfying scheduled charging. IEEE Transactions on Smart Grid,2012,3(1):559-564.
    [68] Liu H, Hu Z, Song Y, et al. Decentralized vehicle-to-grid control for primaryfrequency regulation considering charging demands. IEEE Transactions on PowerSystems,2013, in press.
    [69] Pillai J R, Bak-Jensen B. Integration of vehicle-to-grid in the Western Danish powersystem. IEEE Transactions on Sustainable Energy,2011,2(1):12-19.
    [70] Yang H, Chung C Y, Zhao J. Application of plug-in electric vehicles to frequencyregulation based on distributed signal acquisition via limited communication. IEEETransactions on Power Systems,2013,28(2):1017-1026.
    [71] Willett K, Udo V, Huber K, et al. A test of vehicle-to-grid (V2G) for energy storageand frequency regulation in the PJM system [Online].Available:http://www.udel.edu/V2G/resources/test-v2g-in-pjm-jan09.pdf.
    [72]于大洋,宋曙光,张波,等.区域电网电动汽车充电与风电协同调度的分析.电力系统自动化,2011,35(14):24-29.
    [73]赵俊华,文福栓,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度.电力系统自动化,2010,34(20):22-29.
    [74] Li Z, Sun H, Guo Q, et al. Study on wind-EV complementation in transmission gridside. IEEE Power and Energy Society General Meeting,2011.
    [75] Li C T, Ahn C, Peng H, et al. Synergistic control of plug-in vehicle charging andwind power scheduling. IEEE Transactions on Power Systems,2012,28(2):1113-1121.
    [76] Lund H, Kempton W. Integration of renewable energy into the transport andelectricity sectors through V2G. Energy Policy,2008,36(9):3578-3587.
    [77] Islam F R, Pota H R, Anwar A, et al. Design a unified power quality conditionerusing V2G technology. IEEE International Power Engineering and OptimizationConference, Melaka, Malaysia,2012.
    [78]樊英,张丽,薛钟兵,等.基于V2G的无功功率补偿技术.电网技术,2013,37(2):307-311.
    [79] Motavalli J. Power to the people: Run your house on a Prius [Online].Available:http://www.nytimes.com/2007/09/02/automobiles/02POWER.html.
    [80] Ulbig A, Galus M D, Chatzivasileiadis S, et al. General frequency control withaggregated control reserve capacity from time-varying sources: The case of PHEVs.Bulk Power System Dynamics and Control,2010.
    [81] Sanchez-Martin P, Sanchez G, Morales-Espana G. Direct Load Control DecisionModel for Aggregated EV Charging Points. IEEE Transactions on Power Systems,2012,27(3):1577-1584.
    [82]薛飞,雷宪章,张野飚,等.电动汽车与智能电网从V2G到B2G的全新结合模式.电网技术,2012,36(2):29-34.
    [83]薛飞,雷宪章,张野飚,等.基于物联网的电动汽车智能充换电服务网络电池管理.电力系统自动化,2012,36(21):41-46.
    [84]张昌华,孟劲松,曹永兴,等.换电模式下电动汽车换电充裕度模型及仿真研究.电网技术,2012,36(9):15-19.
    [85]张舒,胡泽春,宋永华,等.考虑电动汽车换电站与电网互动的机组组合问题研究.中国电机工程学报,2012,32(10):8-49.
    [86]田文奇,和敬涵,姜久春,等.基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化.电网技术,2012,36(11):25-29.
    [87] Li Z, Ouyang M. A win-win marginal rent analysis for operator and consumer underbattery leasing mode in China electric vehicle market. Energy Policy,2011,39(6):3222-3237.
    [88] Green R C, Wang L, Alam M. The impact of plug-in hybrid electric vehicles ondistribution networks: A review and outlook. Renewable and Sustainable EnergyReviews,2011,15(1):544-553.
    [89] Hu Z, Li F. Cost-Benefit Analyses of Active Distribution Network Management,Part I: Annual Benefit Analysis. IEEE Transactions on Smart Grid,2012,3(3):1067-1074.
    [90] Hu Z, Li F. Cost-Benefit Analyses of Active Distribution Network Management,Part II: Investment Reduction Analysis. IEEE Transactions on Smart Grid,2012,3(3):1075-1081.
    [91] Das D. A fuzzy multiobjective approach for network reconfiguration of distributionsystems. IEEE Transactions on Power Delivery,2006,21(1):202-209.
    [92] Hong Y Y, Ho S Y. Determination of network configuration consideringmultiobjective in distribution systems using genetic algorithms. IEEE Transactionson Power Systems,2005,20(2):1062-1069.
    [93] Mcdonald J. Adaptive intelligent power systems: Active distribution networks.Energy Policy,2008,36(12):4346-4351.
    [94] US. Department Of Transportation Federal Administration. National householdtravel survey [Online]. Available:http://nhts.ornl.gov/download.shtml.
    [95] Wang J, Liu C, Ton D, et al. Impact of plug-in hybrid electric vehicles on powersystems with demand response and wind power. Energy Policy,2011,39(7, SI):4016-4021.
    [96] Broadwater R P, Khan A H, Shaalan H E, et al. Time varying load analysis toreduce distribution losses through reconfiguration. IEEE Transactions on PowerDelivery,1993,8(1):294-300.
    [97] Hu Z, Wang X, Chen H, et al. Volt/VAr control in distribution systems using atime-interval based approach. IEE Proceedings-Generation, Transmission andDistribution,2003,150(5):548-554.
    [98] Xu Z S, Da Q L. An overview of operators for aggregating information.International Journal of Intelligent Systems,2003,18(9):953-969.
    [99] Jeong Y, Park J, Jang S, et al. A New Quantum-Inspired Binary PSO: Applicationto Unit Commitment Problems for Power Systems. IEEE Transactions on PowerSystems,2010,25(3):1486-1495.
    [100] Lin W M, Cheng F S, Tsay M T. Distribution feeder reconfiguration with refinedgenetic algorithm. IEE Proceedings Generation, Transmission and Distribution,2000,147(6):349-354.
    [101] Gupta N, Swarnkar A, Niazi K R, et al. Multi-objective reconfiguration ofdistribution systems using adaptive genetic algorithm in fuzzy framework. IETGeneration, Transmission&Distribution,2010,4(12):1288-1298.
    [102] US Department Of Energy. Summary Statistics for the United States [Online].Available:http://205.254.135.24/cneaf/electricity/epa/epates.html.
    [103] Earth Policy Institute. U.S. Vehicle Scrappage and Registrations,1991-2009[Online]. Available:www.earth-policy.org/datacenter/xls/update87_2.xls.
    [104] Beyer H, Sendhoff B. Robust optimization–A comprehensive survey. ComputerMethods in Applied Mechanics and Engineering,2007,196:3190-3218.
    [105] Sahinidis N V. Optimization under uncertainty: state-of-the-art and opportunities.Computers&Chemical Engineering,2004,28:971-983.
    [106] Jin Y, Branke J. Evolutionary optimization in uncertain environments-a survey.IEEE Transactions on Evolutionary Computation,2005,9(3):303-317.
    [107] Zhao J, Li X, Hao J, et al. Reactive power control of wind farm made up withdoubly fed induction generators in distribution system. Electric Power SystemsResearch,2010,80(6):698-706.
    [108] Kalogirou S. Artificial neural networks in renewable energy systems applications: areview. Renewable and Sustainable Energy Reviews,2001,5(4):373-401.
    [109] Costa A, Crespo A, Navarro J, et al. A review on the young history of the windpower short-term prediction. Renewable and Sustainable Energy Reviews,2008,12(6):1725-1744.
    [110] Lei M, Shiyan L, Chuanwen J, et al. A review on the forecasting of wind speed andgenerated power. Renewable and Sustainable Energy Reviews,2009,13(4):915-920.
    [111] Fabbri A, Roma N T G S, Abbad J R, et al. Assessment of the cost associated withwind generation prediction errors in a liberalized electricity market. IEEETransactions on Power Systems,2005,20(3):1440-1446.
    [112] Bludszuweit H, Dominguez-Navarro J A, Llombart A. Statistical analysis of windpower forecast error. IEEE Transactions on Power Systems,2008,23(3):983-991.
    [113] Mckay M, Beckman R, Conover W. Comparison of three methods for selectingvalues of input variables in the analysis of output from a computer code.Technometrics,1979,21(2):239-245.
    [114] Liefvendahl M, Stocki R. A study on algorithms for optimization of Latinhypercubes. Journal of Statistical Planning And Inference,2006,136(9):3231-3247.
    [115] Iman R L, Conover W J. A distribution-free approach to inducing rank correlationamong input variables. Communications in Statistics-Simulation and Computation,1982,11(3):311-334.
    [116] Owen A B. Controlling correlations in Latin hypercube samples. Journal of theAmerican Statistical Association,1994,89(428):1517-1522.
    [117]于晗.基于概率的含风电场电网的输电系统规划方法研究[博士学位论文].北京:华北电力大学,2009.
    [118]于晗,钟志勇,黄杰波,等.采用拉丁超立方采样的电力系统概率潮流计算方法.电力系统自动化,2009,33(21):32-35.
    [119]方兴,郭志忠.配电网时变综合优化方法研究.电工技术学报,2006,21(9):31-36.
    [120]邓佑满,张伯明,王洪璞.配电网络重构和电容器投切的综合优化算法.电力系统自动化,1996,20(5):5-9.
    [121] Peponis G J, Papadopoulos M P, Hatziargyriou N D. Distribution networkreconfiguration to minimize resistive line losses. IEEE Transactions on PowerDelivery,1995,10(3):1338-1342.
    [122] Roytelman I, Shahidehpour S M. Practical aspects of distribution automation innormal and emergency conditions. IEEE Transactions on Power Delivery,1993,8(4):2002-2008.
    [123]胡泽春,宋永华,徐智威,等.电动汽车接入电网的影响与利用.中国电机工程学报,2012,32(4):1-10.
    [124]田立亭,张明霞,汪奂伶.电动汽车对电网影响的评估和解决方案.中国电机工程学报,2012,32(31):43-49.
    [125] Nelsen R B. An introduction to Copulas. New York: Springer,1998
    [126] Fang B Q. The skew elliptical distributions and their quadratic forms. Journal ofMultivariate Analysis,2003,87(2):298-314.
    [127] Frahm G, Junker M, Szimayer A. Elliptical copulas: applicability and limitations.Statistics and Probability Letters,2003,63(3):275-286.
    [128] Nelsen R B. Dependence and order in families of Archimedean copulas. Journal ofMultivariate Analysis,1997,60(1):111-122.
    [129] Genest C, Ghoudi K, Rivest L. A semiparametric estimation procedure ofdependence parameters in multivariate families of distributions. Biometrika,1995,82(3):543-552.
    [130] Klaassen C, Wellner J A. Efficient estimation in the bivariate normal copula model:normal margins are least favourable. Bernoulli,1997,3(1):55-77.
    [131] Rosenblatt M. Remarks on some nonparametric estimates of a density function. TheAnnals of Mathematical Statistics,1956,27(3):832-837.
    [132] Cranmer K. Kernel estimation in high-energy physics. Computer PhysicsCommunications,2001,136(3):198-207.
    [133] Ruiz A, Lopez-De-Teruel P E. Nonlinear kernel-based statistical pattern analysis.IEEE Transactions on Neural Networks,2001,12(1):16-32.
    [134] Elgammal A, Duraiswami R, Harwood D, et al. Background and foregroundmodeling using nonparametric kernel density estimation for visual surveillance.Proceedings of The IEEE,2002,90(7):1151-1163.
    [135] Epanechnikov V A. Nonparametric estimation of a multidimensional porabilitydensity. Theory of Proability and Application,1969,14(1):156-161.
    [136] Silverman B W. Density estimation for statistics and data analysis. London:Chapman and Hall,1986
    [137]龚光鲁.概率论与数理统计.北京:清华大学出版社,2003.
    [138]张伯明,陈寿孙.高等电力网络分析.北京:清华大学出版社,2007.
    [139]陈皓勇,王锡凡.机组组合问题的优化方法综述.电力系统自动化,1999,23(4):51-56.
    [140]陆凌蓉,文福拴,薛禹胜,等.计及可入网电动汽车的电力系统机组最优组合.电力系统自动化,2011,35(21):16-20.
    [141] Kempton W, Letendre S E. Electric vehicles as a new power source for electricutilities. Transportation Research Part D: Transport and Environment,1997,2(3):157-175.
    [142] Gaing Z. Discrete particle swarm optimization algorithm for unit commitment.IEEE power Engineering Society General Meeting,2003.
    [143] Kennedy J, Eberhart R B I. A discrete binary version of the particle swarmalgorithm. IEEE International Conference on Systems, Man and Cybernatics,1997.
    [144]袁晓辉,苏安俊,聂浩,等.面向启发式调整策略和粒子群优化的机组组合问题.电工技术学报,2009,24(12):137-141.
    [145] Zhao B, Guo C X, Bai B R, et al. An improved particle swarm optimizationalgorithm for unit commitment. International Journal of Electrical Power&EnergySystems,2006,28(7):482-490.
    [146]苏盛.数字化电力系统若干问题研究[博士学位论文].武汉:华中科技大学,2009.
    [147] Yang S, Wang H, Gan C, et al. Mobile charging information management for smartgrid networks. International Journal of Information Management,2013,33(2):245-251.
    [148] Khayyam H, Ranjbarzadeh H, Marano V. Intelligent control of vehicle to gridpower. Journal of Power Sources,2012,201:1-9.
    [149] Usman A, Shami S H. Evolution of communication technologies for smart gridapplications. Renewable and Sustainable Energy Reviews,2013,19:191-199.
    [150] Waraich R A, Galus M D, Dobler C, et al. Plug-in hybrid electric vehicles and smartgrids: Investigations based on a microsimulation. Transportation Research PartC-Emerging Technologies,2013,28(SI):74-86.
    [151]胡娟,李智欢,段献忠.电力调度数据网结构特性分析.中国电机工程学报,2009,29(04):53-59.
    [152] Schneider K, Liu C, Paul J P. Assessment of interactions between power andtelecommunications infrastructures. IEEE Transactions on Power Systems,2006,21(3):1123-1130.
    [153] Ten C, Liu C, Manimaran G. Vulnerability Assessment of Cybersecurity forSCADA Systems. IEEE Transactions on Power Systems,2008,23(4):1836-1846.
    [154] Bobbio A, Bonanni G, Ciancamerla E, et al. Unavailability of critical SCADAcommunication links interconnecting a power grid and a Telco network. ReliabilityEngineering&System Safety,2010,95(12):1345-1357.
    [155] Ericsson G N. Cyber Security and Power System Communication-Essential Parts ofa Smart Grid Infrastructure. IEEE Transactions on Power Delivery,2010,25(3):1501-1507.
    [156] Coates G M, Hopkinson K M, Graham S R, et al. A Trust System Architecture forSCADA Network Security. IEEE Transactions on Power Delivery,2010,25(1):158-169.
    [157] Nordstroem L. Assessment of information security levels in power communicationsystems using evidential reasoning. IEEE Transactions on Power Delivery,2008,23(3):1384-1391.
    [158] Mak K H, Holland B. Migrating electrical power network SCADA systems toTCP/IP and Ethernet networking. Power Engineering Journal,2002,16(6):305-311.
    [159]黄晓莉.面向21世纪的国家电力数据网络(上).电力系统自动化,1999,23(22):45-49.
    [160] Bhowmik S, Tomsovic K, Bose A. Communication models for third party loadfrequency control. IEEE Transactions on Power Systems,2004,19(1):543-548.
    [161] Yu X F, Tomsovic K. Application of linear matrix inequalities for load frequencycontrol with communication delays. IEEE Transactions on Power Systems,2004,19(3):1508-1515.
    [162] Rosato V, Issacharoff L, Meloni S, et al. Is the topology of the Internet networkreally fit to sustain its function. Physica A-Statistical Mechanics and ItsApplications,2008,387(7):1689-1704.
    [163] Forouzan B A. Data Communications and Networking. New York: McGraw Hill,2007
    [164] Ohira T, Sawatari R. Phase transition in a computer network traffic model. PhysicalReview E,1998,58(1):193-195.
    [165]彭清卿,向力,卢长燕,等.国家电力调度数据网组网研究.电力系统自动化,2004,28(8):10-14.
    [166]陈晓刚,孙可,曹一家.基于复杂网络理论的大电网结构脆弱性分析.电工技术学报,2007,22(10):138-144.
    [167]张建华.一种简便易用的基尼系数计算方法.山西农业大学学报(社会科学版),2007,3(6):275-278.
    [168] Al-Alawi B M, Bradley T H. Review of hybrid, plug-in hybrid, and electric vehiclemarket modeling Studies. Renewable and Sustainable Energy Reviews,2013,21:190-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700