细胞色素C在SAM和离子液体修饰电极上的电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构成生物体新陈代谢的几乎全部化学反应都是在活性蛋白质—酶的催化下进行的,生物体中最基本的运动便是电荷的运动,细胞色素C(Cytochrome C, Cyt.c)承担了呼吸链上重要的电子传递作用。在生物体内需要依靠其氧化还原酶的作用进行可逆的氧化还原反应,但在金属,如Hg、Pt、Au、Ag等电极上的电化学反应却是不可逆的,需要在一类称作电子传递促进剂(Promoter)或媒介体(Mediator)的存在下才能进行直接的电子传递。
     本文主要应用分子自组装技术制备了2-氨基乙硫醇(2-aminoethanethiol,简称2AT)修饰的金电极,采用循环伏安(Cyclic voltammetry,CV),石英晶体微天平(Quartz crystal microbalance, QCM),拉曼光谱(Raman spectroscopy),电化学交流阻抗(Electrochemical impedance spectra, EIS)等方法对自组装膜进行了表征,并测定了Cyt.c在修饰电极上的循环伏安行为。实验结果证明,Cyt.c在2-氨基乙硫醇修饰电极上可进行直接的电子传递。结合电化学石英晶体微天平技术(EQCM)对修饰膜的研究,探讨了可能的电子传递反应机理。
     此外,还利用层层组装技术将Cyt.c和2-氨基乙硫醇共同固定到金电极表面,制备了Cyt.c/2AT/Au修饰电极,测定了修饰电极在磷酸盐缓冲溶液(PBS)中的电化学行为,并与细胞色素C在2AT/Au修饰电极上的电化学行为进行了比较。结果表明,Cyt.c在2AT修饰的金电极上发生了明显的氧化还原反应;20mV/s的扫速下,其氧化还原峰电位分别为48mV和-7mV,峰峰电位差为55 mV,式量电位E0’约为20.5mV;而Cyt.c/2AT/Au修饰电极在磷酸盐缓冲溶液(PBS)中虽也出现一对明显的氧化还原电流峰,但其峰形不如前者。
     离子液体(Ionic liquids)是在室温或稍高于室温的温度下呈液态的离子体系。它具有熔点低、蒸气压小、电化学窗口大、良好的溶解度、热稳定性好、粘度和密度大等特点,是一种绿色环保的溶剂。近年来,已在电化学、有机合成及分离分析等技术领域迅速得到应用。生物分子在离子液体中不会失活,是研究生物分子电化学行为的良好介质。
     在参考相关文献资料的基础上,制备了咪唑类亲水性离子液体和疏水性离子液体﹑吡啶类亲水性离子液体和疏水性离子液体以及季胺盐离子液体,并利用核磁共振测试技术对制得的离子液体进行了表征。
     将离子液体滴加到玻碳电极上制得修饰电极,测定了修饰电极在细胞色素C溶液中的循环伏安行为,并利用电化学交流阻抗谱技术对其电化学反应过程进行了原位测定,结合阻抗谱拟合的等效电路对离子液体促进细胞色素C电子传递的反应机理进行了探讨。
     结果表明,无论是亲水性还是疏水性的咪唑类离子液体修饰的玻碳电极均能对Cyt.c的电子传递产生良好的促进作用,说明改变阴离子对离子液体修饰电极性能的影响不大;而细胞色素C在季胺盐修饰的玻碳电极上没有发生明显的电子传递反应,说明含季胺阳离子的离子液体不能对细胞色素C的电子传递反应产生良好的促进效果。
     细胞色素C在吡啶疏水性离子液体修饰的玻碳电极上的CV图上也呈现出一对良好的氧化还原特征峰,说明吡啶类离子液体也可促进细胞色素C的电子传递。
Most chemical reactions during the metabolism are catalyzed by active protein-enzymes,and the basal movement in human body is charge movement during which Cytochrome c (Cyt.c) palys an very important role. Redox of Cyt.c in human body is reversible but irreversible on the metal electrodes such as Hg、Pt、Au、Ag and its direct electron transfer can only be completed with the help of promoter or mediator.
     A gold electrode modified with 2-aminoethanethiol(2AT)self-assembled monolayer (SAM) has been fabricated. The characteristics of 2AT SAM have been investigated by cyclic votammetry(CV)、quartz crystal microbalance(QCM)、Raman spectroscopy、electrochemical impedance spectra(EIS). Results showed that 2AT SAM was an effective promoter for Cyt.c electron transfer.The 2AT assembles process and its possible promotion mechanism were discussed with the electrochemical quartz crystal microbalance (EQCM) and EIS measurements.
     Cyt.c was assembled onto the Au electrode by using layer upon layer technic to form Cyt.c/2AT/Au modified electrode,the Cyt.c/2AT/Au electrode also showed a pair of redox peaks apparently in PBS solution but was not so good when compared to 2AT/Au electrode in Cyt.c solution.At the scan rate of 20mV/s reversible singals of Cyt.c on the 2AT/Au electrode was observed.It’s redox peak potential was 48mV and -7mV respectively. So the formal potential is 20.5mV. When in PBS solution, a pair of redox peaks was also found on the Cyt.c/2AT/Au electrode, but its’s not as well as 2AT/Au electrode in Cyt.c solution.
     Room-temperature ionic liquids are compounds that only consist of ions and are liquids at or above room temperature.They have many advantages such as low melting point、lack of vapor pressure、broad electrochemical window、favorable solvent miscibility、thermal stability and high viscidity tolerance and density.It becomes a green solvent and is used widely in electrochemistry、organic synthesize、separate analyzing fields.Biologic molecules remain their activities in ionic liquids and it is a good medium for biologic molecules during their electrochemical behaviors.
     We synthesized five ionic liquids according to references and the productions were proved by 1H-NMR.
     Ionic liquids was dropped onto the GC electrode to form modified electrode.And the electrochemical behaviors of cytochrome c at the modified GC electrode were studied by CV,also EIS was used synchronously to detect the chemical reaction. According to the equivalent circuit experimental results was simulated by which we studied the electron transfer mechanism.
     The results showed that both of the imidazole ionic liquid were good promoters for the direct electron transfer(DET) of Cyt.c which means that it affects little to the DET of Cyt.c when changing the anion of the ionic liquids;but no obvious electrochemical singals was found on the quaternary ammonium ionic liquid modified electrode which gave the information that quaternary ammonium cation was not a good promoter for DET of Cyt.c.
     A pair of good electrochemical redox peaks were also found on the pyridine hexafluorophosphate ionic liquid modified GC electrode which told that pyridine cation was also a good DET promoter for Cyt.c.
引文
[1] M. J. Eddowes and H. A. O. Hill, Novel method for the investigation of electrochemistry of metaloproteins: cytochrome c, J.Chem.Commun.,1977,21:771~772.
    [2] Sagara T,Murakami H,Igaarashi S,et al.,Spectroelectrochemical study of the redox reaction mechanism of cytochrome c at a electrode in a neutral solution in the presence of 4,4′-bipyridyl as a surface modifier, Langmuir,1991,7:183~190.
    [3] Rodrigues C G, Farchione F, Wedd A G, et al.,Relationship of two electroactive forms of horse heart cytochrome c at gold and glassy carbon electrodes in water and methanol,Electroanal. Chem.,1987,218(1-2):251~264.
    [4] Hainer Wackerbarth,Peter Hildebrandt,Redox and conformational equilibria and dynamics of cytochrome c at high electric fields, Chem.Physchem., 2003,4:714 ~724.
    [5] Moore G R, Huang Z X, Eley C G et al. , Electron transfer in biology:the function of cytochrome C. Fraday discuss. Chem Soc,1982,74:311~329.
    [6] Sandra M C, Russel H S, Catarina R O. Introduction of cytochrome C mediated apoptosis by amyloid β25-35 requires functional mitochordra,Brain Reserch,2002,931(2):117~125.
    [7] Giuseppe P, Francesca M R, Marilva P, et al. , Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome C dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation possible role in the apoptosis, Febs letters, 2001,509(3):435~438.
    [8] Haymond S, Babcock G T, Swain GM, Direct electrochemistry of cytochrome c at nanocrystalline boron-doped diamond, J. Am. Chem. Soc.,2002,124:10634~10635.
    [9] Bard A J, Faulkner W R, Edrs, Electrochemical Methods: Fundamentals and Applications[M], New York: Wiley,1980.
    [10] 吴霞琴,市村彰男,葛谨等,Cyt.c 的薄层光谱电化学研究,高等学校化学学报,1991,12(11):1529~1531.
    [11] I. Taniguchi,K. Toyosawa, H. Yamaguchi et al., Voltammetric response of horse heart cytochrome c at a gold electrode in the presence of sulfur bridged dipyridines, J. Electroanal. Chem.,1982,140:187.
    [12] Willet. J. L, Bowden E. F, Determination of unimolecular electron transfer rate constants forstrongly adsorbed cytochrome c on the oxide electrodes, J. Electroana.l Chem.,1987,221:265~274.
    [13]H .X .Ju , S.Q .Liu, B. X. Ge, et al. ,Electrochemistry of Cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity, Electroanalysis,2002,14(2):141~147.
    [14]Willet. J. L, Bowden E. F. Determ nation of unimolecular electron transfer rate constants for strongly adsorbed cytochrome c on tin oxide electrodes, J. Electroanal Chem,1987,221:265~274.
    [15]K.R. Brown, A. P. Fox, M. J. Natan, et al. , Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes, J. Anal. Chem Soc ,1996,118(5):1154~1157.
    [16]汤国新,吴霞琴,几种促进剂存在下细胞色素 C 电子迁移过程的研究,电化学,1995,1(2):181~185.
    [17]张玉忠,赵红,大黄酸修饰电极对细胞色素C的催化还原,化学实验室,2003,22(4):18~20.
    [18]刘云春,崔士强,细胞色素C/L-半胱氨酸修饰电极的电化学行为研究,安徽师范大学学报,2006,29(3):255~257.
    [19]Mc Neil,C J,Smith K A,Bhlavite P, Babbister J V. Application of the electrochemistry of cytochrome C to the measurement of superoxide radical production.FreeRola.Res Commun,1989,7:89.
    [20]李红丽,吴霞琴,魏雅,等,细胞色素 C 在 SAM 修饰金电极上的电化学行为研究,上海师范大学学报,2006,35(3):52~55.
    [21]秦玉华,王胜天,关晓辉,等,磷灰石通道离子替换对细胞色素C直接电化学的影响,分析化学研究报告,2004,32(12):1613~1616.
    [22]曲晓刚,周成立,董绍俊,等,细胞色素C在吡啶,聚吡咯修饰金电极上的直接电化学,高等学校化学学报,1994,15(1):113~116.
    [23]秦玉华,周立恒,王胜天,许宏鼎,李景虹,细胞色素C 在纳米氧化铝模板修饰电极上的直接电化学,高等学校化学学报,2004,25(4):636~637.
    [24]印亚静,吕亚芬,蔡称心,细胞色素C在单壁碳纳米管表面的固定、直接电子转移及电催化,电化学,2006,12(3):298~303.
    [25]刘芳,胡艺,程欲晓,细胞色素C在复合纳米材料修饰电极上的直接电化学研究,化学传感器,2005,25(3):26~30.
    [26]Cao Y H, Li Y S,Preparation of self-assembled monolayer (SAM) modified silver substrates for surface enhanced raman scattering (SERS),Chem. Lett.,1998,27(6):483.
    [27]Muskal N,Turyan I, Shurky A, Mandler D, Chiral self-assembled monolayers,J.Chem.Am. Soc.1995,117(3),1147~1148.
    [28]Stratmann M,Chemically modified metal surfaces - a new class of composite materials,Adv. Mater.1990,2(4):191~195.
    [29]Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R,Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system, J Chem. Soc. Chem.Comm.,1994,7:801~802.
    [30]Alves C A, Smith E L, Porter M D,Atomic scale imaging of alkanethiolate monolayers at gold surfaces with atomic force microscopy, J Am. Chem. Soc.1992,114(4):1222~1227.
    [31]涂海洋,宋艳丽,徐星,含咪唑烷基硫醇自组装膜界面铜离子配位研究,华中师范大学学报, 2006,40(4):551~555.
    [32]Muskal N, Turyan I, Shurky A, Mandler D, Chiral Self-Assembled Monolayers,J.Chem.Am. Soc.,1995,117(3):1147~1148.
    [33]Stratmann M,Chemically modified metal surfaces - a new class of composite materials,Adv. Mater.,1990,2(4):191~195.
    [34]Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system, J Chem.Soc.Chem.Comm.,1994,7:801~802.
    [35]Dubois L H, Nuzzo R G. Synthesis, Structure, and Properties of Model Organic Surfaces, Aal . Phys.Chem.,1992,43:437~463.
    [36]M c Carthy T, Polymer Monolayers Prepared by the Spontaneous Adsorption of Sulfur-Functionalized Plystyrene on Gold Surfaces, J. Macromolecules,1986,21:1204~1208.
    [37]Allen P M , Hill H A O , Walton N J. J, Direct electrochemistry of redox proteins at pyrolytic graphite electrodes,Electroanal.Chem.,1984,178(1):69~86.
    [38]Millan K M and M ikkelsen S R,Sequence-selective biosensor for DNA based on electroactive hybridization indicators, Anal. Chem. , 1993, 65: 2317~2323.
    [39]李金花,胡劲波,李启隆,自组装膜上细胞色素c的电化学石英晶体微天平实时表征和定量检测,高等学校化学学报,2005,26(6):1035~1038.
    [40]孙一新,王升富,细胞色素c在L-半胱氨酸自组装膜电极上的电化学行为,应用化学,2005, 12(3):295~299.
    [41]王荣,吴霞琴,章宗穰,等,普鲁士蓝(PB)修饰铂盘电极的葡萄糖传感器的研究,化学研究与应用,2001,13(4):380.
    [42]Wu X Q,Meng X Y,Wang Z S,and Zhang Z R, Study on the ET process of SOD at cysteine Modified Au electrode,Chemistry Letters.1999,12:1,271.
    [43]Baker M V, Jennings G K, Laibinis P E, Underpotentially Deposited Copper Promotes Self-Assembly of Alkanephosphonate Monolayers on Gold Substrates, Langmuir,2000,16(7): 3288~3293.
    [44]Porter M D, Bright T B, Allara D L, Chidsey C E D,Spontaneously organized molecular assemblies Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry,J. Am. Chem.Soc.,1987,109(12):3559~3568.
    [45]Castner D G, Hinds K,Grainger D W,X-ray Photoelectron spectroscopy sulfur -p study of organic thiol and disulfide binding interactions with gold surfaces,Langmuir,1996,12(21):5083~5086.
    [46]Bandyopadyay K, Vijamohanan K, Formation of a self-assembled monolayer of diphenyl diselenide on polycrystalline gold, Langmuir,1998,14(3):625-629.
    [47]Nuzzo R G, Dubois L H, Allara D L,Fundamental studies of microscopic wetting on organic surfaces,Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers , J. Am. Chem. Soc.,1990,112(2):558~569.
    [48]Bandyopadhyay K, Vijayamohanan K, Venkataramanan M, Pradeep T. Self-Assembled Monolayers of Small Aromatic Disulfide and Diselenide Molecules on Polycrystalline Gold Films: A Comparative Study of the Geometrical Constraint Using Temperature-Dependent Surface-Enhanced Raman Spectroscopy, X-ray Photoelectron Spectroscopy, and Electrochemistry, Langmuir,1999,15(16):5314~5322.
    [49]Poirier G E,Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy, Chem. Rev.,1997,97(4):1117~1128.
    [50]Revell D J, Knight J R, Blyth D J, Haines A H, Russell D A, Self-assembled carbohydrate monolayers: formation and surface selective molecular recognition, Langmuir,1998,14(16): 4517~4524.
    [51]Mathauser K, Frank C W,Naphthalene chromophore tethered in the constrained environment of a self-assembled monolayer,Langmuir,1993,9(11):3002~3008.
    [52]Giancarlo L G, Flynn G W. Scanning Tunneling and Atomic Force Microscopy Probes ofSelf-assembled, Physisorbed Monolayers Peeking, at the Peaks, Annu. Rev. Phys.Chem.,1998,49: 297~336.
    [53]French M, Creager S E,Enhanced barrier properties of alkanethiol-coated gold electrodes by 1-Octanol in solution, Langmuir,1998,14(8):2129~2133.
    [54]白春礼,扫描隧道显微技术及其应用[M],上海科学技术出版社,1992.
    [55]董绍俊,车广理,谢远武,化学修饰电极[M],科学出版社,2003.
    [56]Ki-Sub Kim, Bae-Kun Shin and Huen Lee,Physical and electrochemical properties of 1-Butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate. Korean J. Chem. Eng.,2004,21(5):1010~1014.
    [57]Thomas Welton,Room-temperature ionic liquids,Solvents for Synthesis and Catalysis. Chem. Rev., 1999,99:2071-2083.
    [58]Joan Fuller, Richard T. Carlin, and Robert A. Osteryoung,The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties, J. Electrochem. Soc.,1997,144(11):3881~3885.
    [59]夏咏梅,吴红平,方云,等,离子液体的制备及其在酶催化反应中的应用,化学进展,2006, 18(12):1660~1665.
    [60]Fred van Rantwijk, Rute Madeira Lau,Biocatalytic transformations in ionic liquids,Trends in Biotechnology,2003,21(3):131~138.
    [61]顾彦龙,彭家建,邓友全等,室温离子液体及其在催化和有机合成中的应用,化学进展,2003,15(3):222~236.
    [62]Welton,T,Room-temperature ionic liquids.Solvents for synthesis and catalysis. Chem.Rew.,1999, 99:2071~2083.
    [63]Jonathan G. Huddleston, Heather D. Willauer, Richard P et al., Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction, 1998,Chem.Commun.,1765~1766.
    [64]Sheldon, R,Catalytic reactions in ionic liquids,Chem.Commun.,2001,2399~2407.
    [65]C C Wang, D H Chen, T C Huang,Synthesis of palladium nanoparticles in water-in-oil microemulsions,Colloids and Surfaces A:Physcochemical and Engineering Aspects, 2001,189:145~154.
    [66]田中华,华贲,王键吉,等,室温离子液体物理化学性质研究进展,化学通报,2004 ,67:1~10.
    [67]赵大成,徐海涛,徐鹏,等,室温离子液体中的聚合反应,化学进展,2005,17(4):700~705.
    [68]叶天旭,刘金河,杨增光,离子液体的合成与应用研究进展,石油与天然气化工,2002,31 (5) :235~238.
    [69]石家华,孙逊,杨春和,等,离子液体研究进展,化学通报,2002,4:243~246.
    [70]沈宗旋,陈五红,张雅文,离子液体中的不对称合成研究进展,化学研究,2004,15(1):60~63.
    [71]Anderson J L ,Ding Jie ,Welton T,et al. ,Characterizing ionic liquids on the basis of multiple solvation interactions,J .Am. Chem.Soc.,2002,124(47):14247~14254.
    [72]Danette L,FrancisC,Mayvilieg,Synthesis of methyl orange using ionic liquids,Tetrahedron Letters,2003,4(4):9223~9224.
    [73]张振琳,王荣民,王云普,等,高分子离子液体的研究进展,高分子通报,2004,(2):63~69.
    [74]Xianbo Lu, Jianqiang Hu,Xin Yao,Zhouping Wang, and Jinghong Li,Composite System Based on Chitosan and Room-Temperature Ionic Liquid: Direct Electrochemistry and Electrocatalysis of Hemoglobin, Biomacromolecules,2006,7(3):975~980.
    [75]Jinghong Li, Yanfei Shen,Room-temperature ionic liquids as media to enhance the electrochemical stability of self-assembled monolayers of alkanethiols on gold electrodes,Chem. Commun.,2005(3):360~362.
    [76]Yang Liu, Jinghong Li,Highly active horseradish peroxidase immobilized in 1-butyl-3-methy limidazolium tetrafluoroborate room-temperature ionic liquid based sol–gel host materials,Chem.Commun.,2005,(13):1778~1780.
    [77]David L.Compton,Loss of cytochrome c Fe(III)/Fe(II) redox couple in ionic liquids,Journal of Electroanalytical Chemistry,2003,553:187~190.
    [78] Fred Van Rantwijk,Rute Madeira Lau and Roger A.Sheldon, biocatalytic transformations in ionic liquids,Trends in biotechnology,2003,21(3):131~138.
    [79]Sheng Fu Wang, Ting Chen, Dai-Wen Pang,Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids,Langmuir,2005, 21:9260~9266.
    [80]Cory M, Dicarlo, David L. Compton,Bioelectrocatalysis in ionic liquids. Examing specific cation and anion effects on electrode-immobilized cytochrome c,Bioelectrochemistry,2006,68: 134~143.
    [81]Jonathan G. Huddleston, Ann E. Visser, W. Matthew Reichert, Heather D, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating theimidazolium cation,Green Chemistry,2001,3,156~164.
    [82]Sauerbry G, Z,Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung,Phys.1959,155:206~222.
    [83]邓芹英,刘岚,邓慧敏,波谱分析教程[M].,北京:科学出版社.2003,76~79.
    [84]Li Y S, Cheng J G,Coons L B,A silver solution for surface-enhanced Raman scattering , Spectrohimica Acta. (PartA),1999,5:1197.
    [85]曹晓卫,王洪华,半胱胺单分子膜结构的表面增强拉曼散射研究,光散射学报,2006,18(1):36.
    [86]Yoshimoto S, Sawaguchib T, Mizutani F, Taniguchia I, STM and votammetric studies on the structure of a 4-pyridinethiolate monolayer chemisorbed on Au(100)-(1*1) surface, Electrochemistry Communications,2000,2:39~43.
    [87]董绍俊,车广礼,谢远武,化学修饰电极(修订版)[M],北京科学出版社,2003,456~570.
    [88]曹楚南,张鉴清著,电化学交流阻抗谱导论[M],科学出版社,2002 年版.
    [89]崔晓丽,蒋殿录,刁鹏,等,12硫醇修饰金电极K3Fe(CN)6/K4Fe(CN)6体系的电化学参数,河北师范大学学报(自然科学版) ,1999,23(4):504.
    [90]章宗穰,徐晓贤,Cosofret V V,药物传感器的交流阻抗谱研究,化学传感器,1991,11(1):45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700