锂离子电池锡基负极材料的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为锂离子电池新型负极材料,锡基负极材料近年来成为研究的热点之一。与现有的锂离子电池负极碳材料相比,锡基材料具有较高的比容量。然而锡基材料较差的循环性能,成为制约其实际应用的关键因素。本文针对这一关键问题开展了较系统的研究,取得了以下的主要结果:
     (1)运用红外灯照射的方法制备了粒径为5nm的SnO_2粒子,样品分别经400℃、600℃、800℃热处理后,其粒径分别为10.8nm、24.2nm、39.1nm。XRD实验表明,所制备的纳米SnO_2粒子属于金红石型结构。不同粒径的纳米SnO_2粒子的红外光谱实验结果表明:在红外灯照射下先有有机锡化合物生成,随热处理温度的升高,有机基团被脱去,从而形成不同粒径的纳米SnO_2粒子。SnO_2纳米粒子电极的充放电实验表明:粒径为10.8nm的SnO_2粒子电极的充放电性能最好。因此,SnO_2纳米粒子的储锂性能,其粒径的大小是有一临界值。
     (2)在含有十二烷基硫酸钠(SDS)和SnCl_2·2H_2O的乙二醇溶液中加入纯化的碳纳米管,加热于160℃下,制备SnO_2/CNTs复合材料,并以XRD、HRTEM、SEM等方法表征该材料的物相结构和表面形貌。结果表明:SnO_2纳米粒子均匀地覆盖在碳纳米管上,粒径小于10nm。以该纳米结构SnO_2/CNTs复合材料作为电极材料与锂片组装成扣式电池,恒流充放电测试显示该材料作为锂离子电池负极材料具有较高的比容量和良好的循环性能。
     (3)运用电沉积技术在铜片集流体上沉积了一层锡和一层镍,分别得到Cu/Sn/Ni和Cu/Ni/Sn两种结构的镀层。XRD结果表明:热处理使镀层与基底之间相互扩散形成了Cu_6Sn_5和Ni_3Sn_4合金相。四种电极的充放电实验表明:热处理可以提高电极的循环性能。对循环后的热处理电极的表面形貌观察表明:在锡镀层表面修饰0.5μm金属镍,可以有效地抑制充放电过程中的体积膨胀。
     (4)在铜片和泡沫铜上应用电沉积技术制备了锡-镍合金材料,并对材料进行热处理。样品的XRD实验表明,电沉积所得到的Sn-Ni合金镀层属于Ni_3Sn_4结构的合金。热处理使样品平面样品表面变得粗糙,而对三维多孔电极的表面形貌没有太大的影响。电极的充放电实验结果表明:三维多孔Sn-Ni合金电极的循环性能比平面结构电极的好;对电极进行热处理也可以提高电极的循环性能。
As a new anode material for lithium ion battery, Tin-based material has attracted much attention. Compared to graphite, which is used mainly in present commercialized production of Li-ion batteries, tin-based material exhibited higher theoretical capacity. But, its poor cyclability restricted it application for commercial anode material of lithium ion battery. In order to improve the performance of Sn-based active materials, the nanosized SnO_2 particles、sandwich structural Cu/Sn/Ni and Cu/Ni/Sn eledtrodes, and three-dimensional reticular Sn-Ni alloy electrode were prepared by sol-gel and electrodepositon. The phase structure and surface morphology of the said materials were determined by XRD、TEM and SEM. The electrochemical performance of the electrodes was measured by constant current charge-discharge test.
     (1) SnO_2 nanoparticles with four different sizes of ~ 5, 10.8, 24.2, and 39.1 nm were synthesized using infrared irradiation and thermal treatment. X-ray diffraction (XRD) results indicated that the particles had tetragonal rutile structure (cassiterite SnO_2). TEM and FT-IR spectra revealed that at 673K, the disperse SnO_2 nanospheres began to aggregate to form bigger size clusters; the oblate spheroids must appear. Electrochemical tests showed that particle size had a significant influence on the lithium ion insertion/desertion properties, and the 10.8 nm-sized SnO_2 nanoparticles electrodes had a superior capacity and cycling stability as compared to the ~ 5, 24.2, and 39.1 nm-sized ones.
     (2) The nano-structural SnO_2/carbon nanotubes composites were prepared in a solution of SnCl_2 ,ethylene glycol (EG),purified MWCNTs and sodium dodecyl sulfate (SDS) at 160℃. The phase structure and surface morphology of the composites were measured by XRD、HRTEM and SEM. The results indicate that there are high dispersions and high loadings of SnO_2 nanoparticles on MWCNTs. Electrochemical lithium storage performance was studied preliminarily on the obtained samples. MWCNTs modified with SnO_2 nanoparicles were shown to have a higher electrochemical reversible capacity than that of MWCNTs during the charge and discharge process. MWCNTs can accommodate the larger structure strain of the active materials produced during Li-ion insertion and extraction, which may improve the cycle performance of the electrode.
     (3) The sandwich structural Cu/Sn/Ni and Cu/Ni/Sn deposits, which contained one layers Sn deposits and one-layer Ni deposits, were prepared by electroplating on Cu foil. The results of XRD indicated that after annealing Cu_6Sn_5 and Ni_3Sn_4 were formed on copper current collector with the diffusion between plating material and copper substrate. Charge-discharge test revealed that heat-treatment of the electrodes could improve the cycle performance of electrode. SEM observations showed that sandwich structure of electrode coated with 0.5μm nickel could restrain the volume expansion of active materials.
     (4) The planar and three-dimensional reticular Sn-Ni alloy deposits were prepared by electrodepositing on Cu foil and foamed Cu, respectively. The X-ray diffraction patterns of the thermally treated Sn-Ni alloy deposit showed that the Sn-Ni alloy had a Ni3Sn4 phase. The surface of planar electrode became rough after annealing, but the surface of three-dimensional reticular electrode didn’t change. Charge-discharge test indicated heat-treatment of the electrodes could improve the cycle performance of electrode, and the cycle performance of three-dimensional reticular Sn-Ni alloy was better than that of the planar electrode. SEM result of the Sn-Ni alloy electrode showed that the three-dimensioned reticular structure in Sn-Ni alloy electrode could relax the volume expansion during cycling; three-dimensional reticular structure of Sn-Ni alloy electrodes was also beneficial to diffusion of lithium ion into/out of porous materials.
引文
[1] Whittingham M S.Electrical energy storage and intercalation chemistry [J]. Science.1976, 192, 1126-1127
    [2] Zaghib K., Armand M., and Gauthier M. Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries [J]. J. Electrochem. Soc., 1998, 145(9):3135-3140
    [3] Fauteux D, Koksbang. P. [J]. J.Appl.Electrochem.1993, 23:1
    [4] Armand M. Materials for Advanced Batteries [M]. Plenum Press: New York, 1980.145
    [5] Whittingham M S. lectrical energy storage and intercalation chemistry [J] Science.1976, 192, 1126-1127
    [6] Whittingham M S. Chemistry of intercalation compounds: metal guests in chalcogenide hosts [J]. Prog.Solid State Chem, 1978, 12, 1
    [7] Mizushima.K, Jones P C, Wiseman P J, and Goodenough J B.LixCoO2 (0    [8] Nagaura T. Proceedings of the 5th international swminar on lithium battery technology and applications. Deerfield Beach.Florida USA, 1990
    [9] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104: 4303
    [10] Whittingham M S.Lithium batteries and cathode materials [J].Chemical Reviews, 2004, 104:4271
    [11] Chen G Y, Jiao X. Synthesis and Electrochemical Properties of Nanostructured LiCoO2 Fibers as Cathode Materials for Lithium-Ion Batteries [J]. J.Phys.Chem.B, 2005, 109:17901
    [12] Sheu S.P., Shih I.C., Yao C.Y., Chen J.M. and Hurng W.M.Studies of LiNiO2 in lithium-ion batteries [J]. Journal of Power Sources, 1997, 68(2): 558-560
    [13] Han K S, Tsurimoto S, Oshimura M Y. Fabrication temperature and applied current density effects on the direct fabrication of lithium nickel oxide thin-film electrodes in LiOH solution by the electrochemical-hydrothermal method [J]. Solid State Ionic, 1999, 121:229
    [14] Aral H, Okada S, Sakurai Y. Reversibility of LiNiO2 cathode [J]. Solid State Ionic, 1997, 95: 275
    [15] Julien C., Nazri G., Rougier A. [J]. Electrochemical Performances of LayeredLiM1-yMy'O2 (M=Ni, Co, M'=Mg, Al, B) Oxides in Lithium Batteries [J]. Solid State Ionics. 2000, 135:121-130
    [16] Huang H., Rao G.V.S., Chowdari B.V.R... LiA1xCo1-xO2 as 4 V Cathodes for Lithium Ion Bateries [J]. J. Power Sources. 1999, 81-82: 690--695
    [17] 邓斌,阎杰,张朝帅.LiCoO2掺杂稀土元素研究[J].电池2003, 33(2): 74-76
    [18] Ohzuku T. Overcharge-Protected Oxide Cathodes. In: Handbook of Battery Materials [M]. Besenhard J. O. (Ed.). Wiley-VCH, 1999: 34-54
    [19] Kim, K. Amine. The Effect of Tetravalent Titanium Substitution in LiNi 1-xTixO2 (0.025≤x≤0.2) System[J]. Electrochemistry Communication, 2001, 3:52-55
    [20] 朱先军,陈宏浩,詹晖,周运鸿.微粒溶胶-凝胶法合成LiNio.75Coo.25O2及表征[J].电池.2004, 34(4): 252-254
    [21] Kubo K., Arai S., Yamada S. et al. Synthesis and Charge-Discharge Properties of Li1+xNi1+x-yCoyO2-zFz [J]. J. Power Sources. 1999, 81-82:599-603
    [22] Yu A., Subba Rao G.V., Chowdari B.V.R... Synthesis and Properties of LiGaxMgyNi1-x-yO2 as Cathode Material for Lithium Ion Batteries [J]. Solid State Ionics. 2000, 135: 131-135
    [23] Madenov M., Stoyanova R., Zhecheva E. et al. Effect of Mg Doping and MgO-Surface Modification on the Cycling Stability of LiCoO2 Electrode[J]. Electrochemistry Communication. 2001, 3: 410-416
    [24] Wang Z.X., Liu L.J., Chen L.Q. et al. Structure and Electrochemical Characterizations of Surface-Modified LiCoO2 Cathode Materials for Li-Ion Batteries [J]. Solid State Ionics. 2002, 148: 335342
    [25] Madenov M., Stoyanova, R., Zhecheva E., et al. Effect of Mg Doping and MgO-Surface Modification on the Cycling Stability of LiCoO2 Electrode [J]. Electrochemistry Communication. 2001, 3: 410-416
    [26] Cho T.J., Kim, Y.J. High-Performance ZrO2-Coated LiNi02Cathode Material [J]. Electrochemical and Solid-State Letters. 2001, 4:A159-A161
    [27] Lu Y L, Wei M, Wang Z Q. [J] Electrochimica Acta, 2004, 49:2361
    [28] D. Song, H. Ikuta, T. Uchida. The Spinel Phases LiAlyMn2-yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li (A1, M) 1/6Mn11/6O4 (M=Cr, Co) as the Cathode for Rechargeable Lithium Bateries [J].Solid State Ionics. 1999, 117: 151-156
    [29] Okada M., Lee Y.S., Yoshio M. Cycle Characterizations of LiMxMn2-xO4 (M=Co, Ni) Materials for Lithium Secondary Battery at Wide Voltage Region [J]. J. Power Sources. 2000, 90: 196--200
    [30] Wu S.H., Su. H.J. Electrochemical Characteristics of Partially Cobalt-Substituted LiMn2-yCoyO4 Spinels Synthesized by Pechini Process Materials [J] Chemistry and Physics. 2002, 78: 189-195
    [31] Gummow, R.J. Liles D.C., Thackeray M.M. the Effect of Multivalent Cation Dopants on Lithium Manganese Spinel Cathodes [J]. J. Power Sources, 1998, 70:247-252
    [32] Bellitto C., Dimarco M.G., Branford W.R. et al. Cation Distribution in Ga-Doped Li1.02Mn2O4 [J]. Solid State Ionics. 2001, 140: 77-81
    [33] Ferg E, Gummow J., Dock A.D. et al. Spinel Anodes for Lithium-Ion Batteries [J]. J .Electrochem. Soc. 1994, 141: L147-L149
    [34] Veluchamy A., Ikuta, H., Wakihara M.. Boron-Substituted Manganese Spinel Oxide Cathode for Lithium Ion Batery [J]. Solid State Ionics. 2001, 143:161-171
    [35] Park S.C., Han Y.S., Kang Y.S. et al. Electrochemical Properties of LiCoO2-Coated LiMn2O4 Prepared by Solution-Based Chemical Process [J]. J Electrochem. Soc. 2001, 148: A680-A686
    [36] Kang Kisuk, Meng Ying Shirley, Breger Julien, Grey Clare P, Ceder Gerbrand. Electrodes with High Power and High Capacity for Rechargeable Lithium Ion Batteries [J].Science, 2006, 311: 977-980
    [37] Sun Yang-Kook, Myung Seung-Taek, Kim Myung-Hoon, Prakash Jai, and Amine Khalil. Synthesis and Characterization of Li [(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core Shell Structure as the Postive Electrode Material for Lithium Batteries [J]. J.Am.Chem.Soc. 2005, 127:13411-13418
    [38] Miaomiao M, Chernova N A., TobyBrian H., ZavalijPeter Y.,Whittingham M.S. Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2[J]. J.Power Sources, 2006,
    [39] Masaya Takahashi, Shinichi Tobishima, Koji Takei and Yoji Sakurai. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries [J]. Journal of Power Sources, 2001, 97-98:508-511
    [40] Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries [J].J.Electrochem.Soc. 1997144:1188–1194
    [41] Chung, S.Y., Bloking, J.T., Chiang, Y.M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials 2002.1:123–128
    [42] Morgan, D., Vander Z, Ceder A., Li ion conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivinex materials [J]. Electrochem.Solid State Lett. 2004, 7: A30–A32
    [43] Stanley M. Whittingham, Song Yanning, Lutta Samuel, Peter Y. Zavalij and Chernova N. A. Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries [J]. J.Mater.Chem. 2005, 15:3362–3379
    [44] Walter A., Schalkwijk Van and Scrosati Bruno. Advances in Lithium ion batteries [M].New York, Kluwer Academic/Plenum Publishers, 2002:p155-266
    [45] 郑洪河 等编著,锂离子电池电解质[M].北京:化学化工出版社,2007
    [46] Walter A., Van Schalkwijk and Scrosati Bruno .Advances in Lithium ion batteries[M].New York ,Kluwer Academic/Plenum Publishers,2002,p79-102
    [47] 吴宇平,戴晓兵,马军旗等.锂离子电池—应用与实践[M]. 北京:化学化工出版社,2004
    [48] Braeta J., Ah C. C. , Yazami R., and Fultz B Highly Reversible Lithium Storage in Nanostructured Silicon [J]. Electrochem. Solid-State Lett.2003, 6:A194
    [49] Holzapfel M., Buqa H., Krumeich F., Novák P., Petrat F.-M., and Veit C. Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries [J].Electrochem. Solid-State Lett. 2005, 8:A516.
    [50] Wilson A M, Dahn J R. Lithium Insertion in Carbons Containing Nanodispersed Silicon [J] J. Electrochem. Soc., 1995, 142: 326~332.
    [51] Kim Il-seok, Blomgren G. E. and Kumta P. N. Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling [J] J. Power Scources , 2004 ,130 : 275~280.
    [52] Zhang X W, Patil P K, Wang C. Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures [J].J. Power Sources, 2004, 125:206~213.
    [53] Wang G X, Ahn J H, Yao J. Nanostructured Si-C composite anodes for lithium-ion batteries[J] Electrochem. Commun. , 2004, 6 : 689~692.
    [54] Xiang H Q , Fang S B, Jiang Y Y. Carbons prepared from boron-containing polymers as hostmaterials for lithium insertion[J]. Solid State Ionics , 2002,148 : 35~43.
    [55] Schonfelder H H, Kiton K, Nemotoet H Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons[J]. J. Power Sources, 1997, 68: 258~262.
    [56] Winter M., Besenhard J.O. Electrochemical Lithiation of Tin and Tin-Based Intermetallies and Composites [J]. Electrochimica Acta. 1999, 45:31-50
    [57] Tirado Jose L. Inorganic materials for the negative electrode of lithium ion batteries: stat-of-the-art and future prospects [J].Materials Science and Engineering R, 2003, 40: 103-136
    [58] 苏树发, 曹高劭,赵新兵.不同方法制备的锑负极材料性能研究[J].科学通报,2004, 49(15):1565-1568
    [59] Fleischauer M. D., Obrovac M. N., McGraw J. D., Dunlap R. A., J. M. Topple, and J. R. Dahn .Al-M (M = Cr, Fe, Mn, Ni) Thin-Film Negative Electrode Materials [J]. Journal of the Electrochemical Society, 2006, 153 (3): A484-A491
    [60] Mao Ou and Dahn J. R.Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries III. Sn2Fe:SnFe3C Active/Inactive Composites [J]. Journal of the Electrochemical Society, 1999,146 (2):423-427
    [61] Larcher D., Beaulieu L. Y., D MacNeil, D. and Dahn J. R.In-situ X-ray study of the electrochemical reaction of Li with η-Cu6Sn5 [J]. J Electrochem Soc, 2000, 147:1658-1662.
    [62] Kepler K D, Vaughey J T, Thackeray M M, Copper-tin anodes for rechargeable lithium batteries: an example of t he matrix effect in an intermetallic system [J]. J Power Sources, 1999, 81-82:383-387.
    [63] Larcher D, Beaul Y, Macneil D D, et al. In-situ X-ray study of the electrochemical reaction of Li with η-Cu6Sn5 [J]. J Electrochem Soc, 2000, 147:1658-1662.
    [64] Thackeray M M, Vaughey J T, Kahaian A J, et al. Intermetallic insertion electrodes derived from NiAs- NiIn- , and Li2CuSn-type structures for lithium ion batteries [J]. Electrochem Commun , 1999 ,1 :111-115.
    [65] Fenstine W, Campos S, Foster D, et al. Nano-scale Cu6Sn5 anodes [J]. J Power Sources, 2002, 109: 230-233.
    [66] Xia Y Y, Sakaia T, Fujieda T, Wada M, and Yoshinaga.H. Flake Cu-Sn Alloys as negative electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 2001, 148:A471-A481
    [67] Xia Y, Sakai T, Fujieda T, et al. A 4 V Lithium-ion battery based on a 5 V LiNixMn2 -xO4 Cathode and a flake Cu-Sn microcomposite anode [J]. Electrochem Solid State Lett, 2001, 4 (2):A9-A11.
    [68] Beattie S. D. and Dahn J. R. Single-Bath Electrodeposition of a Combinatorial Library of Binary Sn1-xCux Alloys [J]. Journal of the Electrochemical Society, 2003 150(7): C457-C460
    [69] Noriyuki Tamura, Ryuji Ohshita, Masahisa Fujimoto, Shin Fujitani, Maruo Kamino, Ikuo Yonezu. Study on the anode behavior of Sn and Sn-Cu alloy thin film electrodes [J]. J Power Sources, 2002, 107:48-55
    [70] Pu WH, He XM, Ren JG, Wan, CR, Jiang CY. Electrodeposition of Sn–Cu alloy anodes for lithium batteries [J]. Electrochimica Acta,2005,50: 4140–4145
    [71] Tamura N., Fujimoto M., Kamino M., and Fujitani S.. Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries [J]. Electrochim. Acta, 2004, 49, 1949.
    [72] Tamura N., Kato Y., Mikami A., Kamino M., Matsuta S., and Fujitani S. [J] .J. Electrochem. Soc., 2006.153:A1626
    [73] Tamura N., Kato Y., Mikami A., Kamino M., S. Matsuta, and S. Fujitani Study on Sn-Co alloy Electrodes for Lithium Secondary Batteries II. Nanocomposite System. [J]. Journal of The Electrochemical Society, 2006,153 (12):A2227-A2231
    [74] Todd A. D. W., Mar R. E., and Dahn J. R.Combinatorial Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-Ion Batteries [J] Journal of the Electrochemical Society, 2006, 153(10): A1998-A2005
    [75] Mukaibo H., Sumi T., Yokoshima T., Momma T., and Osaka T. [J]. Electrochem Solid-State Lett. 2003, 6:A218
    [76] Mukaibo H., Momma T., Osaka T. Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling [J]. Journal of Power Sources 2005, 146:457–463
    [77] Lee H.Y., Jang S.W., Lee S.M., Lee S.J., Baik H.K. Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying[J]. J. Power Sources, 2002, 112:8.
    [78] Kim Y L., Lee H Y., Jang S W., Lee S J., Baik H K., Yoon Y S., Park Y S., andLee S M. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries [J].Solid State Ionics, 2003.160:235
    [79] Dong Q.F., Wu C.Z., Jin M.G., Huang Z.C., Zheng M.S., You J.K., Lin Z.G. Preparation and performance of nickel-tin alloys used as anodes for lithium-ion battery [J]. Solid State Ionics 2004, 167:49.
    [80] Cheng X Q , Shi P F .Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery [J].Journal of Alloys and Compounds,2005,391:241–244
    [81] Mao O., Dunlap R. A., and Dahn J. R. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries I.The Sn2Fe-C System [J]. J. Electrochem. Soc., 1999,146, 405
    [82] Mao O. and Dahn J. R. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries II.The Sn-Fe System [J]. J. Electrochem. Soc., 1999. 146:414
    [83] Mao O. and Dahn J. R. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries III. Sn2Fe:SnFe3C Active/Inactive Composites [J]. J. Electrochem. Soc., 1999, 146:423
    [84] Mao O., Turner B. L., D. McClure W., Courtney I. A., Krause L. J., and Dahn J. R. Active/Inactive Nanocomposites as Anodes for Li-Ion Batteries[J]. Electrochem. Solid-State Lett. 1999, 2:3
    [85] Beaulieu L. Y. and Dahn J. R. The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying [J] J. Electrochem. Soc., 2000, 147: 3237
    [86] Yoshinaga H., Dan S., Kawabata A., and Sakai T., J. Jpn. Inst. Met., 66:861
    [87] Yoshinaga H., Asai J., Wada M., Yamamoto K., and Sakai T. [J]. Electrochemistry (Tokyo, Jpn.), 2005, 73: 897
    [88] Wang L B, Kitamura S, Obatak K, et al. Multilayered Sn-Zn-Cu alloy thin film as negative materials for advanced lithium ion batteries [J ] . J Power Sources, 2005, 14 (2): 286-292
    [89] Yang J., Wachtler M., Winter M., Besenhard J.O. Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries [J]. Electrochem.Solid State Lett, 1999 2:161.
    [90] Yang.Y, Takeda, Imanishi N., Yamamoto O. J. Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries [J]. Electrochem. Soc., 1999, 146: 4009.
    [91] Rom, Wachtler M., Papst I., Schmied M., Besenhard J.O., Hofer F., Winter M. Electronmicroscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries[J]. Solid State Ionics 2001, 143: 329.
    [92] Wachtler, Winter M., Besenhard J.O. Anodic materials for rechargeable Li-batteries [J] J. Power Sources, 2002, 105:151.
    [93] Ren JG He XM, Pu WH, Jiang CY, Wan CR.Chemical reduction of nano-scale Cu2Sb powders as anode materials for Li-ion batteries [J]. ELECTROCHIMICA ACTA 2006, 52 (4): 1538-1541
    [94] Song SW, Reade RP, Cairns EJ, Vaughey JT, Thackeray MM, Striebel KA Cu2Sb thin-film electrodes prepared by pulsed laser deposition for lithium batteries JOURNAL OF THE ELECTROCHEMICAL SOCIETY,2004 ,151 (7): A1012-A1019
    [95] Johnson S., Vaughey J.T., Thackeray M.M., Sarakonsri T., Hackney S.A., Fransson L., Edstrom K., Thomas J.O. Electrochemistry and in-situ X-ray diffraction of InSb in lithium batteries[J] Electrochem.Comm. 2000, 2:595.
    [96] Fransson M.L., Vaughey J.T., Benedek R., Edstrom K., Thomas J.O., Thackeray M.M. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study [J] Electrochem. Comm. 2001, 3:317
    [97] Besenhard J O, Yang J , Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J]. J Power Sources, 1997, 68 (1):87 - 901
    [98] Pena J.S, Brousse T., Schleich D.M. Search for suitable matrix for the use of tin-based anodes in lithium ion batteries [J]. Solid State Ionics 2000, 135:87-93
    [99] Noh Mijung, Kwon Yoojung, Lee Hyojin, Cho, Jaephil, Kim Yoojin, and Kim Min Gyu. Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery [J]. Chem. Mater. 2005, 17: 1926-1929
    [100] http://www.sony.net/SonyInfo/News/Press/200502/05-006E/index.html
    [101] Mao Ou, Dunlap R. A. and Dahn J. R. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries I.The Sn-Fe-C System [J]. Journal of The Electrochemical Society, 1999,146 (2):405-413
    [102] Mao Ou and Dahn J.R. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries II.The Sn-Fe System [J]. Journal of the Electrochemical Society, 1999,146 (2): 414-422
    [103] Mao Ou, Dahn J. R. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials for Li-Ion Batteries III. Sn2Fe:SnFe3C Active/Inactive Composites [J]. Journal of the Electrochemical Society, 1999,146 (2): 423-427
    [104] Beaulieu L.Y., Dahn J. R. The Reaction of Lithium with Sn-Mn-C Intermetallics Prepared by Mechanical Alloying [J]. Journal of the Electrochemical Society, 2000, 147 (9):3237-3241
    [105] Dahn J. R., Mar R. E., and Abouzeid A. Combinatorial Study of Sn1?xCox(0 < x <0.6)and [Sn0.55Co0.45]1?yCy (0 < y <0.5) Alloy Negative Electrode Materials for Li-Ion Batteries [J]. Journal of the Electrochemical Society, 2006, 153:A361-A365
    [106] WangY and Lee J Y .One-step Confined Growth of Bimetallic Tin-Antimony Nanorodes in Carbon Nanotubes Grown In Situ for Reverible Li+ ion Storage. [J]. Angew Chem.Int.Ed. 2006, 45:7039-7042
    [107] Hatchard D., Obrovac M. N.and Dahn J. R. A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with Li [J]. Journal of the Electrochemical Society, 2006, 153(2): A282-A287
    [108] Idota Y, Kubota T. Tin-based amorphous oxide: A high capacity Lithium-ion-storage material [J]. Science, 1997, 276:1395 - 1397
    [109] Courtney Ian A. and Dahn J. R. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites [J]. J Electrochem. Soc., 1997 144 (6): 2045-2052
    [110] Courtney Ian A. and Dahn J. R. Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2BPO6 Glass [J]. J Electrochem. Soc., 1997 144(9):2943-2948
    [111] Li N C, Martin C R. A high-rate, high capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis [J] .J Electrochem Soc, 2001, 148 (2):A164 - A1701
    [112] Aishui Yu, Roger Frech. .Mesoporous tin oxides as lithium intercalation anode materials [J] .Journal of power sources, 104:97-100
    [113] Mohamedi M, Lee S J, Uchida I, et al. 1 Amorphous tin oxide films: Preparation and characterization as an anode active material for lithium ion batteries [J]. Electrochimica Acta, 2001, 46 (8):1161 - 1168
    [114] Nam S C , Yoon Y S , Yun K S , et al .Reduction of irreversibility in the first charge of tinoxide thin film negative electrodes [ J ] .J Electrochem Soc , 2001 ,148 (3) :A220 - A223
    [115] Li Y N , Zhao S L , Qin Q Z. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries [ J ] 1J Power Sources , 2003 , 114 (1) :113 - 1201
    [116] Brousse T, Retoux R1Thin2film crystalline SnO2-lithium electrode [J].J Electrochem Soc, 1998, 145 (1):1 - 41
    [117] Zhao YM, Zhou Q, Liu L, Xu J, Yan M M, Jiang ZY .A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries [J].Electrochimica Acta, 2006, 51 :2639–2645
    [118] Lou XW, Wang Y, Yuan C,, Jim L Y,and Lynden A. Archer Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J] . Adv. Mater. 2006, 18:2325–2329
    [119] Tsutomu M. Lithium ion secondary battery [P]. EP: 0762 521, 1997.
    [120] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high capacity lithium-ion storage material [J]. Science, 1997, 276: 1395 - 1397.
    [121] Branci C, Benjelloun N, Sarradin J, et al. Vitreous tin oxide-based thin film electrodes for Li-ion micro-batteries [J] .Solid State Ionics , 2000 ,135 (1 - 4) :169 - 174.
    [122] Wan K B, Li S F Y, Gao Z Q, et al. Tin based oxide anode for lithium ion batteries with low irreversible capacity [J] . J PowerSources, 1998, 75 (1):9 - 12.
    [123] Belliard F, Irvine J T S. Electrochemical performance of ball milled ZnO-SnO2 systems as anodes in lithium-ion battery [ J ] . J Power Sources, 2001, 97 - 98:219 - 222.
    [124] Sarradin J, Benjelloun N, Taillades G, et al. Tin/ tin oxide thin film electrodes for lithium ion batteries [J]. J Power Sources, 2001, 97 -98:208 - 210.
    [125] Yang J, Takeda Y, Imanishi N, et al. Novel composite anode based on nano2oxides and Li2. 6Co0. 4N for lithium ion batteries [J]. Electrochimica Acta, 2001, 46 (17):2659 - 2664.
    [126] Mohamedi M, Lee Seo2Jae, Takahashi D, et al. Amorphous tin oxide films: preparation and characterization as an anode active material for lithium in batteries [J]. Electrochimica Acta, 2001, 46 (8): 1 161 -1 168.
    [127] Wang Y, Zeng H C, Lee J M. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube layers [J].Adv.Mater,2006,18:645.~649
    [128] Xie J, VaradanVK..Sythesis and characterization of high surface area tin oxide/functionalcarbon nanotubes compositie as anode materials [J]. Matarials Chemistry and Physics, 2005, 91:274~280.
    [129] Guo Z P, Zhao Z W, Liu H K, Dou S X. Electrochemical lithiation and delithiation of MWNT-Sn/SnNi nanocomposites [J].Carbon,2005,43:1392.
    [130] Shodai T, Okada S, Tobishima S, et al. Study of Li3-xMxN (M:Co、Ni or Cu) system for use as anode material in lithium rechargeable cells [J]. Solid State Ionics, 1996, 86~88: 785-789.
    [131] Winter M, Besenhard JO, Spahr ME, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials, 1998, 10 (10): 725-763.
    [132] Shodai T, Okada S, Tobishima S, et al. Study of Li3-xMxN (M:Co、Ni or Cu) system for use as anode material in lithium rechargeable cells [J]. Solid State Ionics, 1996, 86~88: 785-789.
    [133] Shodai T, Okada S, Tobishima S. Anode performance of a new layered nitride Li3-xCoxN(x=0.2~0.6) [J]. J Power Souces, 1997, 68: 515-518.
    [1] 梁栋材著. X 射线晶体学基础[M]. 北京:科学出版社,1991.
    [2] 左演声,陈文哲,梁伟. 材料现代分析方法[M]. 北京,北京工业大学出版社,2000.
    [3] 庄全超. 厦门大学理学博士学位论文[D] .厦门,2007.
    [4] 田昭武等. 电化学研究方法[M]. 北京, 科学出版社,1984;
    [5] 查全性等. 电极过程动力学导论(第三版)[M]. 北京, 科学出版社,2002;
    [6] 曹楚南,张鉴清.电化学阻抗谱导论[M]. 北京 ,科学出版社,2002.
    [1] Olivi P., Pereira E.C., .Longo E, Varella J.A., SBulhoes L.O., J.Electrochem.Soc ,1993, 140:L81
    [2] Azad A.M., Akbar S.A., .Mhaisalkar S.G, Birkefeld L.D., Goto K.S. J.Electrochem.Soc.,1992, 139:3690
    [3] Idota Y, Kubota T1 Tin-based amorphous oxide: A high capacity Lithium-ion-storage material [J]. Science, 1997, 276:1395 - 13971
    [4] Courtney Ian A. and Dahn J. R. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites [J]. J Electrochem. Soc., 1997,144 (6): 2045-2052
    [5] Courtney Ian A. and Dahn J. R.Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2BPO6 Glass. [J]. J Electrochem. Soc., 1997,144 (9): 2943-2948 Li G. J and Kawi S. High-surface-area SnO2: a novel semiconductor-oxide gas sensor [J]. Mater.Lett, 1998, 34: 99~102
    [6] Ahn Hyo-Jin, Choi Hyun-Chul, Park Kyung-Won, Kim Seung-Bin, and Sung Yung-Eun Investigation of the Structural and Electrochemical Properties of Size-Controlled SnO2 Nanoparticles [J]. J. Phys. Chem. B, 2004, 108: 9815-9820
    [7] Kim Chunjoong,Noh Mijung,Choi Myungsuk,Cho Jaephil,Park Byungwoo. Critical size of a nano SnO2 electrode for Li-secondary battery. [J]. chem.mater.2005, 17: 3297-3301
    [8] Li Hong, Huang Xuejie and Chen Liquan. Structure and electrochemical properties of anodes consisting of modified SnO [J]. J. Power Sources, 1999, 81/82:335.
    [9] Song K C, Kang Y. Preparation of high surface area tin oxide powders by a homogeneous precipitation method [J]. Mater.Lett, 2000, 42:283~289
    [10] Zhu J J, Zhu J M, Liao X H, Fang J L, Zhou M G , Chen H Y. Rapid synthesis of nanocrystalline SnO2 powders by microwave heating method[J].Mater.Lett,2002,53:12~19
    [11] Lou Xiong Wen, Wang Yong, Yuan Chongli, Lee Jim Yang, and Archer Lynden A. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity Adv. Mater. 2006, 18:2325–2329
    [12] 庄全超,厦门大学理学博士论文[D].厦门,2007.
    [13] Zhang Hao, Liu Yulong, Zhu Ke, Siu Gueigu, Xiong Yonghong and Xiong Caoshui.Fourier transforms infrared characterization of nanometer SnO2 [J]. J.Phys:Condens.Matter 1998, 10:11121–11127.
    [14] Li H, Huang X J, Chen L Q. Direct Imaging of the Passivating Film and Microstructure of Nanometer-Scale SnO Anodes in Lithium Rechargeable Batteries[J]. Electrochem and Solid-state Lett, 1998, 1(6):241-243.
    [15] Peled E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—the Solid Electrolyte Interphase Model [J]. J.Electrochem Soc, 1979, 126:2047
    [16] Fong R, Sacken U V, Dahn J R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells[J] J.Electrochem Soc, 1990, 137: 2009-2013
    [17] Peled E, Golodnitaky D, Ardel G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes [J]. J.Electrochem Soc, 1997, 144(8): L208-L209
    [18] Aurbach D, Markovaky B, Levi M D. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J]. J.Power Sources, 1999, 81-82: 95-111
    [1] Wang Y, Zeng H C, Lee J M. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube layers [J]. Adv. Mater, 2006, 18:645~649
    [2] Xie J, Varadan V K. Sythesis and characterization of high surface area tin oxide/functionalizde carbon nanotubes compositie as anode materials [J]. Matarials Chemistry and Physics, 2005, 91:274~280.
    [3] Guo Z P, Zhao Z W, Liu H K, Dou S X. Electrochemical lithiation and delithiation of MWNT-Sn/SnNi nanocomposites[J].Carbon,2005,43:1392.
    [4] Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J]. J.Power Sources, 1997,68:87~90
    [5] Li G. J and Kawi S. High-surface-area SnO2: a novel semiconductor-oxide gas sensor [J]. Mater.Lett, 1998, 34: 99~102
    [6] Song K C, Kang Y. Preparation of high surface area tin oxide powders by a homogeneous precipitation method [J]. Mater.Lett, 2000, 42:283~289
    [7] Chen P G., Koltypin S, Zaban Y, Feng A, S,Gedanken A. controlling the particle size of calcined SnO2 nanocrystals[J]. Nano. Lett, 2001, 1:723~726
    [8] Leite E R., Weber I T, Longo E, Varela A J. A New Method to Control Particle Size and ParticleSize Distribution of SnO2 Nanoparticles for Gas Sensor Applications[J].Adv. Mater,2002,12:965~968
    [9] Zhu J J, Zhu J M, Liao X H, Fang J L, Zhou M G , Chen H Y. Rapid synthesis of nanocrystalline SnO2 powders by microwave heating method[J].Mater.Lett,2002,53:12~19
    [10] Wang Y, Xu X,Tian Z Q,Zong Y,Cheng H M,Ling C J. Selective Heterogeneous Nucleation and Growth of Size-controlled Metal Nanoparticles on Carbon Nanotubes in Solution[J]. Chemistry-A European Joural, 2006, 12 (9): 2542~2549
    [11] Courtney A I, Dahn J R. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composite [J]. J.Electrochem.Soc, 1997, 144:2045~2052
    [12] Courtney A I, Dahn J R. Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2BPO6 Glass [J]. J.Electrochem.Soc, 1997, 144:2943~2948
    [13] Courtney A I, Mckinnon W R, Dahn J R.On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium [J]. J.Electrochem.Soc, 1999, 146:59~68
    [14] Sharma N, Shaju K M., Subba Rao G.V ,Chowdari B V R. Anodic behaviour and X-ray photoelectron spectroscopy of ternary tin oxides [J]. J.Power.sources, 2005, 139:250~260
    [15] Frackowiake E, Gauties S, Garcher H, et al. Electrochemical storage of lithium multiwalled carbon nanotubes [J]. Carbon, 1999, 37: 61-69
    [16] Dahn J R, Fong R, Sacken U V. Studies of lithium interclation into carbons using non-aqueons electrochemical cell [J]. J.Electrochem Soc., 1990, 137:2009-2013.
    [1] Robert A. H.. Lithium alloy negative electrodes [J]. J. Power Sources. 1999, 81-82:13-19
    [2] Wang L B, Kitamura S, Obatak K, et al. Multilayered Sn-Zn-Cu alloy thin film as negative materials for advanced lithium ion batteries [J] . J Power Sources, 2005, 14 (2): 286-292
    [3]Kitamura S, Wang L B, Tanase S, Obata K, Sakai T Multilayered Sn-Zn/Zn/Cu alloy film electrode prepared by electroplating method for lithium secondary batteries[J]. ELECTROCHEMISTRY, 2003, 71 (12): 1070-1072
    [4] Wang LB, Kitamura S, Sonoda T, Obata K, Tanase S, Sakai T. Electroplated Sn-Zn alloy electrode for Li secondary batteries [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10): A1346-A1350
    [5] Pu Weihua, He Xiangming, Ren Jianguo, Wan Chunrong, Jiang Changyin .Electrodeposition of Sn–Cu alloy anodes for lithium batteries [J]. Electrochimica Acta, 2005, 50: 4140–4145
    [6] 江宏宏,厦门大学理学硕士论文[D].2006
    [1] Idota Y, Kubota T1 Tin-based amorphous oxide: A high capacity Lithium-ion-storage material [J]. Science, 1997, 276:1 395 - 1 3971
    [2] Tamura N, Ohshita R, Fujimoto M, et al. Advanced Structures in Electrodeposited Tin Base Negative Electrodes for Lithium Secondary batteries [J]. J. Electrochem. Soc., 2003, 150(6):A679-A683.
    [3] Mao Ou and Dahn J. R. Mechanically Alloyed Sn-Fe (-C) Powders as Anode Materials forLi-Ion Batteries III. Sn-Fe: Sn-Fe-C Active/Inactive Composites [J]. Journal of the Electrochemical Society, 1999,146 (2): 423-427
    [4] Ke Fu-sheng, Huang Ling, Jiang Hong-hong, Wei Hong-bing, Yang Fang-zu and Sun Shi-gang. Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries [J]. Electrochemistry Communications, 2007, 9(2): 228-232
    [5] Hassoun J., Panero S., Scrosati B. Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries [J]. Journal of Power Sources,2006 ,160 :1336–1341
    [6] Wang G.X., Sun L., Bradhurst D.H., Dou S.X., Liu H.K.Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling [J]. Journal of Alloys and Compounds 299 (2000) L12–L15
    [7] Morimoto H.i, Tobishima S. and Negishi H. Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries [J]. Journal of Power Sources, 2005,146,(1-2):469-472
    [8] Hassoun J., Panero S., Simonatrice P, Taberna P. L., and Scrosati B. High-Rate, Long-Life Ni–Sn Nanostructured Electrodes for Lithium-Ion Batteries[J]. DOI: 10.1002/adma. 200602035

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700