水钠锰矿和锰钾矿的形成、转化途径与机制及对苯酚的降解特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为土壤的主要组成物质——土壤矿物,对土壤的物理性质、化学性质以及生物与生物化学性质均有深刻的影响。对土壤中矿物的形成、转化及其性质的研究是土壤矿物学研究的主要内容,此外土壤矿物的性质对环境中物质的循环和元素的地球化学过程也起着十分重要的影响。带有表面电荷、含有变价元素的氧化锰矿物是土壤中潜在的吸附剂、氧化剂和催化剂,它能吸附土壤中的重金属离子,催化氧化土壤中的变价元素和还原性的酚类化合物,从而改变这些物质形态和毒性。因此,开展氧化锰矿物的合成、转化及性质研究,对深入了解和认识土壤中氧化锰矿物的资源属性和环境属性,促进氧化锰矿物资源的开发与利用具有重要的理论和实践意义。
     本文研究了酸性条件下水钠锰矿形成的影响因素和反应机制,并以合成的水钠锰矿为前驱物,采用X-射线衍射(XRD)、透射电镜(TEM/SAED)、扫描电镜(SEM)、傅里叶红外光谱(FTIR)等测试技术,研究了水钠锰矿钾含量、锰氧化度、不同晶系、溶液pH、溶液中K+和Mn2+离子浓度和反应温度等对常压下对水钠锰矿转化的影响及其机制。在此基础上,提出了一步合成锰钾矿法并研究了反应中酸的浓度和类型对锰钾矿晶体大小的影响及其反应途径。此外,以苯酚作为研究对象,探讨了土壤中不同晶体结构类型氧化锰矿物光催化降解苯酚的特点及其反应机制,以期对自然环境中氧化锰矿物的环境光化学行为有一个详细的了解。
     本论文的主要研究内容、研究成果及创新点如下:
     1.不同体积和不同浓度盐酸与高锰酸钾反应均能得到单一矿相的酸性水钠锰矿,SEM下它们的晶体形貌相似,但化学分析表明它们的钾含量和锰氧化度(AOSMn)不同。通过对KCl、HCl与高锰酸钾反应产物以及高锰酸钾自身分解的研究表明,H+是反应体系中生成水钠锰矿的重要因素。四种其它类型的酸(硝酸、硫酸、高氯酸和乙酸)与高锰酸钾反应也均得到单一矿相的水钠锰矿,但SEM图片表明它们的晶体相貌和晶粒大小明显不同,其晶体大小顺序为HNO3>HCl≈HClO4>CH3COOH>H2SO4。酸性介质中,当体系中无还原剂(高氯酸、硝酸和硫酸体系)时,水钠锰矿主要通过MnO4-自身分解生成;当还原剂存在时(盐酸和乙酸),水钠锰矿通过MnO4-自身分解和被还原剂还原生成水钠锰矿。
     2.初步探明了回流条件下溶液pH对酸性水钠锰矿转化的影响,并考察了反应过程中pH、K+和Mn2+浓度的变化及产物微观形貌变化。溶液pH决定酸性水钠锰矿的矿相转变,当溶液pH≤5.60时,酸性水钠锰矿回流一定时间可转变为锰钾矿,而当pH≥7.14时,回流7天也不发生矿相转变。矿物转化过程中,pH≥5.60时,溶液中几乎没有Mn2+,而pH较低时(pH 0.83、1.36和2.26),Mn2+浓度随转化时间增加而升高,这主要是由于H+对氧化锰矿物的溶解导致的。矿物转化过程中K+的浓度变化与产物中矿物组成有关,当体系中为酸性水钠锰矿时,溶液中H+与矿物层间的K+交换使得溶液中K的浓度随着回流时间的增加而增加;但当体系中有锰钾矿生成时,锰钾矿的隧道结构吸附K+导致溶液中K浓度迅速降低。通过SEM和TEM观察反应不同时间产物的形貌表明,水钠锰矿向锰钾矿转化过程是由不规则形貌水钠锰矿逐渐向纳米线锰钾矿转变,这种转化是一个酸度控制的溶解-再结晶的过程。溶液pH低有利于加速水钠锰矿溶解,促进了锰钾矿形成。反应体系pH为0.83时,水钠锰矿回流3 h后便完全转化为锰钾矿;当pH上升至2.26时,回流6h水钠锰矿才完全转化;继续增加pH至5.60,矿物完全转化时间增加至24h。
     3.系统开展了回流条件下水钠锰矿的性质(如不同晶形、钾含量、锰氧化度)以及反应条件(如溶液中K、Mn2+浓度、温度等)对其转化的影响。在本实验体系中,水钠锰矿的钾含量和溶液中的K浓度都不影响水钠锰矿的转化,不同钾含量酸性水钠锰矿或溶液中K+浓度不同时,酸性水钠锰矿均转化为锰钾矿。酸性水钠锰矿的锰氧化度(AOSMn)影响其转变产物的矿相,当AOSMn≥3.83时,水钠锰矿转化为锰钾矿;而当AOSMn为3.67时,最终产物为拉锰矿和锰钾矿的混合物。溶液中Mn2+浓度对矿物转化的影响显著,当Mn2+浓度为0.01 mol/L时,转化产物为拉锰矿和锰钾矿的混合物;当Mn2+浓度大于0.1 mol/L时,转化产物为单一矿相的拉锰矿。反应温度不仅影响酸性水钠锰矿是否发生矿相转变,还影响着转化速率,当温度高于80摄氏度时,随着温度的升高,水钠锰矿向锰钾矿转变的速率增加,而当温度低于60℃时,回流7天矿相仍未发生变化。此外,碱性水钠锰矿和酸性水钠锰矿的晶体结构和形貌差异很大,使得它们在矿物转变规律上完全不同。当pH小于5.60时,酸性水钠锰矿经过一段时间回流均可转化为锰钾矿;而结晶较好的碱性水钠锰矿在pH低于1.25时,经一段时间回流转化为拉锰矿;当pH为2.15时,部分转变为拉锰矿;当pH增加至5.00以上时,其矿物结构不发生变化。
     4.采用一步回流法合成得到了锰钾矿,结合SEM、TEM技术研究了反应过程并分析酸的类型对产物晶体大小的影响。在回流条件下,高锰酸钾与无机酸溶液反应可以得到单一矿相的锰钾矿,但酸的浓度决定着反应产物的矿相。酸的浓度较低时,产物为酸性水钠锰矿;酸的浓度较高时,产物为锰钾矿。反应体系中锰钾矿通过两步形成:反应初期高锰酸钾与体系中的酸反应先生成水钠锰矿,其后在较高浓度H+的作用下,水钠锰矿通过溶解-重结晶作用转化为锰钾矿。不同类型酸形成锰钾矿的IR光谱与天然锰钾矿相似,且化学组成相近。对TEM图片中锰钾矿纳米线长度的统计分析表明,酸的类型对产物的晶体大小有较显著的影响,晶体大小顺序为:HCl (1104.4 nm)>HNO3 (441.5 nm)>H2SO4 (339.2 nm),这可能与反应过程中锰钾矿表面所带电荷量的大小及其吸附酸根离子所产生的位阻效应有关。
     5.首次在回流条件下通过改变与高锰酸钾反应的有机酸的碳链长度调控锰钾矿纳米线晶体的横向和纵向尺寸。有机酸烷基碳链长度从1增加至6,锰钾矿晶体的长度由1376 nm逐渐减小至35.64 nm,其宽度则由61.12 nm减小至8.22nm。通过SEM对反应过程中间产物晶体形貌观察表明,其形成途径与无机酸体系相似,这表明酸性环境是锰钾矿形成的一个重要条件。有机酸对锰钾矿晶体生长的影响机制与无机酸体系有所不同,其溶解度、疏水性及其分子大小可能是影响锰钾矿晶体生长的主要原因。
     研究了四种土壤中常见氧化锰矿物在光照和非光照条件下对苯酚的降解特点。在本反应体系中,无氧化锰矿物存在时,非光照条件下苯酚在通空气条件下基本不挥发;在光照下苯酚能被空气降解,反应12h后,溶液的苯酚降解率和TOC去除率分别为99.4%和12.3%。其降解机制主要是苯酚在紫外光照下发生直接光降解或溶液中的氧气吸收紫外光后生成臭氧等次生氧化剂氧化降解苯酚。暗反应下,四种氧化锰刊物对苯酚的降解作用均较弱,这与苯酚具有苯环结构,稳定性强不容易直接被氧化有关。反应12h后,氧化锰矿物的TOC降解率大小顺序为酸性水钠锰矿(11.5%)>锰钾矿(6.3%)>碱性水钠锰矿(4.6%)>钙锰矿(2.0%)。在光照条件下,供试氧化锰矿物均具有光催化氧化活性,施加光照能显著促进氧化锰矿物对苯酚的降解,且TOC去除率也显著增加。光照反应12h后,TOC降解率大小顺序为:锰钾矿(62.1%)>酸性水钠锰矿(43.1%)>钙锰矿(25.4%)>碱性水钠锰矿(22.5%)。锰钾矿良好的光催化氧化活性与其较大的表面积、较高的氧化度,特别是宽和强的光吸收带谱有关。光照下氧化锰矿物光化学降解苯酚主要存在三种机制:苯酚的直接光解,氧化锰矿物的氧化作用以及光催化作用。其中光催化降解机制起主导作用。
As one of the main components of soils, minerals greatly affect the physical properties, chemical properties and biological and biochemical properties of soils, and influence material recycling and the elemental geochemical processes in surface environment. So the formation, transformation and properties of soil mineral is an interesting research area for soil researchers. For containing large surface charge and element with electrovalence change, Mn oxide minerals is kind of strong adsorbent, oxidant and catalyst in soils, and it could adsorb heavy metals, oxidize variable valence elements or reductive organic compounds. Hence, investigations on the syntheses, transformations and properties of them are of great significance to realize and understand the resource properties and environmental behaviors of soil Mn oxide minerals, and it also could promote exploration and utilization of Mn oxide minerals.
     In this study, syntheses conditions and reaction mechanism of birnessite in acid medium and transformation of birnessite were systematically investigated by using analysis techniques such as XRD, SEM, TEM/SAED, FTIR, ect. On this basis, a simple one-step method was developed to synthesize cryptomelane, and the type and concentration of acid and reaction pathway was also discussed. In addition, in order to have a thorough understanding on the environmental photochemistry behaviors of Mn oxide minerals in natural environment, degradation of phenol by several common Mn oxide minerals in soils with or without light irradiation was also studied.
     The main contents of dissertation were summarized as follows:
     1. Acid birnessite can be synthesized by reflux of hydrochloric acid (HCl) with KMnO4. The volume and concentration of hydrochloric acid (HCl) did not affect the phase and micro-morphology of acid birnessite, but affected the AOSMn and potassium content of the products. It is shown that H+ plays a very important role in reaction of KMnO4 with pure water, KCl solution and HCl solution. Four type of acids (HNO3, HClO4, CH3COOH, H2SO4) was used to replace HCl in the reaction, and the products are all acid birnessite. their crystal sizes are in order of HNO3>HCl ≈HCIO4>CH3COOH>H2SO4. The reaction mechanism of acid birnessite formation in different acid media was different. When the acid is not reducing acid (such as HClO4, HNO3 and H2SO4), acid birnessite is formed by decomposition of KMnO4. However, in present of reducing acid such as HCl and CH3COOH, the acid birnessite is formed by two reaction route:decomposition of KMnO4 or reduction of KMnO4 by Cl- or CH3COO-.
     2. Birnessite transformed to cryptomelane by reflux treatment in acidic medium at atmospheric pressure. The initial pH of suspensions significantly influences the phase transformation. When pH is below 5.60 birnessite transformed to cryptomelane, but no phase transformation is observed when pH is above 7.14. During the phase conversion, the release of Mn2+ is caused by dissolution of Mn oxide minerals in acid medium, but the release of K+ is the result of ion exchange effect of H+ with K+ in the layer of birnessite. The results of SEM, TEM and SAED showed that the growth of nanowires-like cryptomelane firstly occurs besides irregular-shaped birnessite. Then, birnessite completely converted to cryptomelane from the external to internal by a dissolution-recrystallization mechanism. These results will shed light on the phase transformation of manganese oxide and enrich our understanding of the growth mechanisms of relevant nanoparticles. In addition, the initial pH of the synthetic systems greatly affecte both phase conversion rate and the specific area of the produced cryptomelane.
     3. The factors governing formation of acid birnessite at atmospheric pressure, such as potassium content, type and the average manganese oxidation state (AOSMn) of acid birnessite, reaction temperature and the concentration of Mn2+ and K+ in solution, were investigated. The potassium content in minerals and the concentration of K+ in solution have little influence on the phase transformation, and the acid birnessite can be transform to cryptomelane in a wide range of K+ content and concentration. Reaction temperature not only determines the phase transformation but also impacts the conversion rate. When reaction temperature is below 60℃, the phase does not change. When the reaction temperature is above 80℃, birnessite transforms to cryptomelane and the conversion rate increases with the reaction temperature. The AOSMn in birnessite and the concentration of Mn2+ in solution influence the phase of the final products. When the AOSMn is above 3.83, birnessite transforms to cryptomelane; but when the AOSMn is 3.67, the final product is the mixture of ramsdellite and cryptomelane. If the concentration of Mn2+ is 0.01 mol/L, the final product is also ramsdellite and cryptomelane. However, if the concentration of Mn2+ is higher than 0.1 mol/L, birnessite converses to pure ramsdellite. In addition, different crystal structures of birnessite also affect the phase transformation. When pH is below 1.25, alkaline birnessite transforms to pure ramsdellite rather than cryptomelane. When the pH increases to 2.15, part of birnessite could transform to ramsdellite. If the pH is above 5.00, the phase of birnessite does not change.
     4. A simple one-step reflux method was developed to synthesize cryptomelane through the reaction of KMnO4 with three inorganic acids. The concentration of the inorganic acids plays a crucial role in determining the phases of the products (birnessite at low concentrations and cryptomelane at high concentrations). When the concentration of inorganic acid is 0.72 mol/L, the products for the three inorganic acids are cryptomelane. The type of inorganic acid has little impact on the phase of the products, but affects the particle size and size distribution. The mean particle sizes are in order of HCl (1104.4 nm)>HNO3 (441.5 nm)>H2SO4 (339.2nm), and the particles become more uniform. Cryptomelane nanowire formation can be divided into two steps. First, birnessite is formed through the reduction of MnO4-, and then transforms to cryptomelane under acidic conditions via a dissolution-recrystallization process.
     5. A facile method was developed to synthesize size-tunable cryptomelane nonmaterial using a series of organic acids as acid agents and regulators. The particle sizes, from 8.2 to 61.2 nm in width and 35.6 to 1376.1 nm in length, can be precisely controlled by decreasing alkyl chain lengths of organic acids from 6 to 1. This is the first time for the cryptomelane to be synthesized with controllable sizes in both longitudal and lateral dimensions of a broad range by tuning alkyl chain lengths of carboxylic acids. The differences in solubility, hydrophobic and molecular size of organic acids may be the controlling mechanism on the crystal growth of cryptomelane.
     6. Degradation of phenol with or without light irradiation by several synthesized manganese oxides, i.e. acidic birnessite (BIR-H), alkaline birnessite (BIR-OH), cryptomelane (CRY) and todorokite (TOD) were comparatively investigated. After 12 h of UV-Vis irradiation, the total organic carbon (TOC) removal rate reached 62.1%, 43.1%,25.4%, and 22.5% for cryptomelane, acidic birnessite, todorokite and alkaline birnessite, respectively. Compared to the reactions in the dark condition, UV-Vis exposure greatly improves the TOC removal rates by 55.8%,31.9%,23.4% and 17.9%. This suggests a weak ability of manganese oxides to degrade phenol in the dark condition, while UV-Vis light irradiation could significantly enhance phenol degradation. The manganese minerals exhibited photocatalytic activities in the order of CRY>BIR-H>TOD>BIR-OH.There may be three possible mechanisms for photochemical degradation:(1) direct photolysis of phenol, (2) direct oxidation of phenol by manganese oxides, and (3) photocatalytic oxidation of phenol by manganese oxides. Photocatalytic oxidation of phenol appeared to be the dominant mechanism.
引文
1. 陈建林,林承毅,史君贤,沈华悌,王基庆,马维林.太平洋中国开辟区锰结核生物成因研究.地质学报,2001,75(02):228-233.
    2. 崔浩杰(2007).常压下钙锰矿的化学形成的影响因素研究.武汉,华中农业大学.博士论文.
    3. 冯雄汉(2003).土壤中几种常见氧化锰矿物的合成、转化及表面化学性质.武汉,华中农业大学.博士论文.
    4. 冯良东,石建军,姜立萍,朱俊杰;.钾锰氧化物:电化学控制合成及其电容器性质(英文).无机化学学报,2010,26(12):2289-2298.
    5. 高翔,鲁安怀,秦善,郑德圣,郑喜珅,郑辙.天然锰钾矿晶体化学特征及其环境属性.岩石矿物学杂志,2001,20(04):477-484.
    6. 高翔,鲁安怀,郑辙,郑喜坤,秦善.锰的氧化物和氢氧化物在污染水体净化中的应用研究现状.矿物岩石,2002,22(01):77-82.
    7. 高翔,鲁安怀,秦善,郑辙.湖南湘潭锰矿次生氧化带中天然锰钾矿晶胞参数的修正.岩石矿物学杂志,2003,22(01):77-79.
    8. 高翔,鲁安怀,郑辙,贾欣欣.湖南湘潭锰矿锰钾矿--天然氧化物八面体分子筛(OMS-2)在HRTEM下的微结构特征研究.矿物岩石,2005,:25(03):52-57.
    9. 黄昌勇.土壤学.北京:中国农业出版社,2000.
    10.黄丽.我国几种亚热带土壤铁锰胶膜的微形貌和元素分布特征.自然科学进展,2006,16(9):1122-1129.
    11.金圣圣,贺纪正,郑袁明,孟佑婷,张丽梅.生物氧化锰矿物对几种重金属的吸附作用.环境科学学报,2009,29(01):132-139.
    12.李永华.几种土壤及其铁锰结核中粘粒矿物组合的研究.华中农业大学学报,1999,18(4):342-347.
    13.李永华.土壤铁锰结核中生命有关元素的化学地理特征.地理研究,2001,20(5):609-615.
    14.李学垣.土壤化学.北京:高等教育出版社,2001.
    15.刘凡.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型.土壤学报,2002a,39(5):699-706.
    16.刘凡.土壤中氧化锰矿物的类型及其与土壤环境条件的关系.土壤通报,2002b,33(3):175-180.
    17.刘凡,冯雄汉,陈秀华,邱国红,谭文峰,贺纪正.氧化锰矿物的生物成因及其性质的研究进展.地学前缘,2008,15(06):66-72.
    18.李小虎.土壤矿物学研究综述.甘肃地质学报,2003,12(01):37-42.
    19.刘瑞.锰氧化物和氢氧化物中的孔道结构矿物及其环境属性.矿物岩石,2003,23(4):6.
    20.鲁安怀,卢晓英,任子平,韩丽荣,方勤方,韩勇.天然铁锰氧化物及氢氧化物环境矿物学研究.地学前缘,2000,7(02):473-483.
    21.鲁安怀,高翔,秦善,王长秋.锰钾矿(KxMn(8-x)O16):天然活性八面体分子筛(OMS-2).科学通报,2003,48(06):615-618.
    22.鲁安怀.土壤重金属环境质量矿物学评价方法.地质通报,2005a,(08):715-720.
    23.鲁安怀.矿物法——环境污染治理的第四类方法.地学前缘,2005b,12(01):196-205.
    24.李子田.我国农业可持续发展面临的生态环境问题及对策.农机化研究,2006,(1):21-24.
    25.骆永明,滕应.我国土壤污染退化状况及防治对策.土壤,2006,38(05):505-508.
    26.李秀萍,赵荣祥.二氧化锰纳米棒的制备和催化性能研究.当代化工,2011,40(01):33-35.
    27.凌飞,邓丽杰,陈平,周仁贤,郑小明.氧化锰八面体分子筛的合成、表征及其催化燃烧性能.浙江大学学报(理学版),2011,38(01):73-77.
    28.钱江初.1nm锰矿相结构稳定性的研究.海洋学报(中文版),1998,20(03):56-63.
    29.潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全.地球科学进展,2005,20(04):384-393.
    30.冉勇,傅家谟,R.J.Gilkes, R.W.Rate氧化锰对金(Ⅰ)和金(ⅢⅢ)络和物的吸附.中国科学(D辑:地球科学),1998,28(06):523-531.
    31.宋垠先,谢巧勤,陈天虎,唐毅,彭书传,孙玉兵,刘景丽,王健.天然锰氧化物矿物氧化废水中苯酚的动力学研究.矿物岩石地球化学通报,2006,25(04):324-329.
    32.施萍萍,易丽丽.炭载二氧化锰的制备和锂离子超级电容器性能的研究.化学学报,2010,68(19):1956-1960.
    33.谭文峰.土壤铁锰结核中锰矿物类型鉴定的探讨.矿物学报,2000a,20(1):63-67.
    34.谭文峰.我国几种土壤铁锰结核中的锰矿物类型.土壤学报,2000b,37(2):192-201.
    35.谭文峰.几种土壤铁锰结核对Cr(Ⅲ)的氧化特性(Ⅰ)一氧化锰矿物类型与吸附态离子的影响.环境科学学报,2001,21(5):592-596.
    36.汤艳杰.粘土矿物的环境意义.地学前缘,2002,9(2):337-344.
    37.王云.土壤环境元素化学.北京:中国环境科学出版社,1995.
    38.吴巧玲孙,黄月芳,费伦,龙英才.镁离子型Birnessite的合成和表征.分析测试学报,1998,17(02):20-23.
    39.王瑜,黄进,刘薇,李琦,裘晓辉,章桥新.新型纳米锰氧化物的制备及其染料吸附性能.武汉大学学报(理学版),2010,56(03):268-272.
    40.吴彻平,彭家惠.纳米二氧化锰的可控制备及其电化学储能机理研究.功能材料,2011,42(02):359-361.
    41.熊毅等.土壤胶体(第二册).北京:科学出版社,1985.
    42.许东禹.多金属结核的特征及成因.北京:地质出版社,1944.
    43.许东禹.多金属结核形成的古海洋环境.北京:地质出版社,1994.
    44.徐仁扣,刘志光.土壤中的氧化锰对酚类化合物的氧化降解作用.土壤学报,1995,32(02):179-185.
    45.许乃才,马昌,王建朝,郭承育.不同形貌氧化锰纳米材料的研究进展.化学通报,2010,(08):677-683.
    46.于天仁.我国农业持续发展和生态环境中重大土壤问题的化学机理研究建议.土壤,2001,33(3):119-122.
    47.赵其国.从未来土壤学看环境与生态优先研究领域.中国科学基金,1994,(03):166-169.
    48.赵其国,周健民.为21世纪土壤科学的创新发展作出新的贡献——参加第17届国际土壤学大会综述.土壤,2002,34(05):237-255.
    49.赵其国,万红友.中国土壤科学发展的理论与实践.生态环境,2004,13(01):1-5.
    50.赵其国.对第18届国际土壤学大会召开的认识与体会.土壤,2007,39(01):19-23.
    51.赵其国.提升对土壤认识,创新现代土壤学.土壤学报,2008,45(05):771-777.
    52.赵其国.土壤科学发展的战略思考.土壤,2009,41(05):681-688.
    53.赵其国,骆永明,滕应.中国土壤保护宏观战略思考.土壤学报,2009,46(06):1140-1145.
    54.赵巍(2009).水钠锰矿吸附pb2+微观机理研究.资源与环境学院.武汉,华中农业大学.博士论文.
    55. Abecassis-Wolfovich M, Jothiramalingam R, Landau M V, Herskowitz M, Viswanathan B, Varadarajan T K. Cerium incorporated ordered manganese oxide OMS-2 materials:Improved catalysts for wet oxidation of phenol compounds. Appl Catal B-Environ,2005,59(1-2): 91-98.
    56. Al-Sagheer F A, Zaki M I. Synthesis and surface characterization of todorokite-type microporous manganese oxides:implications for shape-selective oxidation catalysts. Micropor Mesopor Mat,2004,67(1):43-52.
    57. Arrhenius G O, Tsai a G. Structure, phase transformation and prebiotic catalysis in marine manganate minerals. Scripps Institute of Oceanography,1981,81(28):1-19.
    58. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science,2001,293(5528):269-271.
    59. Baker W E. The role of humic acids from Tasmanian podzolic soils in mineral degradation and metal mobilization. Geochim Cosmochim Ac,1973,37(2):269-281.
    60. Balistrieri L S, Murray J W. The surface chemistry of [delta]-MnO2 in major ion sea water. Geochim Cosmochim Ac,1982,46(6):1041-1052.
    61. Baur W. Rutile-type compounds. V. Refinement of MnO2 and MgF2. Acta Crystallographica Section B,1976,32(7):2200-2204.
    62. Bricker O. Some stability relations in the system MnO2-H2O at 25 degrees and one atmosphere total pressure. Am Mineral,1965,50(9):1296-1354.
    63. Burns R G, Burns V M, Stockman H W. A review of the todorokite-buserite problem; implications to the mineralogy of marine manganese nodules. Am Mineral,1983,68(9-10): 972-980.
    64. Buser W, Graf P, Feitknecht W. Beitrag zur Kenntnis der Mangan (Ⅱ)-manganite und des-MnO2. Helv Chim Acta,1954,37:2322-2333.
    65. Cai J, Liu J, Suib S L. Preparative Parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chem Mater,2002,14(5):2071-2077.
    66. Cai J, Liu J, Willis W S, Suib S L. Framework doping of iron in tunnel structure cryptomelane. Chem Mater,2001,13(7):2413-2422.
    67. Canellas L P, Piccolo A, Dobbss L B, Spaccini R, Olivares F L, Zandonadi D B, Facanha A R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere,2010,78(4):457-466.
    68. Cao H, Suib S L. Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts. J Am Chem Soc,1994,116(12):5334-5342.
    69. Cavani F, Maselli L, Passeri S, Lercher J A. Catalytic methylation of phenol on MgO-Surface chemistry and mechanism. J Catal,2010,269(2):340-350.
    70. Chen C C, Golden D C, Dixon J B. Transformation of synthetic birnessite to cryptomelane; an electron microscopic study. Clay Clay Miner,1986,34(5):565-571.
    71. Chen J, Lin J C, Purohit V, Cutlip M B, Suib S L. Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides. Catal Today, 1997a,33(1-3):205-214.
    72. Chen Y, Chen Y, Lin Q, Hu Z, Hu H, Wu J. Factors Affecting Cr(Ⅲ) Oxidation by Manganese Oxides. Pedosphere,1997b, (02).
    73. Chen X, Shen Y F, Suib S L, O'young C L. Catalytic decomposition of 2-propanol over different metal-cation-doped oms-2 materials. J Catal,2001,197(2):292-302.
    74. Cheney M A, Jose R, Banerjee A, Bhowmik P K, Qian S, Okoh J M. Synthesis and characterization of birnessite and cryptomelane nanostructures in presence of Hoffmeister anions. J Nanomaterials,2009,2009:1-8.
    75. Ching S, Hughes S M, Gray T P, Welch E J. Manganese oxide thin films prepared by nonaqueous sol-gel processing:preferential formation of birnessite. Micropor Mesopor Mat, 2004,76(1-3):41-49.
    76. Ching S, Petrovay D J, Jorgensen M L, Suib S L. Sol-gel synthesis of layered birnessite-type manganese oxides. Inorg Chem,1997,36(5):883-890.
    77. Chukhrov F V, Sakharov B V, Gorshkov A I. The structure of birnessite from the Pacific Ocean. Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskaya,1985,8:66-73.
    78. Cole W F, Wadsley a D, Walkley A. An X-ray diffraction study of manganese dioxide. Transactions of The Electrochemical Society,1947,92(1):133-158.
    79. Cornell R M, Giovanoli R. Transformation of hausmannite into birnessite in alkaline media. Clay Clay Miner,1988,36(3):249-257.
    80. Cui H J, Feng X H, He J Z, Tan W F, Liu F. Effects of reaction conditions on the formation of todorokite at atmospheric pressure. Clay Clay Miner,2006,54(5):605-615.
    81. Cui H J, Feng X H, Liu F, Tan W F, He J Z. Factors governing formation of todorokite at atmospheric pressure. Sci China Ser D,2005,48(10):1678-1689.
    82. Cui H J, Liu X W, Tan W F, Feng X H, Liu F, Ruan H D. Influence of Mn(Ⅲ) availability on the phase transformation from layered buserite to tunnel-structured todorokite. Clay Clay Miner,2008,56(4):397-403.
    83. Cui H J, Qiu G H, Feng X H, Tan W F, Liu F. Birnessites with different average manganese oxidation states synthesized, characterized, and transformed to todorokite at atmospheric pressure. Clay Clay Miner,2009,57(6):715-724.
    84. Davies S H R, Morgan J J. Manganese(Ⅱ) oxidation kinetics on metal oxide surfaces. J Colloid Interf Sci,1989,129(1):63-77.
    85. Deguzman R N, Shen Y F, Neth E J, Suib S L, O'young C L, Levine S, Newsam J M. Synthesis and characterization of octahedral molecular sieves (OMS-2) having the hollandite structure. Chem Mater,1994,6(6):815-821.
    86. Ding Y S, Shen X F, Sithambaram S, Gomez S, Kumar R, Crisostomo V M B, Suib S L, Aindow M. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem Mater,2005,17(21): 5382-5389.
    87. Driehaus W, Seith R, Jekel M. Oxidation of arsenate(Ⅲ) with manganese oxides in water treatment. Water Res,1995,29(1):297-305.
    88. Drits V A, Lanson B, Gaillot A C. Birnessite polytype systematics and identification by powder X-ray diffraction. Am Mineral,2007,92(5-6):771-788.
    89. Drits V A, Silvester E, Gorshkov a I, Manceau A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; Ⅰ. Results from X-ray diffraction and selected-area electron diffraction. Am Mineral,1997,82(9-10):946-961.
    90. Feng Q, Kanoh H, Miyai Y, Ooi K. Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chem Mater,1995a, 7(6):1226-1232.
    91. Feng Q, Kanoh H, Miyai Y, Ooi K. Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase. Chem Mater,1995b,7(9): 1722-1727.
    92. Feng Q, Liu L, Yanagisawa K. Effects of synthesis parameters on the formation of birnessite-type manganese oxides. J Mater Sci Lett,2000,19(17):1567-1570.
    93. Feng Q, Yanagisawa K, Yamasaki N. Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures. J Porous Mater,1998,5(2):153-162.
    94. Feng X H. Syntheses, Transformations and surface chemistry characteristics of the several common manganese oxide minerals. Doctor Dissertation of Huazhong Agricultural University, Wuhan, China (in Chinese).2003.
    95. Feng X H, Liu F, Tan W F, Liu X W. Synthesis of birnessite from the oxidation of Mn2+ by O2- in alkali medium:Effects of synthesis conditions. Clay Clay Miner,2004a,52(2): 240-250.
    96. Feng X H, Liu F, Tan W F, Liu X W, Hu H Q. Synthesis of todorokite by refluxing process and its primary characteristics. Sci China Ser D,2004b,47(8):760-768.
    97. Feng X H, Tan W F, Liu F, Wang J B, Ruan H D. Synthesis of todorokite at atmospheric pressure. Chem Mater,2004c,16(22):4330-4336.
    98. Feng X H, Tan W F, Liu F, Huang Q Y, Liu X W. Pathways of birnessite formation in alkali medium. Sci China Ser D,2005,48(9):1438-1451.
    99. Feng X H, Tan W F, Liu F, Ruan H D, He J Z. Oxidation of As-Ⅲ by several manganese oxide minerals in absence and presence of goethite. Acta Geol Sin-Engl,2006a,80(2): 249-256.
    100. Feng X H, Zhai L M, Tan W F, Liu F, He J Z. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ Pollut,2007,147(2):366-373.
    101. Feng X H, Zhai L M, Tan W F, Zhao W, Liu F, He J Z. The controlling effect of pH on oxidation of Cr(Ⅲ) by manganese oxide minerals. J Colloid Interf Sci,2006b,298(1): 258-266.
    102. Feng X H, Zhu M, Ginder-Vogel M, Ni C, Parikh S J, Sparks D L. Formation of nano-crystalline todorokite from biogenic Mn oxides. Geochim Cosmochim Ac,2010,74(11): 3232-3245.
    103. Feng X H, Zu Y Q, Tan W F, Liu F. Preparative parameter effects on synthesis of birnessite by O-2 oxidation. Pedosphere,2004d,14(1):63-70.
    104. Feng X H, Zu Y Q, Tan W F, Liu F. Arsenite oxidation by three types of manganese oxides. J Environ Sci,2006c,18(2):292-298.
    105. Foster a L, Brown G E, Parks G A. X-ray absorption fine structure study of As(Ⅴ) and Se(Ⅳ) sorption complexes on hydrous Mn oxides. Geochim Cosmochim Acta,2003,67(11): 1937-1953.
    106. Gac W. The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction. Appl Catal B-Environ,2007,75(1-2):107-117.
    107. Gaillot a C, Lanson B, Drits V A. Structure of birnessite obtained from decomposition of permanganate under soft hydrothermal conditions.1. Chemical and structural evolution as a function of temperature. Chem Mater,2005,17(11):2959-2975.
    108. Gao T, Glerup M, Krumeich F, Nesper R, Fjellvag H, Norby P. Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J Phys Chem C,2008,112(34):13134-13140.
    109. Gilkes R J, Mckenzie R M. Geochemistry and mineralogy of manganese in soils. Dordrecht, PAYS-BAS:Kluwer,1988.
    110. Giovanoli R, Stahli E, Feitknecht W. Uber Oxidhydroxide des vierwertigen Mangans mit Schichtengitter 2. Mitteilung:Mangan (Ⅲ)-manganat (Ⅳ). Helv Chim Acta,1970a,53(3): 453-464.
    111. Giovanoli R, Stahli E, Feitknecht W. Uber Oxidhydroxide des vierwertigen Mangans mit Schichtengitter.1. Mitteilung. Natriummangan (Ⅱ, Ⅲ)manganat(Ⅳ). Helv Chim Acta,1970b, 53(2):209-220.
    112. Giovanoli R, Feitknecht W, Fischer F. Uber Oxidhydroxide des vierwertigen Mangans mit Schichtengitter.3. Mitteilung. Reduktion von Mangan(Ⅲ)-manganat(Ⅳ) mit Zimtalkohol. Helv Chim Acta,1971,54(4):1112-1124.
    113. Glover E D. Characterization of a marine birnessite. Am Mineral,1977,62(3-4):278-285.
    114. Golden D C, Chen C C, Dixon J B. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clay Clay Miner,1987,35(4):271-280.
    115. Golden D C, Dixon J B, Chen C C. Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clay Clay Miner,1986,34(5):511-520.
    116. Guo Z F, Ma R X, Li G J. Degradation of phenol by nanomaterial TiO2 in wastewater. Chem Eng J,2006,119(1):55-59.
    117. Heaney P J, Post J E, Lopano C L, Hanson J C, Anonymous. Hydrogen exchange in Na-birnessite; a time-resolved synchrotron X-ray diffraction analysis. Abstracts with Programs-Geological Society of America,2003,35(6):620-621.
    118. Hem J D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem Geol,1978,21(3-4):199-218.
    119. Huang P M. Kinetics of Redox reactions on manganese oxides and its impact on environmental quality. In:Sparks D L, Suarez D L eds. Rate of Soil Chemical Processes. Madison:SSSAApec. Publ.27,1991:191-230.
    120. Huang X K, Lv D P, Yue H J, Attia A, Yang Y. Controllable synthesis of alpha- and beta-MnO2:cationic effect on hydrothermal crystallization. Nanotechnology,2008,19(22).
    121. Iyer A, Galindo H, Sithambaram S, King'ondu C, Chen C H, Suib S L. Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation. Appl Catal A-Gen,2010,375(2):295-302.
    122. Johnson C A, Xyla a G. The oxidation of chromium(Ⅲ) to chromium(Ⅵ) on the surface of manganite ([gamma]-MnOOH). Geochim Cosmochim Ac,1991,55(10):2861-2866.
    123. Johnson E A, Post J E. Water in the interlayer region of birnessite:Importance in cation exchange and structural stability. Am Mineral,2006,91(4):609-618.
    124. Jothiramalingam R, Viswanathan B, Varadarajan T K. Synthesis and structural characterization of copper incorporated manganese oxide OMS-2 materials synthesized via potassium birnessite. Mater Chem Phys,2006a,100(2-3):257-261.
    125. Jothiramalingam R, Viswanathan B, Varadarajan T K. Synthesis, characterization and catalytic oxidation activity of zirconium doped K-OMS-2 type manganese oxide materials. J Mol Catal A-Chem,2006b,252(1-2):49-55.
    126. Kijima N, Yasuda H, Sato T, Yoshimura Y. Preparation and Characterization of Open Tunnel Oxide [alpha]-MnO2 Precipitated by Ozone Oxidation. J Solid State Chem,2001,159(1): 94-102.
    127. Kim H-S, Pasten P A, Gaillard J-F, Stair P C. Nanocrystalline Todorokite-Like Manganese Oxide Produced by Bacterial Catalysis. J Am Chem Soc,2003,125(47):14284-14285.
    128. Kim H-S, Stair P C. Bacterially Produced Manganese Oxide and Todorokite:UV Raman Spectroscopic Comparison. J Phys Chem B,2004,108(44):17019-17026.
    129. Kim J G, Dixon J B, Chusuei C C, Deng Y. Oxidation of chromium(Ⅲ) to (Ⅵ) by manganese oxides. Soil Sci Soc Am J,2002a,66(1):306-315.
    130. Kim J G, Dixon J B, Chusuei C C, Deng Y. Oxidation of Chromium(Ⅲ) to (Ⅵ) by Manganese Oxides. Soil Sci Soc Am J,2002b,66(1):306-315.
    131. Kim T W, Chung P W, Lin V S Y. Facile Synthesis of monodisperse spherical mcm-48 mesoporous silica nanoparticles with controlled particle size. Chem Mater,2010,22(17): 5093-5104.
    132. Kwon K D, Refson K, Sposito G. On the role of Mn(Ⅳ) vacancies in the photoreductive dissolution of hexagonal birnessite. Geochim Cosmochim Acta,2009,73(14):4142-4150.
    133. Lal R. Physical Management of Soils of the Tropics:Priorities for the 21 St Century. Soil Sci, 2000,165(3):191-207.
    134. Lanson B, Drits V A, Feng Q, Manceau A. Structure of synthetic Na-birnessite:Evidence for a triclinic one-layer unit cell. Am Mineral,2002a,87(11-12):1662-1671.
    135. Lanson B, Drits V A, Gaillot A C, Silvester E, Plancon A, Manceau A. Structure of heavy-metal sorbed birnessite:Part 1. Results from X-ray diffraction. Am Mineral,2002b, 87(11-12):1631-1645.
    136. Lanson B, Drits V A, Silvester E, Manceau A. Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral, 2000,85(5-6):826-838.
    137. Larson R A, John M. Hufnal J. Oxidative polymerization of dissolved phenols by soluble and insoluble inorganic species. Limnology and Oceanography,1980,25(3):505-512.
    138. Le Goff P, Baffler N, Bach S, Pereira-Ramos J P. Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group. Mater Res Bull,1996,31(1):63-75.
    139. Leeper G W. The Forms and Reactions of Manganese in the Soil. Soil Sci,1947,63(2): 79-94.
    140. Lemus M A, Lopez T, Recillas S, Frias D M, Montes M, Delgado J J, Centeno M A, Odriozola J A. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using nanocrystalline cryptomelane composite catalysts. J Mol Catal A:Chem,2008,281(1-2): 107-112.
    141. Li L Y, King D L. Cryptomelane as high-capacity sulfur dioxide absorbent for diesel emission control:A stability study. Ind Eng Chem Res,2005,44(19):7388-7397.
    142. Liu G, Liao S, Zhu D, Cui J, Zhou W. Solid-phase photocatalytic degradation of polyethylene film with manganese oxide OMS-2. Solid State Sci,2011,13(1):88-94.
    143. Liu J, Cai J, Son Y C, Gao Q, Suib S L, Aindow M. Magnesium manganese oxide nanoribbons:synthesis, characterization, and catalytic application. J Phys Chem B,2002, 106(38):9761-9768.
    144. Liu J, Makwana V, Cai J, Sui S L, Aindow M. Effects of alkali metal and ammonium cation templates on nanofibrous cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2). J Phys Chem B,2003,107(35):9185-9194.
    145. Liu L, Feng Q, Yanagisawa K, Wang Y. Characterization of birnessite-type sodium manganese oxides prepared by hydrothermal reaction process. J Mater Sci Lett,2000,19(22): 2047-2050.
    146. Liu Z H, Kang L, Ooi K, Makita Y, Feng Q. Studies on the formation of todorokite-type manganese oxide with different crystalline birnessites by Mg2+-templating reaction. J Colloid Interf Sci,2005,285(1):239-246.
    147. Liu Z H, Ooi K. Preparation and alkali-metal ion extraction/insertion reactions with nanofibrous manganese oxide having 2 × 4 tunnel structure. Chem Mater,2003,15(19): 3696-3703.
    148. Luo J, Huang A, Park S H, Suib S L, O'young C L. Crystallization of sodium-birnessite and accompanied phase transformation. Chem Mater,1998,10(6):1561-1568.
    149. Luo J, Suib S L. Preparative Parameters, Magnesium effects, and anion effects in the crystallization of birnessites. J Phys Chem B,1997,101(49):10403-10413.
    150. Luo J, Zhang Q, Garcia-Martinez J, Suib S L. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts. J Am Chem Soc,2008,130(10):3198-3207.
    151. Luo J, Zhang Q, Huang A, Giraldo O, Suib S L. Double-aging method for preparation of stabilized na-buserite and transformations to todorokites incorporated with various metals. Inorg Chem,1999,38(26):6106-6113.
    152. Luo J, Zhang Q H, Huang a M, Suib S L. Total oxidation of volatile organic compounds with hydrophobic cryptomelane-type octahedral molecular sieves. Micropor Mesopor Mat,2000, 35-6:209-217.
    153. Majcher E H, Chorover J, Bollag J M, Huang P M. Evolution of CO2 during birnessite-induced oxidation of 14C-labeled catechol. Madison, WI, ETATS-UNIS:Soil Sci Soc Am J,2000,64:157-163.
    154. Makwana V D, Son Y C, Howell a R, Suib S L. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst:A kinetic and isotope-labeling study. J Catal,2002, 210(1):46-52.
    155. Malinger K A, Ding Y S, Sithambaram S, Espinal L, Gomez S, Suib S L. Microwave frequency effects on synthesis of cryptomelane-type manganese oxide and catalytic activity of cryptomelane precursor. J Catal,2006,239(2):290-298.
    156. Malinger K A, Laubernds K, Son Y C, Suib S L. Effects of Microwave Processing on Chemical, Physical, and Catalytic Properties of Todorokite-Type Manganese Oxide. Chem Mater,2004,16(22):4296-4303.
    157. Manceau A, Gorshkov a I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides; Part Ⅱ, information from EXAFS spectroscopy and electron and X-ray diffraction. Am Mineral,1992,77(11-12):1144-1157.
    158. Manceau A, Lanson B, Drits V A. Structure of heavy metal sorbed birnessite. Part Ⅲ:Results from powder and polarized extended X-ray absorption fine structure spectroscopy. Geochim Cosmochim Ac,2002,66(15):2639-2663.
    159. Manceau A, Lanson B, Schlegel M L, Harge J C, Musso M, Eybert-Berard L, Hazemann J L, Chateigner D, Lamble G M. Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am J Sci,2000,300(4):289-343.
    160. Matocha C J, Sparks D L, Amonette J E, Kukkadapu R K. Kinetics and mechanism of birnessite reduction by catechol. Madison, WI, ETATS-UNIS:Soil Sci Soc Am J,2001,65: 58-66.
    161.Mckenzie R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral mag,1971,38:493-502.
    162. Mckenzie R M. Manganese oxides and hydroxides. In:Dixon J B, Weed S B eds., Minerals in Soil Environments (2nd edition). SSSA Book Series 1,1989:439-465.
    163. Mellin T A, Lei G. Stabilization of 10?-manganates by interlayer cations and hydrothermal treatment:Implications for the mineralogy of marine manganese concretions. Marine Geology,1993,115(1-2):67-83.
    164. Morgan J J, Stumm W. Colloid-chemical properties of manganese dioxide. J Colloid Sci, 1964,19(4):347-359.
    165. Murray J W. The surface chemistry of hydrous manganese dioxide. J Colloid Interf Sci,1974, 46(3):357-371.
    166. Nicholson K. Manganese cemented Quaternary gravels; birnessite, lithiophorite and quenselite from an example in Wigtonshire. Scot J Geol,1988,24(2):194-200.
    167. Nico P S, Zasoski R J. Importance of Mn(Ⅲ) Availability on the Rate of Cr(Ⅲ) Oxidation on δ-MnO2. Environ Sci Technol,2000,34(16):3363-3367.
    168. Nyutu E K, Chen C H, Sithambaram S, Crisostomo V M B, Suib S L. Systematic control of particle size in rapid open-vessel microwave synthesis of K-OMS-2 nanofibers. J Phys Chem C,2008,112(17):6786-6793.
    169. Opembe N N, King'ondu C K, Espinal a E, Chen C H, Nyutu E K, Crisostomo V M, Suib S L. Microwave-assisted synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanomaterials under continuous flow conditions. J Phys Chem C,2010,114(34): 14417-14426.
    170. Ostwald J. Some observations on the chemical composition of todorokite. Mineral Mag,1986, 50, Part 2(356):336-340.
    171. Parra J G, Rivero V C, Lopez T I. Forms of Mn in soils affected by a forest fire. Sci Total Environ,1996,181(3):231-236.
    172. Peluso M A, Gambaro L A, Pronsato E, Gazzoli D, Thomas H J, Sambeth J E. Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catal Today,2008,133:487-492.
    173. Portehault D, Cassaignon S, Baudrin E, Jolivet J P. Morphology control of cryptomelane type MnO2 nanowires by soft chemistry.growth mechanisms in aqueous medium. Chem Mater, 2007,19:5410-5417.
    174. Portehault D, Cassaignon S, Baudrin E, Jolivet J P. Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4-/Mn2+ reaction. J Mater Chem,2009,19(16):2407-2416.
    175. Post J E. Crystal structures of manganese oxide minerals. Catena Supplement,1992,21: 51-73.
    176. Post J E. Manganese oxide minerals:Crystal structures and economic and environmental significance. P Nati Acad Sci USA,1999,96(7):3447-3454.
    177. Post J E, Bish D L. Rietveld refinement of the todorokite structure. Am Mineral,1988, 73(7-8):861-869.
    178. Post J E, Heaney P J, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite. Am Mineral,2003,88(1):142-150.
    179. Post J E, Veblen D R. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral,1990,75(5-6): 477-489.
    180. Potter R M, Rossman G R. The tetravalent manganese oxides; identification, hydration, and structural relationships by infrared spectroscopy. Am Mineral,1979,64(11-12):1199-1218.
    181. Rebello J S, Fernandes J B. ion induced synthesis of manganese oxide octahedral molecular sieves (OMS-2). Micropor Mesopor Mat,2005a,77(2-3):189-192.
    182. Rebello J S, Fernandes J B. SO42- ion induced synthesis of manganese oxide octahedral molecular sieves (OMS-2). Micropor Mesopor Mat,2005b,77(2-3):189-192.
    183. Renuka R, Ramamurthy S. An investigation on layered birnessite type manganese oxides for battery applications. J Power Sources,2000,87(1-2):144-152.
    184. Rossouw M H, Liles D C, Thackeray M M. Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2. J Solid State Chem,1993,104(2):464-466.
    185. Ruan H D. Oxidation of As(Ⅲ) by Several Manganese Oxide Minerals in Absence and Presence of Goethite. Acta Geologica Sinica(English Edition),2006, (02):249-256.
    186. Sakai N, Ebina Y, Takada K, Sasaki T. Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J Phys Chem B,2005,109(19): 9651-9655.
    187. Santos V P, Pereira M F R, Orfao J J M, Figueiredo J L. Catalytic oxidation of ethyl acetate over a cesium modified cryptomelane catalyst. Appl Catal B-Environ,2009,88(3-4): 550-556.
    188. Schurz F, Bauchert J M, Merker T, Schleid T, Hasse H, Glaser R. Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies:Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Appl Catal A-Gen, 2009a,355(1-2):42-49.
    189. Schurz F, Bauchert J M, Merker T, Schleid T, Hasse H, Glaser R. Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies:Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Appl Catal A-Gen, 2009b,355(1-2):42-49.
    190. Scott M J, Morgan J J. Reactions at Oxide Surfaces.1. Oxidation of As(Ⅲ) by Synthetic Birnessite. Environ Sci Technol,1995,29(8):1898-1905.
    191. Segal S R, Suib S L, Tang X, Satyapal S. Photoassisted decomposition of dimethyl methylphosphonate over amorphous manganese oxide catalysts. Chem Mater,1999,11(7): 1687-1695.
    192. Shaughnessy D A, Nitsche H, Booth C H, Shuh D K, Waychunas G A, Wilson R E, Gill H, Cantrell K. J, Serne R J. Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Environ Sci Technol,2003,37(15):3367-3374.
    193. Shen X F, Ding Y S, Hanson J C, Aindow M, Suib S L. In situ Synthesis of mixed-valent manganese oxide nanocrystals:an in situ synchrotron x-ray diffraction study. J Am Chem Soc,2006,128(14):4570-4571.
    194. Shen X, Ding Y, Liu J, Laubernds K, Zerger R P, Polverejan M, Son Y C, Aindow M, Suib S L. Synthesis, characterization, and catalytic applications of manganese oxide octahedral molecular sieve (OMS) nanowires with a 2×3 tunnel structure. Chem Mater,2004,16(25): 5327-5335.
    195. Shen X F, Ding Y S, Liu J, Cai J, Laubernds K, Zerger R P, Vasiliev A, Aindow M, Suib S L. Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv Mater,2005a,17(7):805-809.
    196. Shen X F, Ding Y S, Liu J, Han Z H, Budnick J I, Hines W A, Suib S L. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS). J Am Chem Soc,2005b,127(17):6166-6167.
    197. Shen Y F, Suib S L, O'young C L. Effects of Inorganic Cation Templates on Octahedral Molecular Sieves of Manganese Oxide. J Am Chem Soc,1994,116(24):11020-11029.
    198. Shen Y F, Zerger R P, Deguzman R N, Suib S L, Mccurdy L, Potter D I, O'young C L. Manganese Oxide Octahedral Molecular Sieves:Preparation, Characterization, and Applications. Science,1993,260(5107):511-515.
    199. Sherman D M. Electronic structures of iron(Ⅲ) and manganese(Ⅳ) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim Cosmochim Acta,2005,69(13):3249-3255.
    200. Shindo H, Huang P M. Role of Mn(Ⅳ) oxide in abiotic formation of humic substances in the environment. Nature,1982,298(5872):363-365.
    201. Shindo H, Toru O, Naotoshi M, Keiji U, Boon G T. Catalytic role of Mn(Ⅳ) oxide in the formation of humic-enzyme complexes in the soil ecosystem. Soil Sci and plant nutrition, 1996,42(1):141-146.
    202. Siegel M D, Turner S. Crystalline todorokite associated with biogenic debris in manganese nodules. Science,1983,219(4581):172-174.
    203. Silvester E, Manceau A, Drits V A. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite; Ⅱ, Results from chemical studies and EXAFS spectroscopy. Am Mineral,1997,82(9-10):962-978.
    204. Sithambaram S, Nyutu E K, Suib S L. OMS-2 catalyzed oxidation of tetralin:A comparative study of microwave and conventional heating under open vessel conditions. Appl Catal A-Gen,2008,348(2):214-220.
    205. Spark K M, Johnson B B, Wells J D. Characterizing heavy-metal adsorption on oxides and oxyhydroxides. Eur J Soil Sci,1995,46(4):621-631.
    206. Sposito G, Reginato R J. Opportunities in basic Soil Sci research. Soil Sci Soc Am J,1992.
    207. Suib S L. Sorption, catalysis, separation design. Chem Innov,2000,31(21):27-34.
    208. Suib S L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Accounts Chem Res,2008,41(4):479-487.
    209. Tan W F, Lu S J, Liu F, Feng X H, He J Z, Koopal L K. Determination of the point-of-zero charge of manganese oxides with different methods including an improved salt titration method. Soil Sci,2008,173(4):277-286.
    210. Tang X F, Li Y G, Chen J L, Xu Y D, Shen W J. Synthesis, characterization, and catalytic application of titanium-cryptomelane nanorods/fibers. Micropor Mesopor Mat,2007, 103(1-3):250-256.
    211. Thackeray M M. Manganese oxides for lithium batteries. Prog Solid State Ch,1997,25(1-2): 1-71.
    212. Tian Z R, Yin Y G, Suib S L, O'young C L. Effect of Mg2+ Ions on the Formation of Todorokite Type Manganese Oxide Octahedral Molecular Sieves. Chem Mater,1997,9(5): 1126-1133.
    213.Tsuji M, Tamaura Y. Thermodynamic study of M+/H+ exchanges on a cryptomelane-type manganic acid. Solvent Extr Ion Exc, 2000,18(1):187-202.
    214. Tu S. Transformations of Synthetic Birnessite as Affected By pH and Manganese Concentration. Clay Clay Miner,1994,42(3):321-330.
    215. Turner S, Buseck P R. Manganese oxide tunnel structures and their intergrowths. Science, 1979,203(4379):456-458.
    216. Turner S, Buseck P R. Todorokites:A New Family of Naturally Occurring Manganese Oxides. Science,1981,212(4498):1024-1027.
    217. Vasconcelos P M. Behavior of argon gas release from manganese oxide minerals as revealed by (40)Ar/(39)Ar laser incremental heating analysis. Chinese Sci Bull,2002, (18).
    218. Vicat J, Fanchon E, Strobel P, Tran Qui D. The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures. Acta Crystallographica Section B,1986,42(2):162-167.
    219. Vileno E, Zhou H, Zhang Q, Suib S L, Corbin D R, Koch T A. Synthetic todorokite produced by microwave heating:An active oxidation catalyst. J Catal,1999,187(2):285-297.
    220. Villalobos M, Lanson B, Manceau A, Toner B, Sposito G. Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am Mineral,2006,91(4):489-502.
    221. Villalobos M, Toner B, Bargar J, Sposito G. Characterization of the manganese oxide produced by pseudomonas putida strain MnB1. Geochim Cosmochim Ac,2003,67(14): 2649-2662.
    222. Villegas J C, Garces L J, Gomez S, Durand J P, Suib S L. Particle size control of cryptomelane nanomaterials by use of H2O2 in acidic conditions. Chem Mater,2005,17(7): 1910-1918.
    223. Vodyanitskii Y. Mineralogy and geochemistry of manganese:A review of publications. Eurasian Soil Sci,2009,42(10):1170-1178.
    224. W. Buser, P. Graf, W. Feitknecht. Beitrag zur Kenntnis der Mangan(Ⅱ)-manganite und des delta-MnO2. Helv Chim Acta,1954,37(7):2322-2333.
    225. Wadsley a D. Synthesis of some hydrated manganese minerals. Am Mineral,1950,35: 485-488.
    226. Wang X, Li Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem-Eur J,2003,9(1):300-306.
    227. Webb S M, Tebo B M, Bargar J R. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1. Am Mineral,2005,90(8-9): 1342-1357.
    228. Wehrli B, Stumm W. Vanadyl in natural waters:Adsorption and hydrolysis promote oxygenation. Geochim Cosmochim Ac,1989,53(1):69-77.
    229. Xia G-G, Tong W, Tolentino E N, Duan N G, Brock S L, Wang J Y, Suib S L, Ressler T. Synthesis and characterization of nanofibrous sodium manganese oxide with a 2×4 tunnel structure. Chem Mater,2001,13(5):1585-1592.
    230. Yang D S, Wang M K. Syntheses and characterization of birnessite by oxidizing pyrochroite in alkaline conditions. Clay Clay Miner,2002,50(1):63-69.
    231. Yang S, Zhu W, Wang J, Chen Z. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. J Hazard Mater,2008,153(3): 1248-1253.
    232. Yang X, Kanoh H, Tang W, Liu Z-H, Ooi K. Lithium magnesium manganese oxides prepared from Mg-birnessite or Mg-todorokite by a LiNO3 flux method. Chem Lett,2000,29(10): 1192-1193.
    233. Yang X, Kanoh H, Tang W, Liu Z-H, Ooi K. New Route for Preparation of Layered Manganese Oxides with Multivalent Metals in the Interlayer. Chem Lett,2001,30(7): 612-613.
    234. Yin Y G, Xu W Q, Deguzman R, Suib S L, O'young C L. Studies of stability and reactivity of synthetic cryptomelane-like manganese oxide octahedral molecular sieves. Inorg Chem,1994, 33(19):4384-4389.
    235. Yin Y G, Xu W Q, Suib S L, O'young C L. Lattice oxygen mobility and structural stability of Ni and Cu octahedral molecular sieves having the cryptomelane structure. Inorg Chem,1995, 34(16):4187-4193.
    236. Yoo H N, Park D H, Hwang S J. Effects of vanadium- and iron-doping on crystal morphology and electrochemical properties of 1D nanostructured manganese oxides. J Power Sources,2008,185(2):1374-1379.
    237. Zhang Q, Luo J, Vileno E, Suib S L. Synthesis of cryptomelane-type manganese oxides by microwave heating. Chem Mater,1997,9(10):2090-2095.
    238. Zhang Q, Suib S L. Transformation of cryptomelane-type manganese oxides to oxygen deficient systems by microwave-induced oxygen evolution. Chem Mater,1999,11(5): 1306-1311.
    239. Zhang Q, Xiao Z, Feng X, Tan W, Qiu G, Liu F. [alpha]-MnO2 nanowires transformed from precursor [delta]-MnO2 by refluxing under ambient pressure:The key role of pH and growth mechanism. Mater Chem Phys,2011,125(3):678-685.
    240. Zhang X, Yu P, Chen Y, Ma Y. Low-temperature hydrothermal synthesis of [alpha]-MnO2 three-dimensional nanostructures. Mater Lett,2010,64(5):583-585.
    241. Zhao D, Liao Y, Zhang Z. Toxicity of Ionic Liquids. CLEAN-Soil, Air, Water,2007,35(1): 42-48.
    242. Zhao W, Cui H, Liu F, Tan W, Feng X. Relationship between Pb2+ adsorption and average mn oxidation state in synthetic birnessites. Clay Clay Miner,2009a,57(5):513-520.
    243. Zhao W, Feng X, Tan W, Liu F, Ding S. Relation of lead adsorption on birnessites with different average oxidation states of manganese and release of Mn2+/H+/K+. J Environ Sci, 2009b,21(4):520-526.
    244. Zhao W, Wang Q, Liu F, Qiu G, Tan W, Feng X. Pb2+ adsorption on bimessite affected by Zn2+ and Mn2+ pretreatments. Journal of Soils and Sediments,2010,10(5):870-878.
    245. Zhao Y, He J, Jiao Q Z, Evans D G, Duan X, Lu C H, Wang Z G. Selectivity of crystal growth direction and control of particle size in layered double hydroxides. Chinese J Inorg Chem,2001,17(4):573-579.
    246. Zheng Y H, Cheng Y, Bao F, Wang Y S, Qin Y. Multiple branched alpha-MnO2 nanofibers:A two-step epitaxial growth. J Cryst Growth,2006,286(1):156-161.
    247. Zhou H, Wang J Y, Chen X, O'young C L, Suib S L. Studies of oxidative dehydrogenation of ethanol over manganese oxide octahedral molecular sieve catalysts. Micropor Mesopor Mat, 1998,21(4-6):315-324.
    248. Zwicker W K, W M, W J H. Nsutite-a widespread manganese oxide mineral. Am Mineral, 1962,47:246-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700