激光电化学微加工机理与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光电化学微加工技术是一种将激光加工技术与电化学加工技术相结合而形成的一种复合微加工新技术,在MEMS(Micro Electro Mechanical System,微机电系统)中具有较广阔的应用前景。本学位论文以发展激光电化学微加工技术为目的,分别对连续激光电化学和脉冲激光电化学微加工的机理与实验进行了较深入的探讨。
     在溶液中连续激光与材料相互作用的热效应方面,针对激光加热溶液中物质时存在的爆发沸腾这一复杂现象,根据连续激光的加热特点,提出了以设置溶液沸腾换热系数来模拟爆发沸腾对温度场的影响,从而来求解溶液中物质温度场的简化处理办法。在此基础上,建立了激光作用下溶液中物质的温度场分布求解模型。
     为了更深入地理解连续激光电化学刻蚀金属的机理,对连续激光作用下固—液界面的温度场分布进行了仿真研究。根据连续激光加热沸腾特点提出的温度场求解简化处理办法,针对连续激光定点和扫描电化学刻蚀实验,采用有限元分析软件ABAQUS对溶液中连续激光加工的瞬态温度场分布进行了数值模拟。仿真结果表明,激光定点加热达不到金属熔点但能使照射微区产生较大的温度梯度;激光扫描和溶液的冷却作用大大缩小了热效应,使连续激光实现了脉冲激光的加热效果。
     采用808nm半导体连续激光聚焦照射浸于硝酸钠溶液中的不锈钢,实现无屏蔽、单步的激光电化学刻蚀金属。针对定点刻蚀中较为严重的横向刻蚀问题,通过激光扫描的方法减小了刻蚀线宽、提高了分辨率,并得到线宽62.5um的图形。实验研究半导体激光电化学微刻蚀金属工艺,对连续激光定点和扫描刻蚀的微观形貌进行分析;同时,通过对连续激光加热溶液中物质温度场分布的分析,对半导体激光电化学刻蚀金属的实验现象和工艺机理进行了较深入的探讨。溶液环境中激光加工的热效应研究进一步证实了激光电化学刻蚀不锈钢是一个激光光热作用诱导电化学溶解的复合过程。
     根据高能量短脉冲激光加热溶液中物质产生爆发沸腾复杂现象的特点,提出了以导热过程为主导机制来进行准分子激光加热溶液中物质的传热分析;同时研究了准分子激光作用溶液中物质的光热效应对激光电化学刻蚀硅工艺的影响。采用激光等离子体冲击波理论、空泡理论分析了脉冲激光电化学微加工过程中力学效应的特点。同时,探讨了溶液中高能短脉冲激光加工的力学效应对脆性材料的去除机理;在此基础上,建立了材料去除率的数学模型;并采用水下激光加工的实验进行了模型验证,试验结果表明冲击力对脆性材料有较大的去除率。热-力学效应分析表明:该复合工艺的热效应较小,力效应显著。
     探索一种新的硅刻蚀工艺—准分子激光电化学刻蚀硅工艺。对高功率密度的准分子激光电化学微刻蚀工艺进行一系列的工艺实验研究,并对激光加工的微观形貌进行分析;同时,通过与激光直刻的比较,分析了复合工艺刻蚀质量和刻蚀速率的特性。相比激光直刻,复合工艺获得较好的表面质量和较快的刻蚀速率。该复合工艺同时包含三种刻蚀作用:激光直接刻蚀作用、电化学刻蚀作用和激光与电化学的耦合刻蚀作用,其中激光直接刻蚀作用占主要部分。在耦合作用中,溶液中激光加工的力学效应对材料的刻蚀作用很大。通过对准分子激光与溶液中靶材相互作用过程的热-力效应分析,更深入地探讨准分子激光电化学工艺的刻蚀机理。从工艺原理分析可知,该工艺在硅微结构的三维加工领域中有较大的应用潜力。
Laser electrochemical etching process, which is combined with laser machining process and electrochemical etching process, is a new compound etching technique. It has been found extensive applications in MEMS(Micro Electro Mechanical System) industry. To develop the technique of laser electrochemical etching process, in this dissertation, the mechanisms and experiments of continue laser and pulse laser electrochemical micromachining processes were furtherly studied.
     On the thermal effect of continue laser interacting with matter in liquid, to solve the complex phenomenon of transient explosive boiling by laser heating material in liquid, simplified methods, which is exchange-heat coefficient of liquid boiling simulating the explosive boiling effect on the temperature field of laser heating matter in liquid, were brought forward according to the characteristic of continue laser heating. On basic of it, the temperature solution model of material in liquid by laser heating was founded.
     To further understand the mechanism of laser ectrochemical etching metal, the temperature field induced by laser heating metal at the liquid-solid interface was investigated. On basis of the simplified methods solving the transient explosive boiling when continue laser heating material in liquid, the transient temperature fields of the experiments on laser immobility and laser scanning micromachining metal in liquid were simulated by FEM software ABAQUS. As known from simulation results, laser immobility heating cann’t obtain metal melting point, but brings big temperature gradients in laser-irradiated micro-zone. Simulation of laser scanning indicates that it realizes the effect of pulse laser heating due to scanning and liquid cooling.
     808nm semiconductor laser was adopted for the laser-induced electrochemical etching process with the stainless-steel sample in sodium nitrate solution, and then maskless and single-step patterning stainless steel was obtained. To reduce the fixed-point transverse etching, laser scanning was also adopted to meliorate the transverse etching, improve the etching quality and obtain a figure of minimum line-width 62.5um. By analyzing the microcosmic images of laser immobility and laser scanning etching in liquid, semiconductor laser electrochemical process was experimentally studied. Simulatingly, the experimental phenomenon and mechanism of laser electrochemical etching metal were furtherly investigated by the temperature fields of laser heating metal in liquid. Thermal effect analysis confirms the process of laser electrochemical etching stainless steel is a coupling process of laser photothermal effect which helps to induce electrochemical dissolution.
     On basis of the complex phenomenon characteristic of transient explosive boiling by pulse laser heating material in liquid, the method, which is that heat conduction is dominating, was brought forward to solve the temperature field of short-pulse laser heating; the thermal effect of excimer laser interacting with matter in liquid affecting on the coupling technics was studied. Laser plume shock-wave theory and vacuole theory were adopted to analyze the mechanical effect characteristic of short-pulse laser electrochemical micromachining process. Simultaneously, the removal mechanism of brittle material by mechanical effect, which is induced by high-energy and short-pulse laser machining in liquid, was discussed. On basis of it, a theoretical model of material removal rate was proposed; the experiment of laser machining under water was adopted to validate the model and experiment results indicate that brittle material removal rate by shock force acting is relatively great. By the study of thermal-mechanical effect during short-pulse excimer laser interacting with matter in liquid, the thermal effect is little and the mechanical effect is marked.
     A novel silicon etching technique, excimer-laser electrochemical etching silicon, was studied. The experiments of micromachining silicon by laser-induced electrochemical etching were carried out, with 248nm excimer laser of great power as light source and KOH solution as electrolyte. Comparing with laser etching in air, the etching quality and etching rate of the coupling techinecs were analyzied; good surface and rapid etching rate were obtained. In summary, the coupling technique contains laser etching, electrochemical etching and coupling effects of laser and the solution; and laser etching is dominating. In the coupling effects, mechanical effect of laser micromachining in liquid has great effect on material etching. By the study of thermal-mechanical effect during short-pulse excimer laser interacting with matter in liquid, the mechanism of the coupling process was further understanded. As a result, this process has the ability of machining large aspect ratio microstructures.
引文
[1] Luft A, Franz U, Emsermann A, Kaspar J. A study of thermal and mechanical effects on materials induced by pulsed laser drilling, Appl. Phys. A: Mater. Sci. Process. 1996, 63: 93~101
    [2] Shafeev G A, Obraztsova E D, Pimenov S M. Laser-assisted etching of diamonds in air and in liquid media. Materials Science and Engineering: B, 1997, 46(1-3): 129~132
    [3] LING L, LOU Q H, LI S Z, et al. Microcutting Si wafer in water bath by second harmonic output of YAG laser. Laser Technology. 2004, 28(2):131~133
    [4] Aden M, Kreutz E W, Voss A. Laser-Induced Plasma Formation During Pulsed Laser Deposition, J. Phys. D, 1993, 26: 1545~1553
    [5] Park H K, Xu X, Grigoropoulos C P, Do N, Klees L, Leung P T, and Tam A C. Transient Optical Transmission Measurement in Excimer-Laser Irradiation of Amorphous Silicon Films. ASME J. Heat Transfer, 1993, 115: 178~183
    [6] Tsao J Y, Ehrlich D J. Laser-controlled chemical etching of aluminum. Appl. Phys. Lett, 1983, 43(2): 146~148
    [7] Xu X, Grigoropoulos C P, Russo R E. Transient Temperature During Pulsed Excimer Laser Heating of Thin Films Obtained by Optical Reflectivity Measurement. ASME J. Heat Transfer, 1995, 117: 17~24
    [8] Lax M. Temperature rise induced by a laser beam, J. Appl. Phys., 1977, 48: 3919 ~3924
    [9] Shin Y S, Jeong S H. Laser-assisted etching of titanium foil in phosphoric acid for direct fabrication of microstructures. J.Laser Appl., 2003, 15(4): 240~245
    [10] Stephen A, Metev S, Vollertsen F. Principles and Applications of Laser-induced Liquid-phase Jet-chemical Etching. Proceedings of SPIE, 2003, 5063: 227~232
    [11] Brannon J H. Excimer-Laser Ablation and Etching. IEEE Circuits & Devices Magazine,1990, 6(5): 18~24
    [12] Mlcak R, Tuller H L. Photo-Assisted Electrochemical Machining of Micromechanical Structure. Proceedings of IEEE, 1993: 225~229
    [13] Gutfeld R J, Hodgson R T, Laser enhanced etching in KOH. Appl. Phys. Lett, 1982, 40(4): 352~354
    [14] Lim P, Brock J R, Trachtenberg I. Laser-induced etching of silicon in hydrofluoricaced. Appl. Phys. Lett, 1992, 60(4): 486~488.
    [15] Kohl P A. Photoelectrochemical etching of semiconductors. IBM Journal ofResearch and Development, 1998, 42(5): 629~637
    [16] Ying K, Jacob J. Photoelectrochemical dissolution of N-type silicon. Elecrochimica Acta,1998,43(16-17): 2389~2398
    [17]宋登元,郭宝增,李宝通. Ar+激光诱导湿刻Si的特性研究.激光技术, 1999, 23(3): 190~193
    [18]杨杰等.利用紫外激光以及H2O2和HF的混合溶液对硅片进行光化学刻蚀.科学通报, 2001, 46(20): 1751~1754
    [19] Minsky S, White M, Hu E L. Room-temperature photoenhanced wet etching of GaN. Appl. Phys. Lett., 1996, 68(11): 1531~1533
    [20] Khare R, Hu E L. Via-hole formation in semi-insulating InP using wet photo- electrochemical etching. Indium Phophide and Related Materials, 1993, 537~540
    [21] Khare R, Hu E L, Reynolds D et al., Photoelectrochemical etching of high aspect ratio submillimeter waveguide fiters from n+GaAs wafers. Appl. Phys. Lett., 1992, 61(24): 2890~2892
    [22] Evelyn L H, et al. Photoelectrochemical wet etching of group III nitrides. United States,US 5773369, 1998. 1~8
    [23] Twyford J, A Picellated Grating Array Using Photoelectrochemical Etching on a GaAs Waveguide. IEEE Phonics Technology Letters, 1995, 7(7): 766~768
    [24] Podlesnik V, Gilgen H, Osgood M. Maskless chemical etching of submicrometer gratings in single-crystalline GaAs. Appl.Phys. Lett., 1983, 43(12): 1083~1085
    [25] Podlesnik V, Gilgen H, Osgood M. Waveguiding effects in laser-induced aqueous etching of semiconductors. Appl. Phys. Lett.,1986, 48(7): 496~498
    [26] Ma Q, Moldovan N, Mancini C et al.. Wet etching of GaAs using synchrotron radiation x rays. J. Appl. Phys., 2001, 89(5):3033~3040
    [27]张玉书,丁涛,任临福.用准分子激光诱导湿刻实现对GaAs的图形转换.中国激光, 1992, 19(9): 663~667
    [28]刘霖,叶玉堂,刘娟秀等.激光化学液相次序选择腐蚀新方法.中国激光, 2006, 33(1): 49~52
    [29] Hutton R S, Port S N, Schiffrin D J, et al. Photoelectrochemical imaging of the etching and passivation of silicon in aqueous KOH. Journal of Electroanalytical Chemistry, 1996, 418(1-2): 153~158
    [30] Nowak R, Metev S. Thermochemical laser etching of stainless steel and titanium in liquids, Applied Physics A: Materials Science & Processing, 1996, 63(2): 133~138
    [31] Von Gutfeld R J, Sheppard K G. Electrochemical microfabrication bylaser–enhanced photothermal processes. IBM Journal of Research and Development, 1998, 42(5): 639~654
    [32] Metev S, Stephen A, Schwarz J, Wochnowski C. Laser-induced chemical micro-treatment and synthesis of materials, Focused on Laser Precision Microfabrication (LPM 2002), 2003, 1(5): 47~52
    [33] Vogel A, Noack J, Nahen K, et al. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys., 1999, B68: 271~280
    [34]周益春,段祝平,解伯民.强激光破坏机制研究进展.力学与实践, 1995, 17 (1): 10~17
    [35]陆建,倪晓武,贺安之.激光与材料相互作用物理学.第1版.机械工业出版社. 1996
    [36] Aiimen M V,漆海兵译.激光束与材料相互作用的物理原理与应用.第1版.科学出版社, 1994
    [37]强希文,张建泉,刘峰.激光等离子体的辐射与自吸收现象研究.激光杂志1999, 20(6): 20~23
    [38] Vogel A, Busch S, Parlitz U. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust Soc. Am. 1996, 100(1): 148~165
    [39]张建泉,陈荣华,强希文.激光产生的激波在靶材中的传播及层裂效应,中国激光, 2002, A 29(3):197~200
    [40]郭大浩,吴鸿兴,王声波.激光冲击强化机理研究.中国科学(E辑). 1999, 29(3): 222~226
    [41] Dick K, Pepin H, Martineau J. Plasma creation form thin aluminum targets by a TEA-CO2 laser. J. Appl. Phys.1973, 44(7): 3284~3288
    [42]卞保民,陈建平,杨玲,倪晓武,陆建.空气中激光等离子体冲击波的传输特性研究.物理学报, 2000, 49(3): 445~448
    [43]李俊昌.激光的衍射及热作用计算,北京:科学出版社, 2002
    [44]夏小平,王声波等.激光技术及强激光与物质相互作用实验.物理实验, 2002, 23 (2): 846~851.
    [45]孙承伟主编,激光辐照效应,北京:国防工业出版社, 2002.
    [46]张永康,戴希敏,蔡兰.激光冲击强化力学效应的数学模型.应用激光, 1999,19(3): 129~132.
    [47] Katz D L, Sliepcevich C M. Liquefied natural gas/water explosions:. cause and effect. Hydrocarbon Process 1971 (50): 240~244.
    [48] Park H K, et al. Pressure Generation and Measurement in the Rapid Vaporization of Water on a pulsed-Laser-Heated Surface. J. Apphed Physics, 1996, 80(7): 4072~ 4081.
    [49] Gjerkes H, Golobie I. Pool Bolling CHF on a Laser Heated Thin Plate, Int. J. Heat Mass Transfer, 2000(43): 1999~2008
    [50] Board S J, Clare A J, Duffey R B, Hall R S, Poole D H. An Experimental Study of Energy Transfer Processes Relevant to Thermal Explosions. Int. J. heat Mass Transfer, 1971, 14: 1631~1641
    [51] Park H K, Grigoropoulos C P, Poon C C, and Tam A C. Optical Probing of the Temperature Transients During Pulsed-Laser Induced Boiling of Liquids. Appl. Phys. Lett., 1996, 68: 596~598
    [52] Yavas O, et al., Optical and Acoustic Study of Nucleation and Growth of Bubbles at a Liquid-Solid Interface Induced by Nanosecond-Pulsed-Laser Heating, Appl. Phys. A, 1994(58): 407~415.
    [53] Ho J R, Grigoropoulos C P, Humphrey J. Computational Study of Heat Transfer and Gas Dynamics in the Pulsed Laser Evaporation of Metals. J. Appl. Phys., 1995, 78: 4696~4709
    [54] Ho J R, Grigoropoulos C P, Humphrey J. Gas Dynamics and Radiation Heat Transfer in the Vapor Plume Produced by Pulsed Laser Irradiation of Aluminum. J. Appl. Phys., 1996, 79: 7205~7215
    [55] Ueno I, Shoji M, Thermal-Fluid Phenomena Induced by Nanosecond-Pulse Heating of Materials in Water, Journal of Heat Transfer, 2001, 123(12): 1123~1132
    [56] Asshauser T, et al. A Coustic Transient Generation by Holmium-Laser-Induced Cavitation Bubbles, J. Applied Physics, 1994, 76(6): 5007~5013.
    [57] Niemz M H. Laser-Tissue Interactions: Fundamentals and Applications. 1st ed. Germany: Spring er-Verlag, 1996
    [58] Zhao Z, Gold S, Poulikakos D. Pressure and Power Generation during Explosive Vaporization on a Thin-Film Microheater, lnt. J. Heat Mass Transfer, 2000(43): 281~296.
    [59] Min S, Dongsik K, Costas P G. Liquid-assisted pulsed laser cleaning using near-infrared and ultraviolet radiation, J. of Applied Physics, 1999, 86(11): 1258~1266
    [60] Dongsik K, Costas P G, Phase-change phenomena and acoustic transient generation in the pulsed laser induced ablation of absorbing liquids, Applied Surface Science, 1998(1): 53~58
    [61] Oraevsky A A,Jacques S L, Titel F K,Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions, J Appl. Phys., 1995, 78(2): 188~196
    [62]李骥.脉冲激光加热下快速瞬态核化沸腾的机理研究.中国科学院工程热物理研究所博士学位论文, 2001
    [63] Kennedy P K, Hammer D X, RockwellB A. Laser-induced breakdown in a queous media. Pog. Quant. Electron., 1997(21): 155~248
    [64] Shima A .Studies on bubble dynamics. Shock Waves, 1997(7): 33~42
    [65] Philipp A, Lauterbom W. Cavitation erosion by single-laser produced bubbles. J. Fluid Mech, 1998(361): 75~116
    [66] Tomita Y, Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid.Mech., 1986(169): 535~564
    [67]刘颂豪,激光加工技术的现状和展望,第三届全国物理类研究生暑期学校, 2002.7
    [68] Mourou G. The ultrahigh-peak-power laser: present and future. Applied Physics B, 1997(65): 205~201,
    [69]李志勇.强激光在材料中驱动的冲击波研究,中国科学技术大学硕士学位论文, 1996.
    [70]刘世伟.激光冲击处理技术研究,中国科学技术大学硕士学位论文, 2000.
    [71] David L. http://www.laurin.com/content/Feb98/techBurSts.html, Feb, 1998.
    [72] Fairand B P, Wilcox B A. Laser shock-induced microstructural and mechanical changes in 7075 aluminum. Journal of Applied Physics, 1972(43): 3893~3896
    [73] Arnie H. http://www.llnl.gov/Hackel.html, Oct, 1998
    [74] White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption. Journal of Applied Physics, 1963(34):2123~2124
    [75] Penner S S, Sharma O P. Interaction of laser radiation with an absorbing semi- infinite bar. Journal of Applied Physics, 1967(37): 2304~2308.
    [76] O'Keefe J D, Skeen C H. Laser-induced stress-wave and impulse augmentation. Applied Physics Letter, 1972, 21(10): 464~466
    [77] Clauer A H, Fairand B Y, Wilcox B A. Laser shock hardening of weld zones in aluminum alloys. Metallurgical Transactions A, 1977(8A): 1871~1877
    [78] Fairand B P, Clauer A H. Use of laser generated shocks to improve the properties of metals and alloys. SPIE, 1976(86): 112~119
    [79] Eisner K, Lang A, Schuteand K, Bergman H W. Shock hardening as a novel technique for materials processing. SPIE, 1996(2789): 274~280.
    [80] Ford S C, Fairand B P, et al. Investigation of laser shock processing-executive summary. Technical Report AFWAL-TR-80-3001,1980(1): 268~279
    [81] Clauer A H, Fairand B P. Interaction of laser-induced stress waves with metals. Applications of Lasers in Materials Processing, Metals Park, Ohio, 1979.
    [82] William F B, et al. Laser shock processing of aluminum alloys. Applications of Lasers in Materials Processing, Metals Park, Ohio, 1979 .
    [83] Banas Q, Elsayed-Af H E, Lawrence F V, Laser shock-induced mechanical and microstructural modification of welded maraging steel, J. Appl. Phys, 67(5) (1990), 2380~2384.
    [84]孙承伟.强激光束对金属和复合材料的热和力学效应、北京:第二届全国激光科学技术青年学术交流会议集. 1993: 43~59
    [85]牛燕雄. GaAs光导开关的热击穿实验研究,光电子.激光1994, 5(5): 305~307
    [86]周东平,范正修,范瑞英,赵强,刘正明.红外窗口的激光损伤热过程及保护的研究.红外与毫米波学报, 1994, 15(3): 213~216
    [87]蒋志平.强激光辐照光申探测器的研究.应用激光. 1994, 14(3): 109~110
    [88]强希文等.高功率激光产生的激波在靶材中的传播.红外与激光工程. 2000, 29 (2): 41~45
    [89]王薇,张杰等.冲击波在铝靶中传播的数值模拟研究.物理学报, 2001, 50: 741~747
    [90]洪昕等.激光冲击波在铝靶中的衰减特性研究.量子电子学报, 1998, 15(5): 474~478
    [91]卞保民等.对金属激光烧蚀时空气中产生冲击波的研究.青岛海洋大学学报, 2000, 30(4): 697~700
    [92]卞保民,陈笑,夏铭,杨玲,沈中华.液体中激光等离子体冲击波波前传播特性研究及测试.物理学报, 2004, 53(2) : 508~513
    [93]邹世坤.激光冲击处理对金属表面显微组织和机械性能影响的研究,中国航空工业公司625所硕士学位论文, 1999.
    [94]张永康.激光冲击强化提高航空材料疲劳寿命的研究,南京航空航天大学博士学位论文, 1995.
    [95]洪昕.激光冲击波与冲击强化技术,中国科学技术大学硕士论文, 1997.
    [96] Xin Hong, Shengbo Wang, et al. Confining medium and absorptive overlay: their effects on a laser-induced shock wave, optics and Lasers in Engineering, 1998, 29: 447~455
    [97] GUO D H, WU H X, et al. Study of mechanism of strengthening materials withlaser shock processing. SCIENCE IN CHINA(Series E), 1999, 42(3): 288~293,
    [98]邹鸿承等.小能量激光冲击处理提高铝合金疲劳寿命的研究(I).应用激光, 1995, 15(6): 250~252
    [99]胡寿根,朱美洲.空化水射流研究现状及其应用.华工工业大学学报, 1996, 18(1): 1~8
    [100]陈笑.高功率激光与水下物质相互作用过程与机理研究,南京理工大学博士学位论文, 2004
    [101]徐荣青.高功率激光与材料相互作用力学效应的测试与分析,南京理工大学博士学位论文, 2004
    [102] Akhatov 1, Lindau O, Topolnikov A, Metin R, VakhitovaN, Lauterbom W. Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids., 2001, 13(10): 2805~ 2819
    [103] Kornfeld M. S. On the destructive action of cavitation. J. Appl. Phys. 1944, 15: 495 ~506
    [104] Rattray M. Perturbation effects on cavitation bubble dynamics. Ph. D. thesis, Cali. Inst. of Tech. Pesadena Calif., 1951
    [105] Naude C F, Ellis A T. On the mechanisms of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary. J. Basic Engng, Trans. ASMED 1961, 83: 648~656
    [106] Gibson D C. Cavitation adjacent to plane boundaries. Proc. Aust. Conf. Hydraul. Fluid Mech. Sydney: Inst. Eng, 3: 210~214
    [107] Plesset M S, Chapman R B. Collapse of an initial spherical vapor cavity in the neighborhood of a solid boundary. J. Fluid. Mech. 1971, 47: 283~290
    [108] Nakajama K, Shima A. Analysis of the behavior of a bubble in a viscous incompressible liquid by finite element method. Ingenievr-Archiv. 1977, 46(1): 21~34
    [109] Prospereti A .Bubble dynamics: a review and some recent results. Appl. Sci. Res., 1982, 38: 145~164
    [110] Szymczak W G, Rogers J C W, Solomon J M, Berger A E. A numerical algorithm for hydrodynamic free boundary problems. J. Fluid Mech. 1993, 169: 535~564
    [111] Lundgren T S, Mansour N N. Vortex ring bubbles. J. Fluid Mech, 1991, 224: 177~190
    [112] Zhang D H. On the non-spherical collapse and rebound of a cavitation bubble. J. Fluid Mech. 1994, 266: 181~200
    [113]蔡悦斌.无粘性流体中瞬态泡的成长及溃灭.上海交通大学硕士论文, 1995
    [114]蔡悦斌,鲁传敬,何友声.瞬态空化泡的成长与溃灭.水动力学研究与进展, 1995, 10(6): 653~660
    [115] Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech., 1989, 206: 299~338
    [116] Schifers W P, Shaw S J, Emmony D C. Acoustical and optical tracking of the collapse of a laser-generated cavitation bubble near a solid boundary. Ultrasonics, 1998, 36: 559~563
    [117] Shaw S J, Schifers W P, Emmony D C. Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity. J .Acoust. Soc. Am., 2001, 110(4): 1822~1827
    [118] Blake J R, Gibson D C. Cavitation bubbles near boundaries. Ann. Rev. Fluid Mech., 1987, 19: 99~123
    [119] Rayleigh L. On the pressure developed in liquid during the collapse of a spherical cavity. Philos. Mag., 1917, 34: 94~98
    [120] Jones I. R.; Edwards D. H. An experimental study of the forces generated by the collapse of transient cavities in water. Journal of Fluid Mechanics, 1960. 7: 596~609
    [121] Benjamin T B, Ellis A T. The collapse of cavitation bubbles and the pressures there by produce dagainst solid boundaries. Phil. Tran. A., 1966, 260: 221~240
    [122] Kling C L, Hammit F G. A photo graphic study of spark-induced cavitation bubble collapse. J. Basic Eng., 1972, 825~833
    [123] Lauterborn W. High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Let., 1972, 21: 2~29
    [124] Ward B, Emmony D C. Direct observation of the pressure developed in a liquid during cavitation–bubble collapse. Appl. Phys. Let., 1991, 59: 2228~2230
    [125] Vogel A, Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am., 1988, 84(2): 719~731
    [126]李维特,黄保海,毕仲波.热应力分析及应用,第1版.北京:中国电力出版社,2004
    [127]李力钧.现代激光加工及其装备,北京理工大学出版社, 1993
    [128] JOHN F R. Industrial Applications of Laser, AIP Conference Proceedings No.50 Laser-Solid Interaction and Laser Proceedings-1978, ACADEMIC PRESS, New York, San Francisco London, 1978.
    [129]郑启光,辜建辉.激光与物质相互作用,武汉:华中理工大学出版社, 1996.
    [130] Scruby C B, Dewhurst R J, Palmer S B. Quantitative studied of thermally generated elastic waves in laser-irradiated metals. J. Appl. Phys., 1980, 51(12): 6210~6216
    [131] Bresse L F, Hutchins D A. Transient generation by a wide thermoelastic source at a solid surface. J. Appl. Phys., 1989, 65(4): 1441~1446
    [132]王肋成.有限单元法,第1版.北京:清华大学出版社, 2000
    [133] Guo Z X, Mohamed S, EI-genk, Liquid microlayer evaporation during nucleate boiling on the surface of a flat composite wall, Int. J. heat mass transfer, 1994, 37(11):1641~1655
    [134] Haider S I, Webb R L, A Transient micro-convection model of nucleate pool boiling, Int. J. Heat Mass Transfer, 1997, 40(15): 3675~3688
    [135] Isao K, Akimi S, Akira S, Transient boiling heat transfer under forced convection, Int. J. heat mass transfer, 1983, 26(4): 583~595
    [136] Judd R L, Hwang K S, A comprehensive model for nucleate pool boiling heat transfer including mierolayer evaporation, ASME Journal of heat transfer, 1976(98): 623~629
    [137]程俊国,高等传热学,重庆大学出版社, 1991
    [138] Liqun L, Yanbin C, Xiaosong F. Characteristic of energy input for laser forming sheet metal. Chinese optics letters, 2003, 1(10): 606~608
    [139] Wood R F, Geist G A. Theoretical Analysis of Explosively Propagating Molten Layers in Pulsed-Laser-Irradiated a-Si. Phys. Rev. Lett., 1986, 57: 873~876
    [140] Aden M, Beyer E, Herzinger G, Kunze H. Laser-Induced Vaporization of a Metal Surface. J. Phys. D: Appl. Phys., 1992, 25: 57~65
    [141]凌磊,楼祺洪,叶震寰.紫外激光刻蚀多层线路板初步研究.中国激光, 2003, 30(10): 953~955
    [142] Datta M, Romankiw L T. Application of Chemical and Electrochemical Micromachining in Electronics Industry. Journal of the Electrochemical Society, 1989, 136(6): 285~292
    [143]赵国兴,苗德嘉,刘小明等.铁镍合金在硝酸钠溶液中的激光化学刻蚀.应用激光, 1992, 12(2): 59~61
    [144] Davydov A D. Laser electrochemical machining of metals. Russian Journal of Electrochemistry, 1994, 30(8): 871~881
    [145] Lescuras V, Andre J C, Lapicque F. Jet electrochemical etching of nickel in a sodium chloride medium assisted by a pulsed laser beam. J. Appl. Electrochem. 1995, 25(10): 933~939
    [146] Von Gutfeld R J, Acosta R E, Romankiw L T. Laser-enhanced plating and etching:mechanism and application, IBM Journal of Research and Development, 1982, 26(2): 136~144
    [147] Shafeev G A, Simakhin A V. Spatially confined laser-induced damage of Si under a liquid layer. Appl Phys A, 1992(54): 311~316.
    [148] Ohara J, Nagakubo M, Kawahara N, Hattori T. High aspect ratio etching by infrared laser induced micro bubbles. Proceedings of the IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems, New York: IEEE, 1997:175~179.
    [149] Milos M, Frantisek M, Walter G, Energy distribution during cavitation bubble growth and collapse in water, Journal of Physical Chemistry, 1998,.97(23): 2730~2735
    [150] Wang J L. Preliminary analysis of rapid boiling heat transfer. Int. Comm. Heat Mass Transfer, 2000,.27(3): 377~388
    [151]董兆一.饱和液氮爆发沸腾实验与理论研究.中国科学院工程热物理研究所博士学位论文,2005
    [152] Ueno I, Inove M, Shoji M. Laser Pulse Heating of Metal Surface in Water, in Proc. 4th World Conf. on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, 1997, 4: 2027~2033
    [153] Kazimi M S, Erdman C A. On the interface temperature of two suddenly contacting materials. ASME J. heat transfer, 1975, 97: 615~617
    [154]周建忠,金属板料激光冲击成形加载机制及变形特性研究.江苏大学博士学位论文, 2003.
    [155] Michaels J E. Planetary and Space Science. Pergaman, New York, 1961.
    [156] Anderholm N C. Laser-generated stress waves. Applied Physics Letters. 1970, (16): 113~118.
    [157] Clauer A H, Fairand B P, Wilcox B A. Pulsed laser induced deformation in an Fe3PctSi alloy. Metallurgical Transaction A, 1977 (8): 119~125.
    [158] Fabbro R, Fournier J, et al. Physical study of laser-produced plasma in confined geometry. J. Appl. Phys., 1990, 68(2): 775~784.
    [159] Lauterborn W. Kavitationdurch Laserlicht, Acustica, 1978, 31: 51~78
    [160] Berthe L, Sollier A, Peyre P, Fabbro R, Bartnicki E. The generation of laser shock waves in a water-confinement regime with 50ns and 150ns XeCl excimer laser pulses. J. Phys. D: Appl. Phys, 2000, 33: 2142~2145
    [161] Isselin J C, Alloncle A P, Autric M. On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena. J of Appl. Phys., 1998, 84(10): 5766~5771
    [162]徐荣青,陈笑,沈中华等.固体壁面附近激光空泡的动力学特性研究.物理学报, 2004, 53(5): 1413~1418.
    [163] Lesser M B, Field J E. The impact of compressible liquids. Ann. Rev. Fluid Mech., 1983, 15: 97~122
    [164] Lush P A. Impact of a liquid mass on a perfectly plastic solid. J. Fluid Mech., 1983, 135: 373~387
    [165]王超群,康敏.超声波加工工艺的材料去除率建模及试验研究.机床与液压, 2006,12: 18~20
    [166]陈明君,董申等.脆性材料超精密磨削时脆塑转变临界条件的研究.高技术通讯, 2000, 10(2): 64~67
    [167] Zhang Q H, Wu C L, Sun J L, et al. The mechanism of material removel in ultrasonic drilling of engineering ceramics. Proc Instn Mech Engrs, 2000, 214: 805~810
    [168] Datta M, et al. Application of electrochemical microfabrication: An introduction. IBM Journal of Research and Development, 42(5): 563~566
    [169] Voss R, Seidel H, Baumgartel H. Light-controlled, electrochemical, anisotropic etching of silicon. Solid-State Sensors and Actuators, 1991(91): 140~143
    [170] Marc Madou. Fundamentals of Microfabrication. Boca Raton: CRC Press, 1997.
    [171]任斌,田中群.激光在电化学中的应用(I).电化学, 1996, 2(1): 9~15
    [172] Seidel H, Csepregi L, Heuberger A, et al. Anisotropic Etching of Crystalline. Silicon in Alkaline Solutions. J. Electrochem. Soc. 1990, 137(11): 3612~3626.
    [173] Siedel H. The mechanism of anisotropic, electrochemical silicon etching in alkaline solutions. Solid-State Sensor and Actuator Workshop, 1990(4-7): 86~91
    [174] Nemirovsky Y, El-Bahar A. The non equilibrium band model of silicon in TMAH and in anisotropic electrochemical alkaline etching solutions. Sensors and Actuators, 1999, 75(3): 205~214
    [175]温殿忠.离子激光增强硅各向异性腐蚀速率地研究.中国激光, 1995, 22(3): 202~204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700