单晶六硼化镧场发射阵列阴极及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
场发射阵列阴极与热阴极相比,具有许多独特的优点,如无需加热,可以在室温下工作;电流密度比热阴极高几个数量级,并可工作在低电压调制下;功耗低;极好的开关特性;可瞬时启动等。目前,场致发射阴极的应用领域主要包括微波器件、平板显示器、电子显微镜及电子束刻蚀系统等。在各种结构和材料的场发射阵列阴极中,较为常用的是钼微尖场发射阵列和硅微尖场发射阵列。然而,这两种阴极材料逸出功偏高(硅:4.14eV,钼:4.4eV),抗离子轰击溅射的能力较差,且化学性质不够稳定。因此,在改善制作工艺的基础上,寻找新型的阴极材料变得非常重要。经试验证明,单晶六硼化镧(LaB_6)具有高导电率和良好的热稳定性、化学稳定性、低功函数以及活性阴极表面,是制备场发射阴极的理想材料。然而,目前国际上关于LaB_6场发射阴极的报道仅限于单尖、薄膜及纳米线领域,而对于单晶LaB_6场发射阵列(field emission array,FEA)的制备工艺,还未见相关文献报道。针对上述问题,本论文在单晶LaB_6场发射阵列阴极的制备及特性方面进行了一系列探索性和创新性的工作,具体包括:
     1.LaB_6晶向和发射体结构是影响单晶LaB_6-FEA发射性能的重要因素。论文对这两项参数进行了理论分析,并采用EBS软件模拟了发射体结构对尖端电场的影响,得到如下结论:制作LaB_6-FEA的最优晶向是[111]向,它可以长时间地保证有低逸出功发射面;LaB_6发射体的最佳锥角约60°,这是综合考虑阴极功函数和尖端场强的结果。同时论文提出了一种优化的场发射体结构,EBS模拟结果表明,该结构能有效提高阴极的场发射电流密度。在理论分析的基础上,论文还设计了LaB_6-FEA的制备工艺流程,包括:掩膜沉积、掩膜图案化及LaB_6场发射体刻蚀。
     2.采用等离子体增强化学气相沉积法制备单晶LaB_6-FEA所需的氮化硅(SiNx)掩膜,考察沉积温度、射频功率、反应源气体(NH_3和SiH_4)的流量比、反应压强四个因素对SiNx薄膜性能的影响。得出的优化工艺参数为:沉积温度270℃,射频功率20W,NH_3和SiH_4的流量比40:5,反应压强60Pa。按优化工艺参数制备出的SiNx薄膜致密度较好且颗粒细小,电阻率约6.5×10~(13)Ω·cm,Si、N的摩尔比约为3:4.3,接近于Si_3N_4的标准化学配比。
     3.采用传统的光刻工艺和反应离子刻蚀法对上述SiNx薄膜进行图案化。光刻工艺的具体参数为:匀胶转速3000rpm,匀胶时间30s,软烘温度100℃,软烘时间1min,曝光时间90s,显影时间30s,坚膜温度100℃,坚膜时间10min。反应离子刻蚀的具体参数为:刻蚀气体SF_6,流量30SCCM,功率50W,刻蚀时间8min。最终形成的SiNx掩膜图案为圆形点阵,点阵直径4μm,点阵间距10μm。
     4.LaB_6场发射体刻蚀是制备单晶LaB_6-FEA流程中最难、最关键的步骤,论文考虑了以下五种方案:硝酸湿法腐蚀、氩等离子体干法刻蚀、氧等离子体氧化与氩等离子体干法刻蚀氧化层相结合、氧等离子体氧化与盐酸湿法腐蚀氧化层相结合、电化学腐蚀。结果发现,在硝酸湿法腐蚀过程中,随着刻蚀时间的增加,掩膜出现破损,导致尖锥形貌发生改变;氩等离子体对LaB_6基片没有任何的刻蚀效果;采用氧等离子体氧化与氩等离子体干法刻蚀氧化层工艺时,由于Ar离子轰击能量太强,在刻蚀LaB_6氧化物的同时,也对掩膜材料形成了很强的刻蚀作用,导致掩膜提前脱落。因此,前三种方案均不适合制备单晶LaB_6场发射阵列。在第四种方案中,论文考察了O_2流量、极间电压、基片加热温度对发射体形貌的影响,最终成功制备出单晶LaB_6场发射阵列,尖锥高度超过2μm,基片底部和发射体侧面较光滑,且掩膜保护完好,表明该方案具有较强的可行性。而在电化学腐蚀方案中,论文考察了电解液成分、阴阳极间电压、电解液温度、电解液浓度、缓蚀剂及水溶剂对LaB_6发射体形貌的影响,最终也成功制备出LaB_6-FEA,尖锥阵列具有较好的均匀性,发射体高度超过3μm,底面较平整。
     5.自行设计和制作LaB_6场发射阵列二极管的场发射性能测试系统,对上述获得的LaB_6场发射阴极进行性能测试。结果表明,在真空度6×10~(-5)pa下,单晶LaB_6场发射阵列阴极表现出优良的发射稳定性,开启电场和阈值电场分别为3.2V/μm和8V/μm,可同其它新型场发射阵列阴极(如硅纳米尖、碳纳米管)相比拟。在阳极电压为1500V时,获得最大发射电流32mA,折合单个尖锥0.1μA,超过文献报道的LaB_6薄膜场发射阵列。阴极在低真空下(2×10~(-3)Pa)的发射性能测试表明,LaB_6场发射阵列阴极具有较佳的抗中毒能力,从而证实了将单晶LaB_6作为场致发射阴极材料的优越性。
In contrast with conventional thermoionic cathode,field emitter array (FEA)cathode has many special advantages,such as room-temperature operation without acathode heater,high current density,low power dissipation,excellent ON/OFF isolationcharacteristics and instant turn-on characteristics.At present,FEA has potential for useas an electron source in a wide variety of applications,including microwave poweramplifiers,fiat panel displays,electron microscopy,and electron beam lithography.Themost famous and important cold cathodes are inevitably the silicon and molybdenum tipfield emitter arrays.However,both of them have some disadvantages,such as relativelyhigh work function of more than 4 eV and low stability to the sputtering of ions.Thus itis important to seek new materials of cold cathodes,besides improve the existingtechnology.It has been proved that,single crystal lanthanum hexaboride (LaB_6),withhigh conductivity,good heat stability and chemical stability,low work function,andactive cathode appearance,is an ideal material for field emission array cathodes.Stimulated by the unique properties of LaB_6,the interest in LaB_6 based on cold cathodeis increasing in recent years,mainly concentrated on the following aspects:LaB_6coating on conventional single tip or field emitters,LaB_6 nanowire and LaB6 film FEA.However,to our knowledge,no results on the preparation and properties of singlecrystal LaB6 field emitters have been reported as yet.Aiming at those problems,somebasic and systematic works have been performed in this paper to focus on thefabrication process to obtain single crystal LaB_6-FEA with good emission performance.
     1.The orientation and structure of LaB_6 emitters are the most important factorsdetermining the emission performance of LaB_6-FEA,which were analyzed andstimulated by EBS software.The results suggested that,the optimum orientation forLaB_6-FEA was [111],which offered adequate crystal faces with low work function,andthe optimum cone angle was 60°,which sastified the demands of low work function andhigh electric field for LaB6-FEA.The optimized structure for LaB_6-FEA was introducedin this paper,which improved the cathode performance effectively according to the EBSresults.In addition,the fabrication process of [111] LaB_6-FEA was also designed, including mask layer deposition,mask pattern fabrication and LaB6 emitters etching.
     2.Silicon nitride (SiNx) thin film used as mask layer for LaB_6-FEA was depositedon the smooth and clean surface of LaB6 substrate by plasma enhanced chemical vapordeposition (PECVD) growth mechanism.The influencing factors were discussed andthe optimum parameters for deposited SiNx were:deposition temperature 270℃,radio-frequency power 20W,flow ratio of ammonia to silane 40:5,reaction pressure60Pa.Electrical resistivity,mol ratio of Si to N of the film prepared with aboveparameter were 6.5×10~(13)Ω.cm and 3:4.3,respectively.
     3.The prepared SiNx film was patterned into a dot array with the diameter of 4μmand 10μm spacing center to center by conventional UV photolithography and reactiveion etching (RIE) method.The optimum photolithographic parameters were:coatingrotation speed 3000rpm,rotation time 30s,soft-baking 100℃/1 min,exposure time 90s,developing time 30s,and hard-baking 100℃/10min.The optimum RIE parameters were:etching gas SF_6/30SCCM,etching power 50W and etching time 8min.
     4.LaB_6 emitter etching is the most difficult and important during the LaB_6-FEAfabrication process.Five programmes were discussed in this paper,includingwet-etching method with nitric acid solution,dry-etching method with argon plasma,oxygen plasma oxidization combing oxide etching with argon plasma,oxygen plasmaoxidization combing oxide etching with hydrochloric acid,and electro-chemical etchingmethod.In the first method,the SiNx mask was damaged,resulting in unsatisfiedappearance of field emitters.In the second method,argon plasma took no effect on LaB_6.In the third method,due to the high energy of Ar+,the mask layer was etched and brokeoff in advance.It concluded that the three methods were unsuitable for the fabrication ofLaB_6-FEA.The last two programmes were the feasible methods of fabricatingLaB_6-FEA.The influencing factors in the forth method were discussed and a LaB6-FEAwas achieved,having a tip height of more than 2μm.The substrate and tip surface ofLaB_6 sample were smooth with undamaged mask layer.In addition,the influencingfactors in the fifth method were also discussed and the results showed that a pattern ofLaB_6 field emitters having a height of more than 3μm could be clearly seen by SEM,suggesting excellent tip uniformity with smooth surface.
     5.Field emission measurements of fabricated LaB6 field emitters were carried outin diode geometry devised and fabricated by ourselves.It exhibited high emission stability at high vacuum of 6×10~(-5) Pa with low turn-on field and threshold field of 3.2V/μm and 8 V/μm,respectively.The emission current reached the maximum of 32mAat 1500V,equal to 0.1μA for single tip,which higher than reported LaB_6-film FEA.Theemission properties of LaB_6-FEA at low vacuum of 2×10~(-3) Pa signified the strongability of antipoisoning,which confirmed that FEA with LaB_6 emitter tips was an idealcandidate as the cold cathode for high current density devices.
引文
[1] I. Briode. Address to First International Vacuum Microelectronics Conference. IEEE Trans ED, 1989,136(11):2637-2640
    [2] R. H. Fowler, L. W. Nordheim. Electron emission in intense electric fields. Proc.R.Soc.London, Ser.A, 1928,119:173
    [3] K. R. Shoulders. Microelectronics using electron-beam-activated maching techniques. Advances in Computers, 1961, 39:3504-3505
    [4] C. A. Spindt. A thin film field emission cathode. J. Appl. phys, 1968, 39:3504-3505
    [5] C. A. Spindt, I. Brodie, L. Humphrey, et al. Physical properties of thin-film field emission cathodes with molybdenum cones. Journal of Applied Physics, 1976, 47(12):5248-5263
    [6] R. Greene, H. F. Gray, G J. Campisi. Vacuum integrated circuits. Proc. IEDM'85. Washington DC, New York:IEEE, 1985,172-175.
    [7] P. R. Schwobel, C. A. Spindt. Field-emitter array performance enhancement using hydrogen glow discharge. Appl. Phys. Lett, 1993,63(1):33-35
    [8] C. A. Spindt, C. E. Holland, R. D. Stowell. Field-emission cathode array development for high-current-density applications. Applied Surface Science, 1983,16(1-2):268-276
    [9] P. R. Schwoebel, C. A. Spindt, C. E. Holland. High current, high current density field emitter array cathodes. Technical Digest of the 17th International, 2004,7:232
    [10] C. G Lee, B. G. Park, J. D. Lee. New fabrication process of field emitter arrays with submicron gate apertures using local oxidation of silicon. IEEE Electron Device Letters, 1996, 17(3):115-117
    [11] Nicro E. Mcgruer, K. Warner, P. Singhal et al. Oxidation-sharpened gated field emitter array process. IEEE Transactions on Electron Devices, 1991, 38(10):2389-2391
    [12] H. F. Gray, C. T. Sune, G W. Jone. Silicon field emitter arrays for cathodoluminescent flat panel displays. Journal of the Society for Information Display, 1993, 1(2):143-146
    [13] Y. Gotoh, T. Kojima, A. Oowada, et al. Electron emission properties of plasma treated silicon field emission arrays in gaseous ambient. ISDEIV, 2006, 2:865-868
    [14] E. G. Colqan, J. P. Gambino, Q. Z. Hong. Formation and stability of silicides on polycrystalline silicon. Materials Science & Engineering: R: Reports, 1996, 16(2):43-96
    [15] H. S. Uh, B. G Park, J. D. Lee. Improvement of electron emission efficiency and stability by surface application of molybdenum silicide onto gated poly-Si field emitters. IEEE Electron Device Letters, 1998,19(5): 167-170
    [16] J. D. Lee, B. C. Shim, B. G Park. Silicide application on gated single-crystal, polycrystalline and amorphous silicon FEAs - Part Ⅰ: Mo silicide. IEEE Transactions on Electron Devices, 2001, 48(1):149-154
    [17] J. D. Lee, B. C. Shim, B. G Park. Silicide application on gated single-crystal, polycrystalline and amorphous silicon FEAs - Part Ⅱ: Mo silicide. IEEE Transactions on Electron Devices, 2001,48(1):155-160
    [18] S. K. Arora, S. Chhoker, N. K. Sharma, et al. Growth and field emission characteristics of diamond films on macroporous silicon substrate. Journal of Applied Physics, 2008, 104(10):103524
    [19] Y. F. Tzeng, C. Y. Lee, H. T. Chiu, et al. Electron field emission properties on ultra-nano-crystalline diamond coated silicon nanowires. Diamond and Related Materials, 2008, 17(7-10): p 1817-1820
    [20] P. T. Joseph, L. J. Chen, N. H. Tai, et al. Novel method of growing ultrananocrystalline diamond tips and their field emission property study. Journal of Nanoscience and Nanotechnology, 2008, 8(8):4198-4201
    [21] S. Orlanducci, A. Fiori, V. Sessa, et al. Nanocrystalline diamond films grown in nitrogen rich atmosphere: Structural and field emission properties. Journal of Nanoscience and Nanotechnology, 2008, 8(6):3228-3234
    [22] Liu W H, Zhu C C, Zeng F G et al. Research of a new process preparing CNT film for field-emission. Acta Electronica Sinica, 2005,33(11):2047-2050
    [23] H. J. Lee, Y. D. Lee, W. S. Cho, et al. Field emission improvement by liquid elastomer modification of screen-printed CNT film morphology. SID, 2006 37(2):634-636
    [24] H. W. Cheng, C. C. Lin, Y. M. Li, et al. Field emission property of CNT field emitters in the triode structure with anodic aluminum oxide template. IEEE Conference on Electron Devices and Solid-State Circuits, 2007:613-616
    [25] H. Y. Karachi, J. K. Yotani, H. Yamada, et al. High resolution CNT-FED and improvement in field-emission characteristics. IEEE Transactions on Sensors and Micromachines, 2007, 127(3):170-176
    [26] J. Robertson, W. I. Milne. Properties of diamond-like carbon for thin film microcathodes for field emission displays. Materials Research Society Symposium, 1996, 424:381-386
    [27] S. Gupta, M. P. Chowdhury, A. K. Pal. Field emission characteristics of diamond-like carbon films synthesized by electrodeposition technique. Applied Surface Science, 2004, 236(1-4):426-434
    [28] M. S. Choi, J. H. Kim, S. Yong. Field-emission characteristics of nitrogen-doped diamond-like carbon film deposited by filtered cathodic vacuum arc technique. Journal of Non-Crystalline Solids, 2003, 324(1-2):187-191
    [29] C. Li, W. Lei, X. B. Zhang, et al. Enhanced field emission properties from ZnO nanostructure by improving contact behavior. IVNC 07, 2007: 251-252
    [30] T. J. Hsueh, C. L. Hsu, S. J. Chang, et al. Crabwise ZnO nanowires: Growth and field emission properties. Journal of Nanoscience and Nanotechnology, 2007, 7(3): 1076-1079
    [31] K. Hou, C. Li, W. Lei, et al. Stable field emission from screen-printed ZnO-tetrapod emitters. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2008,26(4):1305-1308
    [32] X. M. Qian, H. B. Liu, Y. B. Guo, et al. Effect of aspect ratio on field emission properties of ZnO nanorod arrays. Nanoscale Research Letters, 2008,3(8):303-307
    [33] Y. P. Ma, X. F. Shang, Z. Q. Gu, et al. The application of single-walled carbon nanotubes in field emission display. Acta Physica Sinica, 2007, 56(11):6701-6704
    [34] L. Wei, X. B. Zhang, and Z. Y. Zhu. Application of ZnO nanopins as field emitters in a field-emission-display device. Journal of Vacuum Science & Technology B, 2007, 25(2):608-610
    [35] T. T. Zhou, J. C. She, J. Chen, et al. Fabrication and characterization of a field emission display prototype for indoor giant display application. Journal of Vacuum Science & Technology B, 2007,25(5): 1569-1573
    [36] M. S. Kang, Y. J. Yun, J. W. Lee, et al. Improvement of interpixel uniformity in carbon nanotube field emission display by luminance correction circuit. IEEE Transactions on Electron Devices, 2008, 55(3):768-773
    [37] T. Kim, S. Kwon, H. Yoon, et al. Fabrication of carbon nanotube paste using photosensitive polymer for field emission display. Colloids and Surfaces a-Physicochemical and Engineering
    Aspects, 2008,313:448-451
    [38]M.C.Lin and P.S.Lu.Millimeter wave generator based on field emission cathode.Journal of Vacuum Science & Technology B,2007,25(2):636-639
    [39]M.C.Lin and P.S.Lu.Interaction mechanism of a terahertz wave generator using a field emission cathode.Journal of Vacuum Science & Technology B,2007,25(2):631-635
    [40]R.E.Neidert,P.M.Phillips,S.T.Smith,et al.Field-Emission Triodes.IEEE Transactions on Electron Devices,1991,38(3):661-665
    [41]N.M.Ryskin,S.T.Han,K.H.Jang,et al.Theory of the microelectronic traveling wave klystron amplifier with field-emission cathode array.Physics of Plasmas,2007,14(9):093106
    [42]Q.L.Wang,Y.S.Di,W.Lei,et al.Novel gun of rf power amplifier based on always-on cold cathode.Journal of Vacuum Science & Technology B,2007,25(2):646-650
    [43]D.R.Whaley,B.M.Gannon,C.R.Smith,et al.Application of field emitter arrays to microwave power amplifiers.IEEE Transactions on Plasma Science,2000,28(3):727-747
    [44]L.Xiao,L.Qian,Y.Wei,et al.Conventional triode ionization gauge with carbon nanotube cold electron emitter.Journal of Vacuum Science & Technology A,2008,26(1):1-4
    [45]廖波,林鸿溢,王越.场发射压力传感器的研究进展.真空科学与技术,2001,20(6):413-418
    [46]杜秉初.场发射显示器的发展近况.现代显示,1996,3:24-27
    [47]Z.Q.Fan,B.L.Zhang,N.Yaog,et al.Field emission properties of carbon nanotubes films grown of patterned Ni lines.Chin.J.Lumin.,2004,25(6):734-737
    [48]D.R.Whaley,B.Gannon,K.E.Kreischer,et al.Characterization of field emitter arrays operating in a traveling wave tube amplifier.IVEC,2002:177
    [49]F.J.Liao.Technical progress in vacuum electronics.ICMMT,2002:17-22
    [50]F.M.Charbonnier.Basic and applied studies of field emission st microwave frequencies.PIEEE,1963 51:991-1004
    [51]彭自安,冯进军.真空微电子学在微波和毫米波中的应用前景.真空电子技术,1995,5:25-29
    [52]J.A.Dayton,H.G.Kosmahl.Ultra small electron beam amplifier.Tech Dig Int Electron Devices Metting,1986:780-783
    [53]H.Maskishimia,H.Imura,M.Takahashi,et al.Remarkable Improvements of Microwave Electron Tubes through the Development of Cathode Materials.IVMC,1997:194-199
    [54]D.R.Whaley,C.M.Armstrong,M.A.Basten,et al.PPM focused TWT using a field emitter array cold cathode.IEEE Int ConfPlasma Sci,1998:125-126
    [55]C.A.Spindt,C.E.Holland,P.R.Schwoebel,et al.Field emitter array development for microwave applications(Ⅱ).IVMC,1997:200-205
    [56]J.C.Jiang,P.K.Allen,and R.C.White,Microvacuum diode sensor for measuring displacement and loads,Digest of IVMC'91,1991,156
    [57]Z.Y.Zhang,Z.Y.Wen,S.L.Xu,et al.Poly-silicon Micromachined Switch.Chinese Journal of Semiconductors,2002,23(9):942-948
    [58]张正元,徐世六,温志渝等.一种新型真空微电子压力传感器的研究,微电子学.2001,31,(2):97-99
    [59]J.H.Jung,B.K.Ju,Y.H.Lee,et al.Enhancement of Electron Emission Efficiency and Stability of Molybdenum-Tip Field Emitter Array by Diamond Like Carbon Coating.IEEE Electron Device Letters,1997,18(5):197-199
    [60]李含雁,丁明清,冯进军等.敷ZrC的Mo Spindt阵列阴极的发射性能.真空电子技术,2006,3:57-58
    [61]戴达煌,周克菘.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001
    [62]Y.H.Lee,P.D.Richard,K.J.Bachamann,et al.Bias-controlled chemical vapor deposition of diamond thin films.Appl Phys Lett,1990,56(7):620-621
    [63]S.Yugo,T.Kanai,T.Kimura,et al.Generation of diamond nulei by elextric field in plasma chemical vapor deposition.Appl Phys Lett,1991,58(10):1036-1038
    [64]W.Banholzer,P.J.Kehl.Clarification of the effect of in the hot filament process.Process.Surf Coat Tech,1991,47:51-58
    [65]A.Baizian,T.Badzian,R.Roy,et al.Crystallization of diamond crystals and films by microwave assisted CVD.Mater Res Bull,1988,23(4):531-548
    [66]Y.Liou,A.Inspeakyor,R.Weimer,et al.Low-temperature diamond deposition by microwave plasma-enhanced chemical vapor deposition.Appl Lett,1989,55(7):631-633
    [67]P.K.Bachmann,D.Leers,D.U.Wiechert.Diamond thin-films-preparation,characterization and selected application-progress report.Phys.Chem,1991,95(11):1390-1400
    [68]H.Kawarada,K.S.Mar,A.Hiraki.Large area chemical vapour deposition of particles and films using magneto-microwave plasma.Japan J Appl Phys,1987,26(6):L1032-L1034
    [69]K.Kuruhara,K.Sasaki,M.Kawarada,et al.High rate synthesis of diamond by DC plasma jet chemical vapor deposition.Appl.Phys.Lett,1988,52(6):437-438
    [70]C.Liu,H.T.Cong,F.Li.Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method.Carbon,1999,37(11):1865-1869
    [71]赵廷凯,柳永宁.温控电弧放电法大量制备单壁碳纳米管.物理学报,2004,53(11):3961-3965
    [72]L.S.Pang,M.A.Willson,M.Vassallo.Fullerene from coal.Nature,1991,352:480
    [73]M.A.Willson,H.K.Patney,J.Kalman.New development in the formation of nanotubes from coal.Fuel,2002,81(1):5-14
    [74]S.Iijima,T.Ichihashi.Single-shell carbon nanotubes of 1-nm diameter.Nature,1993,363(6430):605-607
    [75]I.Hinkov,S.Farhat,C.D.Scott.Influence of the gas pressure on single-wall carbon nanotube formation.Carbon,2005,43:2453-2462
    [76]S.Tang,Z.Zhong,L.Sun,et al.Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/Mg catalysts.Chem.Phys.Lett,2001,350:19-26
    [77]H.Ago,S.Ohshima,K.Uchida,et al.Carbon nanotubes synthesis using colloidal solution of metal nanopaticals.Physics B,2002,323:306-307
    [78]S.Maruyama,R.Kojima,Y.Miyauchi,et al.Low-temperature synthsis of high-purity single-walled carbon nanotubes from alcohol.Chem.Phys.Lett,2002,360:229-234
    [79]B.C.liu,S.C.Lu,S.Jung,et al.Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst.Chem.Phys.Lett,2004,383(5):104-108
    [80]H.M.Cheng,F.Li,G.Su,et al.Large scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons.Appl.Phys.Lett,1998,72:282-284
    [81]J.S.Qiu,Y.L.A n,Z.B.Zhao,et al.Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method.Fuel Processing Technology,2004,85:913-920
    [82]A.Thess,R.Lee,P.Nikolaev,et al.Crystalineropesof metallic carbon nanotubes.Science,1996,273:483-487
    [83]A.Thess,R.Lee,P.Nikolaev,et al.Single-wall carbon nanotubes formation by laser ablation using double-targets of carbon and metal.Chem.Phys.Lett,1997,278:102
    [84]M.Yudasaka,M.F.Zhang,S.Iijima.Porous target enhance sproductor of single-wall carbon nanotubes by laser ablation.Chem.Phys.Lett,2000,323:549-553
    [85]张海燕.研究CO_2连续激光蒸发制备单壁碳纳米管及其Ramam光谱.物理学报,2002,51(2):444-449
    [86]H.Kataura,Y.Kumazawa,Y.Maniwa,et al.Diameter control of single-wall carbon nanotube.Carbon,2000,38(2):1691-1697
    [87]T.Guo,P.Niko,A.Thess,et al.Catalytic frowth of single-walled carbon nanotubes by laser vaporization.Chem.Phys.Lett,1995,243:49-54
    [88]C.Journet,L.Alvarez,V.Micholet,et al.Single wall carbon nanotubes:two ways of production.Synthetic Metals,1999,103:2448-2449
    [89]D.Laplaze,P.Bernier,W.K.Maser,et al.Carbon nanotubes:the solar approach.Carbon,1998,36(5):685
    [90]王保平,雷威.南京:东南大学出版社,2002
    [91]E.L.Murphy,R.H.Good.Theomonic emission,field emission and transition region.Phys.Rew,1956,102:1464-1477
    [92]B.R.Chalamala,R.H.Reuss.Studies on the interaction between thin film materials and Mo field emitter arrays[J].J Vac Sci Technol,2000,B18(4):1825-1832
    [93]成建波,冉启钧译.六硼化镧阴极.成都:成都电讯工程学院出版社,1988
    [94]R.Shimizu,Y.Kataoka,S.Kawai,et al.Appl.Phys.Lett,1975,113(27)
    [95]E.D.Gibson,J.D.Verhoeven.J.Phys,1975,1004(8)
    [96]J.D.Verhoeven,E.D.Gibson.J.Phys,1976,65(9)
    [97]R.Shimizu,T.Shinike,S.Ichimura,et al.J.Vac.Sci.Technol,1978,922(15)
    [98]M.Aono,C.Oshima,T.Tanaka,et al.Appl.Phys,1978,49:2761
    [99]K.Ebihara,S.Hiramatsu.High-current-density gun with a LaB_6 cathode.Review of Scientific Instruments,1996,67(8):2765-2769
    [100]姚剑锋,陈旭,江剑平等.单晶和多晶LaB_6阴极发射性能的实验研究.真空电子技术,2002,1:1-4
    [101]R.Shimizu,T.Shinike,S.Lchimura.Highly stable single-crystal LaB_6 cathode for conventional electron microprobe instruments.J.Vac Sol Technol,1987,5(3):15
    [102]D.M.Goebel,Y.Hirooka,T.A.Sketchley.Large-area lanthanum hexaboride electron emitter.Rev.Sci.Instrum,1985,56(9):1717-1722
    [103]M.E.Herniter,W.D.Getty.High current density results from a LaB_6 thermionic cathode electron gun.IEEE Transactions on Plasma Science,1990,18(6):992-1000
    [104]林祖伦.射频电子枪中LaB_6阴极的研究.强激光与粒子束,1997,9(4):591-595
    [105]何成旦,李鹤歧,许启晋.电子枪新型阴极的设计.甘肃工业大学学报,2003,29(3):1-5
    [106]R.R.Hofer,R.S.Jankovsky,A.D.Gallimore.High-specific impulse hall thrusters,part Ⅰ:influence of current density and magnetic field.Journal of propulsion and power,2006,22(4):721-731
    [107]林祖伦,曹贵川,张义德等.大面积环状LaB_6阴极.强激光与粒子束,2006,18(2):305-308
    [108]林祖伦,曹贵川,祁康成等.多晶LaB_6阴极的脉冲热发射特性.强激光与粒子束,2007,18(5):873-876
    [109]M.Nakamoto and K.Fukuda.Field electron emission from LaB_6 and TiN emitter arrays fabricated by transfer mold technique.Applied Surface Science,2002,202(3-4):289-294
    [110]D.J.Late,M.A.More,D.S.Joag,et al.Field emission studies on well adhered pulsed laser deposited LaB_6 on W tip.Applied Physics Letters,2006,89(12):123510
    [111]H.Zhang,J.Tang,Q.Zhang,et al.Field emission of electrons from single LaB_6 nanowires.Advanced materials,2006,18:87-91
    [112]王小菊,林祖伦,祁康成等.电化学刻蚀法制备LaB_6场发射微尖锥阵列.发光学报,2007,28(3):429-432
    [113]X.J.Wang,Z.L.Lin,K.C.Qi,et al.Field emission characteristics of lanthanum hexaboride coated silicon field emitters.Appl.Phys,2007,40:4775-4778
    [114]王小菊,林祖伦,祁康成等.单晶LaB_6场发射阵列的电化学腐蚀工艺.强激光与粒子束,2008,20(7):1195-1198
    [115]Y.Fukukawa,M.Yamabe,T.Inagaki.Emission characteristics of single-crystal LaB_6 cathodes with large tip radius.J.Vac.Technol.A,1983,1(3):1518-1521
    [116]M.Yamabe,Y.Fukukawa,T.Inagaki.Electron emission from〈100〉LaB_6 cathodes with large cone angles and flat tips.J.Vac.Technol.A,1984,2(3):1361-1364
    [117]吴宏毅.LaB_6阴极特性的研究及亮度测试自动化的实现:[硕士学位论文].成都:电子科技大学,1988,16-30
    [118]Stratton J A.Electromagnetic theory,McGraw-Hill NewYork,1941
    [119]Ernest G.Zaidman.Simulation of field emission microtriodes.IEEE Trans.On ED,1993,40(5):1009-1015
    [120]W Bhermannsfeldt,R Becker,I Brodie,A Rosengreen,C A Spindt.High-resolution simulation of field emission.Nuel,Instru.Methods,1990,A298:39-44
    [121]R L Hartman,W A Mackie,P R Davis.Use of boundary element methods in field emission computations.J.Vac.Sci.Technol,1994,B 12(2):754-758
    [122]周洪军,尉伟,洪义麟等.场致发射阵列制作工艺的研究.微细加工技术,2001,3:14-17
    [123]M.R.Rakhshandehroo,S.W.Pang.Sharpening Si field emitter tips by dry etching and low temperature plasma oxidation.J Vac Technol,1996,B 14(6):3697-3701
    [124]M.Takia,T.Kishimoto,Yamashita M,et al.Modification of field emitter array tip shape by focused ionbeam irradiation.J Vac Technol,1996,B 14(3):1973-1976
    [125]C.C.Zhu,H.Guan,W.D.Liu,et al.Technique for fabrication self-aligned gates onto silicon field emitter arrays.J Vac Technol,1997,B 15(5):1682-1684
    [126]M.Quirk,J.Serda.半导体制造技术.韩郑生等译.北京:电子工业出版社,2004,10-437
    [127]S.K.Ghandhi.VLSI fabrication principles.1994
    [128]张化福.TFT栅绝缘层用氮化硅薄膜的研究:[硕士学位论文].成都:电子科技大学,2005,3-5
    [129]C.Juang,J.H.Chang,R.Y.Hwang.Properties of very low temperature plasma deposited silicon nitride films.J.Vac.Sci.Technol.B,1992,10(3):1221-1223
    [130]A.E.T.Kuiper.Thermal oxidation of silicon nitride temperature on the oxidation resistance and electrical characteristics of silicon nitride.IEEE transactions electron device,1994,41(10):174
    [131]T.O.Sedgwick,et al.IBM journal of research and development,1970,14(1):2-11
    [132]H.J.Stein,V.A.Wells,R.E.Hampy.Properties of plasma-deposited silicon nitride.J.Electrochem.Soc,1979,10:1750-1753
    [133]邱春文,陈雄文,石旺舟等.磁控反应溅射法低温制备氮化硅薄膜.汕头大学学报(自然科学版),2003,18(2):35-39
    [134]Jan Schmidt,Mark Kerr.Highest-quality surface passivation of low-resistivity p-type silicon using stoichmetric PECVD silicon nitride.Solar energy material & solar cells,2001,65:585-591
    [135]Byung Cheon Lim,Young Jin Choi.Hydrogenated amorphous silicon thin film transistor fabricated on plasma treated silicon nitride.IEEE transaction on electron devices,2000,47:367-371
    [136]S.A.Campbell.The science and engineering of microelectronic fabrication.Second edition.Beijing:Publishing house of electronics industry,2003
    [137]T.Sarita,T.Satake,Adachi H,et al.Mass spectrometric and kinetic study of low pressure chemical vapor deposition of Si_3N_4 thin films from SiH_2Cl_2 and NH_3.J Electrochem Soc,1994,29(4):3505-3511
    [138]L.S.Zambom,R.D.Mansano,R.Fuflan,et al.LPCVD deposition of silicon nitride assisted by high density plasma.Thin solid films,1999,343:299-301
    [139]杨辉,马青松,葛曼珍.CVD法氮化硅薄膜制备及性能.陶瓷学报,1998,19(2):91-96
    [140]D.L.Smith.Controlling the plasma chemistry of silicon nitride and oxide deposition from silane.J.Vae.Sei.Teehnl,1993,A 11(4):1843
    [141]A.Shaman.Plasma-assisted chemical vapor deposition process and their semiconductor applications.Thin solid films,1984,113:135-149
    [142]V.K.Rathi,M.Gupta,R.Thangraj,et al.Photo-processing of silicon nitride.Thin solid films,1995,266(6):219
    [143]W.A.Lanford.M.J.Rand.The hydrogen content of plasma-deposited silicon nitrides,J.Appl.Phys,1978,49:2473
    [144]B.Semmache,M.Lemiti,C.Chanelicre,et al.Silicon nitride and oxynitride deposition by RT-LPCVD.Thin Solid Films,1997,296(1):32-36
    [145]H.J.Stein,V.A.Wells.Properties of plasma deposited silicon nitride.J.Electrochem.Soc.,1979,126:1750-1754
    [146]M.Spiegel,C.Zechner,B.Bitnar,et al.Ribbion growth on substrate(RGS)silicon solar cells with microwave-induced remote hydrogen plasma passivation and efficiencies exceeding 11%.Solar Energy Materials & Solar Cells,1998,55:331-340
    [147]B.Lenkei,S.Stechemetz,F.Artuso,et al.Excellent thermal stability of remote plasma-enhanced chemical vapor deposited silicon nitride films for the rear of screen-printed bifacial silicon solar cells.Solar Energy Materials & Solar Cells,2001,65:317-323
    [148]吴大维,范湘军.PECVD法氮化硅薄膜的研究.材料科学与工程,1997,15(1):46-49
    [149]叶超,宁兆元.微波电子回旋共振-化学气相沉积SiNx薄膜的光学性能研究,光学学报,1997,17(4):489
    [150]于映,陈抗生.氮化硅薄膜的PECVD生长及其性能研究.真空电子技术,1996,2:16-18
    [151]M.Kondo,M.Fukawa,L.H.Guo.High rate growth of microcrystalline silicon at low temperature,Journal ofNon-Cryatalline Silides,2000,266:84-89
    [152]王阳元,卡明斯,赵宝瑛等.多晶硅薄膜及在集成电路中的应用(第二版).北京:科学出版社,2001
    [153]吴冲若,樊玉薇.Si_3N_4膜绝缘与击穿特性的研究.真空科学与技术,1993,13(6):375-381
    [154]宋登元,王小平.光学光刻技术的研究进展.半导体技术,1998,23:2-10
    [155]王相森.光学光刻技术的发展历程及趋势.微处理机,2002,4:1-2
    [156]高晓萍.刻蚀技术的进展.光机电世界,1994,3:17-20
    [157]S.A.Campbell.微电子制造科学原理与工程技术.曾莹、严利人、王纪民等译.北京:电子工业出版社,2003
    [158]R.Memming,G.Schwandt.Anodic dissolution of silicon in hydrofluoric acid solution.Surf.Sci,1966,4:109
    [159]B.C.Djubua,N.N.Chubun.Emission properties of spindt-type cold cathodes with different emission cone material.IEEE Trans.Electron Devices,1991,38(10):2314-2316
    [160]G.S.Huang,X.L.Wu,Y.C.Cheng,et al.Fabrication and field emission property of a Si nanotip arrayNanotechnology,2006,17:5573-5576
    [161]W.A.H.De,A.Chatelain,D.Ugarte.A carbon nanotube field-emission electron source.Science,1995,270:1179-1180.
    [162]J.M.Bonard,H.King,T.Stockli,et al.Field emission from carbon nanotubes:the first five years.Solid State Electron,2001,45(6):893-914.
    [163]M.S.Jung,Y.K.Ko,D.H.Jung,et al.Electrical and field-emission properties of chemically anchored single-walled carbon nanotube patterns.Appl.Phys.Lett.2005,87:013114
    [164]B.R.Chalamala,R.H.Reuss.Studies on the interaction between thin film materials and Mo field emitter arrays.J.Vac.Sci.Technol,2000,B18(4):1825-1832

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700