石墨烯和荧光碳纳米颗粒的制备及其电化学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着纳米科学技术的发展,特别是随着荧光碳纳米颗粒、富勒烯、碳纳米管、以及石墨烯等纳米结构相继被发现,碳素纳米材料科学研究得到了广泛的关注。石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳米管、三维石墨等其它碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。荧光碳纳米颗粒由于具有无毒、化学惰性以及良好的生物相容性的特点,在生物和医药领域具有重要的潜在应用价值,所以研究它的制备方法具有非常重要的意义。
     本论文以石墨烯功能材料的制备为基础,研究了其在电化学传感器中的应用,同时,用电化学方法快速的制备了荧光碳纳米颗粒。其具体内容归纳如下:
     1)运用氧化还原法制备了石墨烯功能材料,利用扫描电子显微镜、原子力显微镜、红外光谱和拉曼光谱进行表征,分析了石墨烯的结构及其形态,为石墨烯功能材料在电化学传感器及电催化方面的应用提供了物质保证。
     2)在水和离子液体的辅助下,利用一种简单、快速、绿色的电化学方法,一步即可制备石墨烯。扫描电子显微镜和原子力显微镜证实了二维石墨烯纳米薄膜具有单层结构,薄膜的边缘发生卷曲。拉曼光谱推断其含有一定的缺陷。红外光谱表明,石墨烯不含有含氧官能团,如:羧基、羟基、羰基等。此外,利用微分脉冲伏安法对多巴胺(DA)、抗坏血酸(AA)和尿酸(UA)进行了测定,结果表明该石墨烯对三种分子的氧化反应具有优良催化活性。利用石墨烯对pH的敏感性质,研发了基于石墨烯的pH传感器。石墨烯/Au修饰电极对pH变化有很大响应,在pH 3.0~11.0区间内呈良好线性关系,灵敏度为53.88 mV/pH。
     3)首次开发出一种容易的一步法在乙醇溶液中电化学刻蚀石墨合成发蓝绿色荧光的碳纳米颗粒的方法。利用透射显微镜、红外光谱和拉曼光谱进行了表征,分析了荧光碳纳米材料的结构以及形态。其发光机制是碳纳米颗粒表面的缺陷使碳纳米颗粒表面产生了能量势阱,导致了碳纳米颗粒的可见光发射。这些单分散荧光碳纳米颗粒具有无毒、化学惰性和良好的生物相容性,在生物医药领域具有重要的应用价值。
     4)利用石墨烯研制了测定芦丁的电化学传感器,芦丁可以在石墨烯修饰电极表面有效地富集,并且对芦丁的氧化具有很好的电催化作用。芦丁在电极表面的电化学过程是吸附控制,伴随着两个电子和两个质子的转移。芦丁的氧化峰电流与其浓度在1×10~7 M到1×10?5 M范围内呈良好的线性关系,相关系数为0.996,其检出限是2.1×10?8 M。电极容易再生,且具有良好的抗干扰能力。利用该方法成功地对药片中芦丁的含量进行了测定。
     5)利用石墨烯研制了直接测定对苯二酚和邻苯二酚的电化学传感器。在醋酸缓冲溶液(pH 4.5)中,对苯二酚和邻苯二酚的氧化峰电位距离约112 mV;同时,其阳极氧化电流很大,这使得它适合于同时测定这些化合物。在优化的条件下,利用差分脉冲伏安法,在5×10~(-5) M邻苯二酚的存在的条件下,响应电流与对苯二酚的浓度在1×10~(-6) M到5×10~(-5) M之间呈良好的线性关系,相关系数为0.991,检测限为1.5×10-8 M。同样在5×10~(-5) M对苯二酚的存在下,响应电流与邻苯二酚的浓度在1×10~(-6) M到5×10~(-5) M与之间呈良好的线性关系,相关系数为0.994,检测限为1.0×10-8 M。石墨烯修饰电极表现出了良好的稳定性、高的灵敏度和良好的选择性,并应用于模拟水样品中对对苯二酚和邻苯二酚的同时测定。
With the rapid development of nanoscience and nanotechnology, carbon related nanostructures have attracted extensive interests, especially after the discovery of fluorescent carbon nanoparticles, carbon nanotube, fulleren and graphene. Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice, which can be considered as a basic building block for other carbon-based materials including 0D fullerenes, 1D carbon nanotubes and 3D graphite. These carbon-based materials possess outstanding and unique physical, chemical and mechanical properties, and have been widely applied in the design of devices of micro-nano-electronics, optoelectronics, novel composite materials and sensing materials. At present, the researches related to graphene have become the one of hottest research point in the field of electrochemistry. Compared with the conventional quantum dot based on sulphides, selenides, or tellurides of zinc and cadmium, fluorescent carbon nanoparticles (CNPs) are more promising for the application in biology labelling and life science due to their excellent properties, such as low cytotoxicity, biocompatibility, and chemically inert. Therefore, it shows a great significance in studying the method for preparing the fluorescent carbon nanoparticles.
     In this thesis, studies on the method to prepare graphene and the electrochemical properties of graphene and graphene-based composite materials were carried out. Meanwhile, the fluorescent carbon nanoparticles were prepared by electrochemistry method. The main points of this thesis are briefly summarized as follows:
     1) The method of reducing oxided-graphene was employed to prepare graphene. Scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared spectroscopy (FT-IR), Raman spectroscopy and other characterization techniques were employed to characterize the graphene. The graphene provide a potential application in preparing and designing new electrochemical sensors and electrocatalysis material.
     2) Highly efficient and large-scale synthesis of graphene from graphite through electrolytic exfoliation in the ionic liquid electrolyte was introduced. SEM and AFM confirmed the existence of monolayer graphene sheets and stacks containing a few graphene sheets. Raman spectroscopy demonstrated that the as-prepared graphene sheets have low content defect. FT-IR spectra showed that graphene did not contain oxygen-containing functional groups, such as: carboxyl, hydroxyl, carbonyl, etc. In contrast to micromechanical exfoliation, electrolytic exfoliation can be scaled up for large-scale and continuous production of graphene. In addition, differential pulse voltammetry (DPV) was used in simultaneous detection of dopamine (DA), ascorbic acid (AA) and urine acid (UA). DPV data indicated the superiorly electrocatalytic ability of the graphene. A novel graphene-based pH sensor was successfully fabricated by using graphene film. The open-circuit potential of graphene/AuE in different pH B-R buffer solution showed that the graphene/AuE can be used as a pH sensor with a linear range of pH 3.0~11.0 and a sensitivity of 53.88 mV/pH.
     3) Fast and facile preparation of blue-green fluorescent carbon nanoparticles through electrochemical oxidation of graphite in ethanol was introduced The nanoparticles are characterized by Transmission electron microscopy (TEM), FT-IR, Raman and other techniques. Surface energy traps were created on the carbon nanoparticles and resulted in the visible light emission due to the quantum confinement effects. Fluorescent carbon nanoparticles take on great potential in the application in biology labelling and life science due to their many advantages such as low cytotoxicity, biocompatibility, and chemically inert.
     4) Graphene nanosheets modified glassy carbon electrode (GNs/GCE) was fabricated as voltammetric sensor for determining rutin with good sensitivity, selectivity and reproducibility. The sensor exhibits an adsorption-controlled, reversible two-proton and two electron transfer reaction for the oxidation of rutin with a peak-to-peak separation (?Ep) of 26 mV as revealed by cyclic voltammetry. Moreover, the redox peak current increased about 14 times than that of bare glassy carbon electrode (GCE). The linear response of the sensor is from 1×10-7 to 1×10~(-5) M with a detection limit of 2.1×10-8 M (S/N=3). The method was successfully applied to determine rutin in tablets with satisfied recovery.
     5) A highly sensitive and selective voltammetric sensor for simultaneous determination of hydroquinone (HQ) and catechol (CC) was developed by modifying a glassy carbon electrode with graphene nanosheets (GNs/GCE). Separation of the oxidation peak potentials for HQ and CC was about 112 mV in 0.10 M acetate buffer solution (pH 4.5), and the anodic currents for the oxidation of both HQ and CC are greatly increased at GNs/GCE, which makes it suitable for simultaneous determination of these compounds. Under the optimized conditions, the anodic peak current of HQ is linear with the concentration of HQ from 1×10~(-6) to 5×10~(-5) M in the presence of 5×10~(-5) M CC. A detection limit of 1.5×10-8 M (S/N=3) can be achieved. At the same time, the anodic current of CC is linear with the concentration of CC from 1×10~(-6) to 5×10~(-5) M with a detection limit of 1.0×10-8 M (S/N=3) in the presence of 5×10~(-5) M HQ. The proposed sensor was successfully applied to the simultaneous determination of HQ and CC in tap water, and the results are satisfactory.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版,2001, 5-6
    [2]崔华嶂,李建保,黄勇.纳米材料和纳米科技的进展、应用及产业化现状[J].材料工程,2001, 46(11): 43-48
    [3] Shenderova O.A., Zhirnov V.V., Brenner D.W., Carbon nanostructure [J], Critical Reviews in Solid State and Materials Science. 2002, 27(3/4): 227-356.
    [4] Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F., Smalley R.E.. C60: Buckminsterfullerene [J]. Nature, 1985, 318(6042): 162-163
    [5] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58
    [6] Novoselov K.S., Geim A. K., Morozov S. V., et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5296): 666-669
    [7] Geim A.K., Novoselov K.S.. The rise of graphene [J]. Nat Mater, 2007, 6(3): 183-l91
    [8] Williams J.R., DiCarlo L., Marcus C.M.. Quantum hall effect in a gate-controlled p-n junction of grapheme [J]. Science, 2007, 317(5838): 638-641
    [9] Service R.F. Carbon sheets an atom thick give rise to graphene dreams [J]. Science, 2009, 324(5929): 875-877
    [10] Kim K.S., Zhao Y., Jang H., Lee S.Y., Kim J.M., Kim K.S., Ahn J.H., Kim P., Choi J.Y., Hong B.H.. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457(7230): 706-710
    [11] Lee C.G., Wei X.D, Kysar J.W., Hone J.. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388
    [12] Chen J.H., Jang C., Xiao S.D., Ishigami M., Fuhrer M.S.. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. Nat Nanotechnol, 2008, 3(4): 206-209
    [13] Balandin A.A., Ghosh S., Bao W.Z., et.al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett, 2008, 8(3),: 902-907
    [14] Novoselov K.S., Jiang Z., Zhang Y., Morozov S.V., et al. Room-temperature quantum hall effect in Graphene [J]. Science, 2007, 315(5817): 1379-1379
    [15] Wang Y., Huang Y., Song Y., Zhang X.Y., Ma Y.F., Liang J.J., Chen Y.S.. Room temperature ferromagnetism of graphene [J]. Nano Lett, 2009, 9(1): 220—224
    [16] Heersche H.B., Jarillo-Herrero P., Ostinga J.B., et al. Bipolar supercurrent in graphene [J]. Nature, 2007, 446(7131): 56-59
    [17] Stoller M.D., Park S., Zhu, Y., An J., Ruoff R.S.. Graphene-based ultracapacitors [J]. Nano Lett. 2008, 8(10): 3498-3502
    [18]刘首鹏,周锋,金爱子等。人工裁剪制备石墨纳米结构[J].物理学报,2005,54(9):4251-4255
    [19] Dedkov Y.S., Fonin M., Rudiger U.. Rashba effect in the graphene/Ni(111) system [J]. Phys. Rev. Lett. , 2008, 100: 107602
    [20] Sutter P.W., Flege J.I., Sutter E.A.. Epitaxial graphene on ruthenium [J]. Nat. mater., 2008, 7(5): 406-411
    [21] de Parga A. L.V., Calleja F., Borca B., et al. Periodically rippled graphene: Growth and spatially resolved electronic structure [J]. Phys. Rev. Lett. , 2008, 100: 056807
    [22] N'Diaye A.T., Bleikamp S., Feibelman P.J., et al. Two-dimensional Ir cluster lattice on a graphene moire on Ir(111) [J]. Phys. Rev. Lett. , 2006, 97: 215501
    [23] Dato A., Radmilovic V., Lee Z., Phillips J., Frenklach M.. Substrate-free gas-phase synthesis of graphene sheets [J]. Nano Lett ., 2008 , 8 (7) : 2012 -2016
    [24] Wang X.B., You H.Y., Liu F.M., et al. Large-scale synthesis of few-layered graphene using CVD [J]. Chem. Vap. Deposition, 2009, 15: 53-56
    [25]吴孝松.碳化硅表面的外延Graphene [J].物理, 2009, 38(6): 409-415
    [26] Berger C., Song Z. M., Li X. B., et al. Electronic confinement and coherence in patterned epitaxial graphene [J]. Science, 2006, 312(5777): 1191-1196
    [27] Rollingsa E., Gweona G. H., de Heer W. A., et al. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate [J]. J. Phys. Chem. Solids,.2006.67(9-10): 2172-2177
    [28] Sadowski M. L., Martinez G., de Heer W. A., et al. Landau level spectroscopy of ultrathin graphite layers [J]. Phys. Rev. Lett. , 2006, 97: 266405
    [29] He H .Y., Klinowski J., Forster M.,et al. A new structural model for graphite oxide [J]. Chemical Physics Letters ,1998 ,287(1-2): 53266.
    [30] Staudenmaier L., Verfahren Zur Darstellung Der Graphitsaure [J], Ber. Dtsh. Chem. Ges., 1898, 31: 1481-1499
    [31] Brodie B.C., On the atomic weight of graphite [J]. Phil. Trans. Roy. Soc., 1859, 149: 249-259
    [32] Hummers W.S., Offeman R.E., Preparation of graphitic oxide [J], J. Am. Chem. Soc.,1958, 80(6): 1339-1339
    [33] Chattopadhyay J., Mukherjee A., Hamilton C.E, et al. Graphite epoxide [J]. J. Am. Chem.Soc., 2008, 130(16): 5414
    [34] Stankovich S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558-1565.
    [35] Lomeda J.R., Doyle C.D., Kosynkin D.V., Hwang W.F., Tour J.M.. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets [J]. J. Am. Chem. Soc. 2008,130(48):16201-16206.
    [36] Tung V.C., Allen M.J., Yang Y., Kaner R.B. High-throughput solution processing of large-scale graphene [J]. Nature Nanotech. 2008, 4(1): 25-29.
    [37] Stankovich S., Dikin D.A., Dommett G. H.B., et al . Graphene based composite materials [J]. Nature , 2006 , 442 (20): 282-286.
    [38] Wang G.X, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets[J]. J. Phys. Chem. C, 2008,112(22):8192-8195.
    [39] Muszynski R., Seger B., Kamat P.V. Decorating graphene sheets with gold nanoparticles [J ] . J. Phys. Chem. C , 2008, 112(14): 5263-5266.
    [40] Si Y.C., Samulski E.T.. Synthesis of water soluble graphene [J] . Nano Lett , 2008 , 8(6): 1679-1682.
    [41] Fernandez-Merino M.J., Guardia L., Paredes J.I., et al. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions [J]. J. Phys. Chem. C , 2010, 114(14): 6426-6432
    [42] Gao J., Liu F., Liu Y.L., et al. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid [J]. Chem. Mater., 2010, 22(7): 2213-2218
    [43] Zhu C.Z., Guo S.J., Fang Y.X., et al. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets [J]. 2010, 4(4): 2429-2437
    [44] Park S., Ruoff R.S., Chemical methods for the production of graphenes [J]. Nat. Nanotechnol. 2009, 4(4): 217-224
    [45]Guo H.L., Wang X.F., Qian Q.Y., et al. A Green Approach to the Synthesis of Graphene Nanosheets [J]. ACS Nano, 2009, 3(9): 2653-2659
    [46] Wang Z.J., Zhou X.Z., Zhang J., et al. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase [J]. J. Phys. Chem. C, 2009, 113(32): 14071-14075
    [47] Zhou M., Wang Y.L., Zhai Y.M., et al. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films [J]. Chem-Eur J, 2009, 15(25): 6116-6120
    [48] Shao Y.Y., Wang J., Engelhard M., et al. Facile and controllable electrochemical reduction of graphene oxide and its applications [J]. J. Mater. Chem., 2010, 20(4): 743-748
    [49] Wang J.F., Yang S.L., Guo D.Y., et al. Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes [J]. Electrochem. Commun., 2009,11(10): 1892-1895
    [50] Ramesha G.K., Sampath S. Electrochemical Reduction of Oriented Graphene Oxide Films: An in Situ Raman Spectroelectrochemical Study [J]. J. Phys. Chem. C , 2009, 113(19): 7985-7989
    [51] Schniepp H.C., Li J., McAlliste M.J., et al . Functionalized single graphene sheets derived from splitting graphite oxide [J]. J. Phys. Chem. B , 2006, 110 : 8535-8539.
    [52] McAllister M.J. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chem. Mater., 2007,19(18), 4396-4404
    [53] Gomez-Navarro C., Weitz R.T., Bittner A.M., et al. Electronic transport properties of individual chemically reduced graphene oxide sheets [J]. Nano Lett., 2007,7(11): 3499-3503
    [54] Wu Z.S., Ren W.C., Gao L.B., et al. Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation [J] ACS Nano, 2009, 3(2): 411-417
    [55] Williams G., Serger B., Kamat P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano 2008, 2 (7):1487-1491
    [56] Chen G.H., Wu D. J., Weng W.U., et al. Exfoliation of graphite flake and its nanocomposites [J]. Carbon, 2003, 41(3): 619-621
    [57] Chakraborty S., Chattopadhyay J., Guo W.H., et al. Functionalization of potassium graphite [J]. Angew. Chem. Int. Ed. , 2007, 46(24): 4486-4488
    [58] Valles C., Drummond C., Saadaoui H., et al. Solutions of Negatively Charged Graphene Sheets and Ribbons [J]. J. Am. Chem. Soc. ,2008, 130(47): 15802-15804
    [59] Li X., Zhang G., Bai X., Dai H.J. et al. Highly conducting graphene sheets and Langmuir-Blodgett films [J]. Nat. Nanotechnol. 2008, 3(9): 538-542.
    [60] Kuang Q., Xie S.Y., Jiang Z.Y., et al. Low temperature solvothermal synthesis of crumpled carbon nanosheets [J]. Carbon, 2004, 42(8-9): 1737-1741:
    [61] Shen J.M., Feng Y.T. Formation of flower-like carbon nanosheet aggregations and their electrochemical application [J]. J. Phys. Chem. C, 2008, 112(34): 13114-13120
    [62] Choucair M., Thordarson P., Stride J.A. Gram-scale production of graphene based onsolvothermal synthesis and sonication [J]. Nat. Nanotechnol., 2009, 4(1): 30-33
    [63] Wu J.S., Pisula W., Mullen K.. Graphenes as potential material for electronics [J]. Chem. Rev., 2007, 107(3): 718-747
    [64] Yang X.Y., Dou X., Rouhanipour A., Mullen K., et al. Two-dimensional graphene nanoribbons [J]. J. Am. Chem. Soc., 2008, 130(13): 4216-4217
    [65] Liu N., Luo F., Wu H.X., et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite [J]. Adv. Funct. Mater. 2008, 18(10): 1518-1525
    [66] Lu J., Yang J.X., Wang J.Z., et al. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids [J]. ACS Nano, 2009, 3(8): 2367-2375
    [67] Wang G.X., Wang B., Park J., et al. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation [J]. Carbon, 2009, 47(14): 3242-3246
    [68] Jiao L., Zhang L., Wang X., Diankov G., Dai H.J. Narrow graphene nanoribbons from carbon nanotubes [J]. Nature, 2009, 458(7240): 877-880.
    [69] Kosynkin D.V.,Higginbotham A.L., Sinitskii A., Lomeda J.R.,Dimiev A.,Price K., Tour J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J] Nature 2009, 458(7240): 872-876.
    [70] Hernandez Y., Nicolosi V. , Coleman J.N., et al. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nat . Nanotechnol, 2008, 3(9) : 563-568
    [71] Lotya M., Hernandez Y., Coleman J.N. , et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions [J]. J. Am. Chem. Soc. , 2009 , 131(10): 3611-3620
    [72] Li D., Mullen M.B., Wallace G.G., et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat . Nanotechnol., 2008, 3(2) : 101-105
    [73] Niyogi S., Bekyarova E., Itkis M.E., McWilliams J.L., Hamon M.A., Haddon R.C. Solution properties of graphite and graphene [J]. J. Am. Chem. Soc., 2006, 128: 7720-7721
    [74] Stankovich S., Piner R.D., Nguyen S.T., Ruoff R.S.. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon, 2006, 44(15): 3342-3347
    [75] Xu Y.F., Liu Z.B., Zhang X.L., Wang Y., Tian J.G., Huang Y., Ma Y.F., Zhang X.Y., Chen Y.S.. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property [J]. Adv. Mater., 2009, 21(12): 1275-1279
    [76] Zhang X.Y., Huang Y., Wang Y., Ma Y.F., Liu Z.F., Chen Y.S.. Synthesis andcharacterization of a graphene-C60 hybrid material [J]. Carbon, 2008, 47(1): 334-337
    [77] Zhang X.Y., Liu Z.B., Huang Y., Wan X.J., Tian J.G., Ma Y.F., Chen Y.S. Synthesis, characterization and nonlinear optical property of graphene-C60 hybrid [J]. J. Nanosci. Nanotech., 2009, 9(10): 5752-5756
    [78] Verdejo R., Barroso-Bujans F., Lopez-Manchado M.A., et al. Functionalized graphene sheet filled silicone foam nanocomposites [J]. J. Mater. Chem., 2008, 18(19) : 2221-2226
    [79] Xu Y.X., Zhao L., Bai H., et al. Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions [J]. J. Am. Chem. Soc., 2009, 131(37): 13490-13497
    [80] Wang X.R., Tabakman S.M., Dai H.J., Atomic layer deposition of metal oxides on pristine and functionalized graphene [J]. J. Am. Chem. Soc., 2008, 130(26): 8152-8153.
    [81] Wang Q.H., Hersam M.C.. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene [J]. Nat. Chem., 2009, 1(3): 206-211.
    [82] Xu Y.X., Bai H., Lu G.W., Li C., Shi G.Q.. Flexible graphene films via the filtration of water-soluble noncovalent functionalized grapheme sheets [J]. J. Am. Chem. Soc., 2008, 130: 5856-5857
    [83] Hao R., Qian W., Zhang L., Hou Y.. Aqueous dispersions of TCNQ anion stabilized graphene sheets [J]. Chem. Commun., 2008, 48: 6576-6578
    [84] Stankovich S., Piner R.D., Chen X.Q., Wu N.Q., Nguyen S.T., Ruoff R.S.. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) [J]. J. Mater. Chem., 2006, 16(2): 155-158
    [85] Li X.L., Wang X.R., Zhang L., Lee S.W., Dai H.J.. Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science, 2008, 319(5867): 1229-1232
    [86] Ramanathan T., Abdala A.A., Stankovich S., Brinson L.C., et al . Functionalized graphene sheets for polymer nanocomposites [J]. Nat. Nanotechnol. , 2008, 3(6): 327-331
    [87] Patil A.J., Vickery J.L., Scott T.B., Mann S.. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA [J]. Adv. Mater., 2009, 21(31): 3159-3165
    [88] Lu C., Yang H., Zhu C., Chen X., Chen G.. A graphene platform for sensing biomolecules [J]. Angew. Chem. Int. Ed., 2009, 48(26): 4785-4787
    [89] Subrahmanyam K.S., Ghosh A., Gomathi A.,Govindaraj A., Rao C.N.R. Covalent and Noncovalent Functionalization and Solubilization of Graphene [J]. Nanosci. Nanotechnol. Lett. 2009, 1(1): 28-31.
    [90] Si Y. C., Samulski E. T.. Exfoliated Graphene Separated by Platinum Nanoparticles [J] Chem. Mater. , 2008 , 20(21): 6792-6797
    [91] Li Y., Tang L., Li J.. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites [J]. Electrochem. Commun. ,2009, 11(4): 846-849.
    [92] Zhu C., Guo S., Zhai Y., Dong S.. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker [J]. Langmuir, 2010, 26(10): 7614-7618
    [93] Guo S., Dong S., Wang E.. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation [J]. ACS Nano, 2010, 4(1): 547-555
    [94] Xu C., Wang X., Zhu J.W. Graphene-Metal Particle Nanocomposites [J] . J. Phys. Chem. C, 2008 , 112 (50) :19841-19845 .
    [95] N’Diaye A.T., Bleikamp S., Feibelman P.J., et al . Two-dimensional Ir cluster lattice on a graphene moire on Ir(111) [J]. Phys. Rev. Lett., 2006, 97(21): 215501
    [96] Wu J., Pisula W., Mullen K.. Graphenes as potential material for electronics [J]. Chem. Rev., 2007, 107(3): 718-747
    [97] Heersche H.B., Jarillo-Herrero P., Ostinga J.B., et al. Bipolar supercurrent in graphene [J]. Nature, 2007, 446(7131): 56-59
    [98] Hasan T., Sun Z.P., Wang F.Q., et al. Nanotube-polymer composites for ultrafast photonics [J]. Adv. Mater., 2009, 21(38-39): 3874-3899
    [99] Ang P.K, Chen W, Wee A.T.S, et al. Solution-Gated Epitaxial Graphene as pH Sensor [J]. J . Am. Chem. Soc. 2008, 130(44): 14392-14393
    [100] Schedin F., Geim A.K., Morozov S.V., et al. Detection of individual gas molecules adsorbed on graphene [J]. Nat. Mater., 2007, 6(9):652-655
    [101] Hwang E.H., Adam S., Sarma S.D.. Transport in chemically doped graphene in the presence of adsorbed molecules [J]. Phys. Rev. B, 2007, 76(19): 195421-195429
    [102] Robinson J.T., Perkins F.K., Snow E.S., et al. Reduced graphene oxide molecular sensors [J]. Nano Lett., 2008, 8(10): 3137-3140
    [103] Sundaram R.S., Gomez-Navarro C., Balasubramanian K., et al. Electrochemical modification of graphene [J]. Adv. Mater., 2008, 20(16): 3050-3053
    [104] Tang L.H.; Wang Y.; Li Y.M., et al. Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films [J]. Adv. Funct. Mater., 2009, 19(17): 2782-2789
    [105] Wang Y.; Li Y.M.; Tang L.H., et al. Application of graphene-modified electrode for selective detection of dopamine [J]. Electrochem. Commun., 2009, 11(4): 889-892
    [106] Shang N.G., Papakonstantinou P., McMullan M., et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes [J]. Adv. Funct. Mater., 2008, 18(21): 3506-3514
    [107] Wang Y., Li Y.M., Tang L.H, Lu J., Li J.H., Application of graphene-modified electrode for selective detection of dopamine [J]. Electrochem. Commun. 2009, 11(4): 889-992
    [108] Alwarappan S., Erdem A., Liu C., Li C.Z., Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications [J]. J. Phys. Chem. C , 2009, 113(20): 8853–8857
    [109] Zhou M., Zhai Y., Dong S.. Electrochemical sensing and biosensing platform based on chemically reduced ghraphene oxide [J]. Anal. Chem., 2009, 81(14): 5603-5613
    [110] Li J.; Guo S.j.; Zhai Y.M., et al. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium [J]. Electrochem. Commun., 2009, 11(5): 1085-1088
    [111] Fang Y.X.; Guo S.J.; Zhu C.Z., et al. Self-Assembly of Cationic Polyelectrolyte Functionalized Graphene Nanosheets and Gold Nanoparticles: A Two-Dimensional Heterostructure for Hydrogen Peroxide Sensing [J]. Langmuir, 2010, in press
    [112] Lu J.; Do I.; Drzal L.T., Worden R.M., et al. Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response [J]. ACS Nano, 2008, 2(9): 1825-1832
    [113] Shan C.S.; Yang H.F.; Song J.F., et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene [J]. Anal. Chem., 2009, 81(6): 2378-2382
    [114] Zhou K.F.; Zhu Y.H.; Yang X.L., et al. Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite [J]. Electroanalysis, 2010, 22(3): 259-264
    [115] Pumera M.. Electrochemistry of graphene: new horizons for sensing and energy storage [J]. The Chemical. Record Rec., 2009, 9(4): 211-223
    [116] Yoo E., Kim J., Hosono E., et a1. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Lett., 2008, 8(8):2277-2282
    [117] Wang C., Li D., Too C.O., Wallace G.G.. Electrochemical properties of graphene paper electrodes used in lithium batteries [J]. Chem. Mater., 2009, 21(13): 2604-2606
    [118] Khantha M., Cordero N.A., Mol I., et al. Interaction of 1ithium with Graphene: an abinitio study [J]. Phys. Rev. B, 2004, 70(12): 125422-12531
    [119] Takamura T., Endo K., Fu L., et al. Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes [J]. Electrochim. Acta, 2007, 53(3): 1055-1061
    [120] Simon P., Gogotsi Y.. Materials for electrochemical capacitors [J]. Nat. Mater., 2008, 7(11): 845-854.
    [121] Vivekchand S.R.C., Rout C.S., Ahmanyalvl K.S.S., et a1. Graphene-based electro- chemical supercapacitors [J]. J. Am. Chem. Sci., 2008, 130 (11): 9-l3
    [122] Srinivas G., Zhu Y., Piner R., et al. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity [J]. Carbon, 2010, 48(3): 630-635
    [123] Ghosh A., Subrahmanyam K.S., Krishna K.S., et al. Uptake of H2 and CO2 by graphene [J] J. Phys. Chem. C , 2008, 112(40): 15704-15707
    [124] Klimov V.I. , Mikhailovsky A.A. , Xu S. , et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000, 290(5490): 314-317
    [125] Derfus A.M. , Chan W.C. W. , Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots [J]. Nano Lett. , 2004, 4 (1) : 11-18
    [126] Ding Z.F., Quinn B.M., Haram S.K., et al. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots [J]. Science, 2002, 296(5571): 1293-1297
    [127] Govorov A.O. Optical and electronic properties of quantum dots with magnetic impurities [J]. Comptes Rendus Physique, 2008, 9(8): 857-873
    [128] Smith A.M., Duan H.W., Mohs A.M., Nie S.M., Bioconjugated quantum dots for in vivo molecular and cellular imaging[J]. Adv. Drug Del. Rev., 2008, 60(11): 1226-1240
    [129] Santos B.S., Farias P.M. A., Fontes A., Brasil Jr. A.G., et.al. Semiconductor nanocrystals obtained by colloidal chemistry for biological applications [J]. Appl Surf Sci, 2008, 255(3): 796-798
    [130] Li H.B., Wang X.Q., Single quantum dot-micelles coated with gemini surfactant for selective recognition of a cation and an anion in aqueous solutions [J]. Sensors and Actuators B: Chemical, 2008, 134(1): 238-244
    [131] Kim D.G., Tomihira K.K., Okahara S., Nakayama M. K., Highly efficient preparation ofsize-controlled CdS quantum dots with high photoluminescence yield [J]. J Crys Grow, 2008, 310(18): 4244-4247
    [132] Zheng J.J., Zheng Z.H., Gong W.W., Hu X.B., Gao W., Ren X.G., Zhao H.F., Stable, small, and water-soluble Cu-doped ZnS quantum dots prepared via femtosecond laser ablation [J]. Chemical Physics Letters, 2008, 465: 275-278
    [133] Narayanan S., Sinha S.S., Verma P.K., Pal S.K., Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA [J]. Chem Phy Lett, 2008, 463(1-3): 160-165
    [134] Liu M.M., Xu L., Cheng W.Q., Zeng Y., Yan Z.Y., Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination[J]. Spectrochimica Acta Part A: Mol Biomol Spect, 2008, 70(5): 1198-1202
    [135] Hong D.D., Rhee J.I., Use of CdSe/ZnS luminescent quantum dots incorporated within sol-gel matrix for urea detection [J]. Anal Chim Acta, 2008, 626(1): 53-61
    [136] Magnanini R., Tarricone L., Parisini A., Longo M., Gombia E., Investigation of GaAs/InGaP superlattices for quantum well solar cells [J]. Thin Solid Films, 2008, 516(20): 6734-6738
    [137] Hazdra P., Voves J., Oswald J., Kuldova K., Hospodkova A., Hulicius E. Optical characterisation of MOVPE grown vertically correlated InAs/GaAs quantum dots[J]. Microel J., 2008, 39(8): 1070-1074
    [138] Kaizu T.K., Takahasi M.T., Yamaguchi K., Mizuki J., In situ determination of Sb distribution in Sb/GaAs(001) layer for high-density InAs quantum dot growth[J]. J. Crys. Grow., 2008, 310(15): 3436-3439
    [139] Mopelola I., Emmanuel L., Tebello N., Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin[J]. J Photochem & Photobiol: Chem, 2008, 198(1): 7-12
    [140] Anderson R.E., Warren C.W., Systematic investigation of preparing biocompatible, single and small ZnS-capped CdSe quantum dots with amphiphilic polymers[J]. ACS Nano, 2008, 2(7): 1341-1352
    [141]李一林,郭磊,张朝阳,唐吉军,谢剑炜.适配探针传感技术进展[J].中国科学B辑:化学, 2008, 38(1): 1-11
    [142] Reithmaier J.P., Forchel A. Recent advances in semiconductor quantum-dot lasers[J]. Comptes Rendus Physique, 2003, 4(6): 611-619
    [143]徐海娥,闫翠娥.水溶性量子点的制备及应用[J].化学进展, 2005, 17(5): 800-808
    [144] Sato M.K., Kawata A.T., Morito S.Z., Sato Y., Yamaguchi I. Preparation and properties of polymer/zinc oxide nanocomposites using functionalized zinc oxide quantum dots[J]. European Poly J, 2008, 44 (11): 3430-3438
    [145] Gao X.H., Cui Y.Y., Levenson R.M. et al, In vivo cancer targeting and imaging with semiconductor quantum dots [J], Nat. Biotechnol., 2004, 22 (8): 969-976.
    [146] Alivisatos A.P., Semiconductor clusters, nanocrystals, and quantum dots [J]. Science 1996, 271(5251): 933-937.
    [147] Li F.Z., Ruckenstein E., Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels [J]. Nano Lett 2004, 4(8): 1463-1467.
    [148] Kirchner C., Liedl T., Kudera S., Pellegrino T., Javier A.M., Gaub H.E., Fertig N., Parak W.J., Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles[J]. Nano Lett. 2005, 5(2): 331-338.
    [149] Sun Y.P.,Zhou B.,Lin Y. et. al, Quantum-sized carbon dots for bright and colourful photoluminescence [J], J. Am. Chem. Soc. 2006, 128(24): 7756-7757
    [150] Xing Y., Dai L.M., Nanodiamonds for nanomedicine[J] Nanomedicine, 2009, 4(2): 207-218
    [151] Krueger A. New carbon materials: Biological applications of functionalized nanodiamond materials[J]. Chem., Eur. J. , 2008, 14(5): 1382-1390
    [152] Yang W.S., Auciello O., Butler J.E., et al. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates [J]. Nat. Mater. , 2002, 1(4): 253-257
    [153] Hartl A., Schmich E., Garrido J.A., et al. Protein-modified nanocrystalline diamond thin films for biosensor applications [J]. Nat. Mater. , 2004, 3(10): 736-742
    [154] Kong X.L, Huang L.C.L, Liau S.C.V, et al. Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides [J] Anal. Chem. , 2005, 77(13): 4273-4277
    [155] Vial S., Mansuy C., Sagan S., et al. Peptide-grafted nanodiamonds: Preparation, cytotoxicity and uptake in cells [J]. Chembiochem, 2008, 9(13): 2113-2119
    [156] Krueger A., Stegk J., Liang Y.J., et al. Biotinylated nanodiamond: Simple and efficient functionalization of detonation diamond [J]. Langmuir, 2008, 24(8): 4200-4204
    [157] Vaijayanthimala V., Chang H.C., Functionalized fluorescent nanodiamonds for biomedical applications[J]. Nanomedicine, 2009, 4(1): 47-55
    [158] Yu S.J., Kang M.W., Chang H.C., et al. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity[J] J. Am. Chem. Soc. , 2005, 127(50): 17604-17605
    [159] Treussart F., Jacques V., Wu E., et al. Photoluminescence of single colour defects in 50 nm diamond nanocrystals [J] Physica B: Condensed Matter, 2006, 376: 926-929
    [160] Neugart F., Zappe A., Jelezko F., et al. Dynamics of diamond nanoparticles in solution and cells[J]. Nano Lett. , 2007, 7(12): 3588-3591
    [161] Chang Y.R., Lee H.Y., Chen K., et al. Mass production and dynamic imaging of fluorescent nanodiamonds [J] Nat. Nanotech. , 2008, 3(5): 284-288
    [162] Wee T.L., Mau Y.W., Chang H.C., et. al. Preparation and characterization of green fluorescent nanodiamonds for biological applications [J] Diam. Relat. Mater. , 2009, 18(2-3): 567-573
    [163] Hu S.L., Sun J., Du X.W., et al. The formation of multiply twinning structure and photo luminescence of well-dispersed nanodiamonds produced by pulsed-laser irradiation [J]. Diam. Relat. Mater. , 2008, 17(2): 142-146
    [164] Hu S.L., Tian F., Bai P.K., et al. Synthesis and luminescence of nanodiamonds from carbon black [J]. Mater. Sci. Eng. B, 2009, 157(1-3): 11-14
    [165] Hu S.L., Niu K., Sun J., et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation [J] J. Mater. Chem. , 2009, 19(4): 484-488
    [166] Zhu H., Wang X.L., Li Y.L., et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties [J]. Chem. Commun., 2009, 34: 5118-5120
    [167] Zhou J., Booker C., Li R., An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs) [J]. J. Am. Chem. Soc. , 2007, 129(4): 744-745
    [168] Zhao Q.L., Zhang Z.L., Huang B.H., et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite [J] Chem. Commun. , 2008, 5116-5118
    [169] Zheng L.Y., Chi Y.W., Dong Y.Q., Lin J.P., Wang B.B.. Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite [J]. J. Am. Chem. Soc. , 2009, 131(13), 4564-456
    [170] Liu H., Ye T., Mao C.. Fluorescent carbon nanoparticles derived from candle soot [J]. Angew. Chem. Int. Ed. , 2007, 46(34): 6473-6475
    [171] Ray S.C., Arindam S., Nikhil R.J., Rupa S., Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging [J]. J. Phys. Chem. C, 2009, 113(43), 18546–1855
    [172] Bourlinos A.B., Stassinopoulos A., Anglos D., et al. Surface Functionalized CarbogenicQuantum Dots [J]. Small, 2008,4(4): 455-458
    [173] Bourlinos A.B., Stassinopoulos A., Anglos D., et al. Photoluminescent Carbogenic Dots [J]. Chem. Mater. , 2008 20(14): 4539-4541
    [174] Peng H., Travas-Sejdic J., Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates [J]. Chem. Mater. 2009, 21(23): 5563-5565
    [175] Zhang J.C., Shen W.Q., Pan D.Y., et al. Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose [J]. New J. Chem., 2010, 34(4): 591-593
    [176] Wang F., Kreiter M., He B., et al. Synthesis of direct white-light emitting carbogenic quantum dots [J]. Chem. Commun. 2010, 46(19): 3309-3311
    [177] Kovtyukhova N.I., Ollivier P.J., Martin B.R., et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations [J]. Chem. Mater., 1999, 11 (3): 771-778.
    [178] Xu Y.X., Bai H., Lu G.W., et al.. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. J. Am. Chem. Soc. 2008, 130(18), 5856–5857
    [179]莫要武,夏义本,黄晓琴等氧化铝基片上沉积金刚石薄膜的Raman光谱分析[J].物理学报, 1997, 46(3): 618-624
    [180] Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev. B, 2000, 61(20):14095-14107
    [181] Tuinstra F., Koenig J.L.. Raman spectrum of graphite [J]. The Journal of Physics, 1970, 53(3): 1126-1130.
    [182] Gutowski K.E., Broker G.A.,Willauer H.D., et al.Controlling the Aqueous Miscibility of Ionic Liquids:Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle,Metathesis,and Separations [J]. J Am Chem Soc, 2003, 125(22): 6632-6633.
    [183] Malinuaskas A., Garjonyte R., Mazeikiene R., Jureviute I.,Electorchemical Response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review [J], Talanta, 2004,64(1):121-129.
    [184] Rusling J.F., Forster R.J.,Electrochemical catalysis with redox polymer and polyion-protein films[J],Journal of Colloid and Interface Science,2003,262(1): 1-15.
    [185] Zhang S.,Wright G.,Yang Y.,Materials and techniques for electrochemical biosensor design and construction[J]. Biosensors and Bioelectronics,2000,15(5-6): 273-282.
    [186] Volikakis G.J., Efstathiou C.E., Determination of rutin and other flavonoids by flow-injection/adsorptive stripping voltammetry using nujol-graphite and diphenylether-graphite paste electrodes [J]. Talanta , 2000, 51(4): 775-785.
    [187] Chen G., Zhang J.X., Ye J.N., Determination of puerarin, daidzein and rutin in Pueraria lobata (Wild) Ohwi by capillary electrophoresis with electrochemical detection[J]. J. Chromatogr. A, 2001, 923(1-2): 255–262.
    [188] Song Z.H., Hou S., Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents [J]. Talanta, 2002, 57(1): 59-67.
    [189] Ishii K., Furuta T., Kasuya Y., Determination of rutin in human plasma by high-performance liquid chromatography utilizing solid-phase extraction and ultraviolet detection [J]. J. Chromatogr. B, 2001, 759(1): 161-168.
    [190] Legnerova Z., Satinsky D., Solich P., Using on-line solid phase extraction for simultaneous determination of ascorbic acid and rutin trihydrate by sequential injection analysis [J]. Anal. Chim. Acta, 2003, 497(1-2): 165-174.
    [191] Hassan H.N. A., Barsoum B.N., Habib I.H.I., Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman filter approach [J]. J. Pharm. Biomed. Anal. 1999, 20(1-2): 315-320.
    [192] Santos D.P., Bergamini M.F., Santos V.A.F.F.M., et.al. Preconcentration of rutin at a poly glutamic acid modified electrode and its determination by square wave voltammetry[J]. Anal. Lett. 2007, 40(16-18): 3430-3442.
    [193] Malagutti A.R., Zuin V.G., Cavalheiro E.T. G., et.al. Determination of rutin in green tea infusions using square-wave voltammetry with a rigid carbon-polyurethane composite electrode [J]. Electroanalysis, 2006, 18(10): 1028-1034.
    [194] Wu S.H., Sun J.J., Zhang D.F., et.al. Nanomolar detection of rutin based on adsorptive stripping analysis at single-sided heated graphite cylindrical electrodes with direct current heating [J]. Electrochim. Acta, 200, 53(22): 6596-6601.
    [195] Franzoi A.C., Spineli A., Vieira I.C., Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly(vinylpyrrolidone) [J]. J. Pharm. Biomed. Anal. 2008, 47(4-5): 973-977.
    [196] Zhang Y., Zheng J., Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode [J]. Talanta, 2008, 77(1): 325-330.
    [197] Zeng B., Wei S., Xiao F., et.al. Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode [J]. Sens. Actuators B,2006,115(1): 240-246.
    [198] He J.L., Yang Y., Yang X., et.al. beta-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin [J], Sens. Actuators B, 2006, 114(1): 94-100.
    [199] Xu J., Hang H., Chen G., Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus [J].Talanta, 2007, 73(5): 932-937.
    [200] Wang G., Hu N., Wang W., et.al., Preparation of carbon nanotubes/neutral red composite film modified electrode and its catalysis on rutin [J]. Electroanalysis, 2007, 19(22): 2329-2334.
    [201] Jin J.H., Kim H.Y., Jung S.H., Electrochemical selectivity enhancement by using monosuccinyl beta-cyclodextrin as a dopant for multi-wall carbon nanotube-modified glassy carbon electrode in simultaneous determination of quercetin and rutin [J]. Biotechnol Lett, 2009, 31(11):1739–1744
    [202] Bard A. J., Faulkner L R. Electrochemical Methods, Fundamentals and Applications [M]. New York_ Wilev& Sons. 1980. 595.
    [203] Laviron E., Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry [J], J. Electroanal. Chem. 1974, 52(1-2): 355-393.
    [204] Cui H., He C.X., Zhao G.W.. Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection [J]. J. Chromatogr. A , 1999, 855(1): 171-179
    [205] Asan A., Isildak I.. Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride [J]. J. Chromatogr. A , 2003, 988(1): 145-149
    [206] Pistonesi M.F., Di Nezio M.S., Centurion M., et al. Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS) [J]. Talanta, 2006, 69(5): 1265-1268
    [207] Cui H., Zhang Q.L., Myint A., et al. Chemiluminescence of cerium(IV)-rhodamine 6G-phenolic compound system [J]. J. Photochem. Photobiol. A: Chem. 2006,181(2-3): 238-245
    [208] Li S.F., Li X.Z., Xu J., et al. Flow-injection chemiluminescence determination of polyphenols using luminol-NaIO4-gold nanoparticles system [J]. Talanta, 2008, 75(1): 32-37
    [209] Nagaraja P., Vasantha R.A., Sunitha K.R.. A sensitive and selective spectrophotometricestimation of catechol derivatives in pharmaceutical preparations [J]. Talanta, 2001, 55(6): 1039-1046
    [210] Moldoveanu S.C., Kiser M. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke [J]. J. Chromatogr. A, 2007, 1141(1): 90-97
    [211] Garcia-Mesa J.A., Mateos R., Direct automatic determination of bitterness and total phenolic compounds in virgin olive oil using a pH-based flow-injection analysis system [J]. J. Agric. Food Chem.,2007, 5(10): 3863-3868
    [212] Bai J., Guo L.P., Ndamanisha J.C., et al. Electrochemical properties and simultaneous determination of dihydroxybenzene isomers at ordered mesoporous carbon-modified electrode [J]. J. Appl. Electrochem. ,2009, 39(12): 2497-2503
    [213] Yu J.J., Du W., Zhao F.Q., et al. High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72 carbon electrodes [J]. Electrochim. Acta., 2009, 54(3): 984-988
    [214] Wang Z.H., Li S.J., Lv Q.Z.. Simultaneous determination of dihydroxybenzene isomers at single-wall carbon nanotube electrode [J]. Sens. Actuators B: Chem. 2007,127(2): 420-425
    [215] Qi H.L., Zhang C.X.. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes [J]. Electroanalysis, 2005, 17(10): 832-838
    [216] Yang P.H., Wei W.Z., Tao C. Y., et al. Simultaneous voltammetry determination of dihydroxybenzene isomers by poly-bromophenol Blue/Carbon nanotubes composite modified electrode [J]. Bull. Environ. Contam. Toxicol.,2007, 79(1): 5-10
    [217] Korkut S., Keskinler B., Erhan E.. An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives [J]. 2008, 76(5): 1147-1152
    [218] Zhang D.D., Peng Y.G., Qi H.L., et al. Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers [J]. Sens. Actuators B: Chem., 2009, 136(15): 113-121
    [219] Zhao D.M., Zhang X.H., Feng L.J., et al. Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode [J]. Colloids Surfaces B: Biointerfaces, 2009, 74(1): 317-321
    [220] Ding Y.P., Liu W.L., Wu Q.S., et al. Direct simultaneous determination ofdihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry [J]. J. Electroanal. Chem., 2005, 575(2): 275-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700