新型纳米结构锡基锂离子电池负极材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对能源的需求日益增长、化石燃料储量的降低以及环境污染的加剧,开发清洁高效的新型能源成为人们关注的热点。锂离子电池作为一种能量存储装置,以其环保、轻便、高容量、长寿命等特点被广泛应用在小型便携设备中。锂离子电池的电极材料是影响其性能的关键,而目前商品化的锂离子电池的负极材料多为石墨类碳材料,已不能满足人们对电池性能的需求。因此研究和开发新型离子电池负极材料成为一个重要课题。
     锡基材料由于具有较高的理论容量和较好的安全性能,已成为了近年来新型锂离子电池负极材料的研究热点之一。但锡类材料在循环脱嵌锂离子时会产生较大的体积效应,导致材料粉化脱落,性能大幅度衰减。目前改进锡基材料性能的方法主要有制备合金材料、制备复合材料以及制备纳米或多孔材料。本文的研究内容是结合目前对锡基材料的改进方法设计出新型锂离子电池锡基负极材料并研究其制备方法,主要内容如下:
     本文在第一章对锂离子电池负极材料的发展进行了系统的综述。首先简要概述了锂离子电池的发展历史、原理和特点,然后详细的介绍了不同嵌锂类型的锂离子电池负极材料的研究进展。根据负极材料嵌锂的特点,可将负极材料分为四大类:表面/层间嵌锂材料(以碳类材料为主)、合金化嵌锂材料(以硅、锡等材料为主)、低应力嵌锂材料(以Li4Ti5012和Ti02为主)和氧化物嵌锂(以钴、镍、铁、铜的氧化物为主)。随后对四类材料嵌锂的特点、制备的方法、存在的问题以及改进的方法等方面进行了论述,并在此基础上提出了自己的工作思路和研究内容。
     第三章内容主要围绕改进锡基合金材料的电化学性能展开,我们提出了利用电沉积-电化学去合金的方法制备多孔锡基合金的思路。实验首先确立了制备三种锡基合金的镀液组成和配制方法,并研究了电沉积和电化学溶解的实验条件,成功制备了比例合适的锡铜、锡钴和锡镍合金。通过对溶解前后的形貌对比观察认为,材料在电化学溶解过程中会形成形态不一的多孔结构,孔径尺寸从几十到几百纳米不等,材料的形貌与合金的种类、组成和制备条件都有关。对材料的XRD衍射图谱研究发现电沉积得到的锡基合金均含有较多的Sn相,经过电化学溶解处理,大量的Sn相发生了溶解,因此多孔结构的产生主要与Sn相的溶解有关。对溶解前后的合金样品进行循环伏安测试,结果显示由于样品溶解前后的组成发生了变化,因此具有不同的反应机理。比较溶解前后的充放电曲线可以看出,溶解后的合金具有较小的极化作用。通过循环充放电测试发现溶解后的合金材料表现出比溶解前更高的比容量,更好的电化学稳定性和倍率性能。通过研究我们认为材料性能的提高主要由于多孔结构可以缓冲体积膨胀、优化电极与电解液的接触、缩短传质距离等原因。因此我们认为电沉积-电化学溶解方法制备多孔锡基合金电极能够有效的改进锡基合金的电化学性能。
     第四章的研究内容关注了氧化锡性能的改进。为了进一步优化氧化锡的电化学表现,实验设计将氧化锡纳米颗粒与石墨烯纳米片相结合。分别通过微波溶剂热法和水热法制备氧化锡-石墨烯复合材料(SnO2-rGO)和两种氧化锡-石墨烯气溶胶(SnO2-GA或SnO2-NGA)复合材料。实验通过形貌表征确定了SnO2-rGO具备二维结构,表面负载的氧化锡纳米颗粒的尺寸在14-17nm且分布均匀,氧化锡的载量约为40%;SnO2-GA和SnO2-NGA具有三维大孔结构,表面均匀覆盖了氧化锡纳米颗粒,颗粒的尺寸在10nm以下,两种材料的载量在60%以上。拉曼结果证实了复合材料中碳材料具有层数较少的石墨烯纳米片的结构特征,且掺氮石墨烯具有较高的缺陷程度,同时还证明了氧化锡纳米颗粒与石墨烯的结合改变了材料原本的电子分布。XPS结果证实产物中各元素的价态,确定了三种复合材料的石墨烯表面存在部分含氧官能团。通过对三种材料的循环伏安测试发现氧化锡嵌锂的第一步反应可逆性较好,因此材料表现出了较高的比容量。由于氧化锡与石墨烯结合能缓解石墨烯的堆叠、氧化锡纳米颗粒的团聚、保证Sn02的导电性并缓冲其体积膨胀,因此三种材料都表现出了较好的循环稳定性。另外SnO2-NGA的比容量、稳定性和倍率性能均好于SnO2-GA,分析认为这是由于氮的掺杂增强了氧化锡纳米粒子和石墨烯之间的结合力,且掺氮的石墨烯产生了部分缺陷结构可允许Li+在石墨烯的缺陷中通过,另外,掺氮的石墨烯具有更好的导电性,因此材料的性能更加优越。
With the increasing demand of energy, decreasing reserves of fossil fuel and the aggravation of environmental pollution, people focus on development of clean and high efficiency energy. As an energy storage device, lithium ion battery has been extensively utilized in portable equipment for its high capacity, long life, portability and environmental friendly. The key point of influency of lithium ion battery properties is its electrode material. Most of the negative electrodes of commercialized lithium ion battery are made of graphitic carbon which already cannot satisfy people's demand. Therefore research and exploitation of new negative material of lithium ion battery becomes an important issue.
     Due to the high theory capacity and fairly security, tin-based material has become one of the hottest spot of new negative material investigation in recent years. But the severe volume effect of tin-based material could happen in Li+intercalation/deintercalation process which caused the pulverization and exfoliation of material and attenuation of electrode performance. The performance improvement methods of tin-based material mainly include preparation of tin-based alloy material, composite material and nano material. The research content of this dissertation is mainly about designation of new tin-based material for negative electrode of lithium ion battery with recent improvement method. The main content is as follows:
     There is a systematic survey of negative material of lithium ion battery in chapter one. Firstly, the brief summary of development history, principle and characteristic of lithium ion battery were provided. The research progress of negative was described in detail after that. Negative electrode material of lithium ion battery can be classified as four categories according to the different characteristic of lithium insertion. They are interlayer or surface lithium storage material (e.g. carbon material), alloying lithium storage material (e.g. Si, Sn), zero or low-strain lithium storage material (e.g. Li4Ti5O12, TiO2) and oxide lithium storage material.The characteristic, preparation method, existing problem and improvement idea of the four categories were discussed after that. On the basis of above survey, the working idea and research contents was enduced.
     The major content of chapter three is about new improvement method of tin-based alloy material. We offered electrodeposition and dealloying method for this topic. At first, the composition and preparing method of electroplating bath were determined and experiment condition of electrodeposition and electrochemical dissolution were studied at the same time. After that the as-plated and porous Sn-Cu, Sn-Co and Sn-Ni alloy with appropriate proportion were successfully prepared in this condition. It is believed that the porous structure with different configuration would be formed in electrochemical dissolution process from the results of morphology change of the alloy before and after electrochemical dissolution. The size of the pores is from tens to hundred of nanometers. The structure of material is related to type, composing and preparation of alloy. It can be found that there is lot of Sn phase in obtained tin-based alloys from their XRD results and most of them were lost after electrochemical dissolution. So the formation of porous structure is mainly result from the dissolution of Sn phase. The cyclic voltammetry performance of as-deposited and porous tin-based alloy proved the different reaction mechanism caused by changes of composition. The charge and discharge curves of as-deposited and porous tin-based alloy proved the weaker polarization of electrode in porous alloys. The higher specific capacity, better electrochemical stability and rate capability of porous alloys can be exhibited in cyclic charge-discharge test. It is believe that the enhancement of electrochemical performance is mainly due to adaptation of volume expand, optimized contact between electrode and electrolyte and shorter transfer distance. So the porous tin-based alloys prepared by electrodeposition and dealloying possess of advance electrochemical performance.
     The research content of chapter four is focus on tin oxide material. Three kinds of tin oxide and graphene composites were designed for optimize their electrochemical performance. The ethylene glycol microwave processing and one-step hydrothermal are used for synthesis tin oxide-graphene composite (SnO2-rGO) and two kinds of tin oxide-graphene aerosol composite (SnO2-GA and SnO2-NGA) respectively. The planar structure of SnO2-rGO was confirmed by experiment. Tin oxide nanoparticles loaded on the surface of graphene possess size of14-17nm and even distribution. The loading amount is about40%. The three-dimensional macroporous structure and tin oxide loading statue of SnO2-GA and SnO2-NGA were characterized by experiment. The size of tin oxide is smaller than10nm and the loading amount is more than60%. Their Raman spectra proved the less layer-numberd structure of graphene, higher flaw degree of N-doped graphene and the variety electron distribution caused by the combination of tin oxide and graphene. Few oxygen-containing groups can be detected by XPS technique and the elements valence states were confirmed at the same time. Three composite materials were tested by cyclic voltammetry and the reversibility of the first lithiation step was testified. The combination of tin oxide and graphene can relieve the stack of graphene nanoplate, agglomeration of tin oxide nanoparticle, fit into volume expansion and ensure high conductivity. So the excellent performance showed in electrochemical test. In addition, an enhancement performance can be found in SnO2-NGA for strengthen of conductivity of material and binding capacity between SnO2nanparticle and graphene from N-doping. Beside that, Li+pass through graphene allowed by the flaw produced by N-doping is another important factor.
引文
[1]W.S. Harris, P.D. Thesis, UCRL-8381,University of California,Berkeley.
    [2]A.M. Skundin, O.N. Efimov, O.g.V. Yarmolenko, The state-of-art and prospect for the development of rechargeable lithium batteries, Russ. Chem. Rev.,71 (2002) 329-346.
    [3]N. Watanabe, M. Fukuba, Primary Cell For Electric Batteries, in:U.S.P. Office (Ed.), U.S.,1970.
    [4]M.S. Whittingham, F.R.G. Jr., The lithium intercalates of the transition metal dichalcogenides, Mater. Res. Bull.,10 (1975) 363-371.
    [5]M.B. Armand, Intercalation electrodes materials for advanced batteries, in Proceedings of a NATO Symposium on Materials for Advanced Batteries, Plenum, New York, NY, USA Aussois, France,1980, pp.145-161.
    [6]K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (O    [7]A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates, J. Electrochem. Soc.,144(1997) 1609-1613.
    [8]B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid:a battery of choices, Science,334 (2011) 928-935.
    [9]A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull.,43 (2008) 1913-1942.
    [10]J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature,414 (2001) 359-367.
    [11]L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small,8 (2012) 1130-1166.
    [12]黄可龙,王兆祥,刘素琴,锂离子电池原理与关键技术,2010.
    [13]E. Peled, C. Menachem, D. Bar-Tow, A. Melman, Improved graphite anode for lithium-ion batteries bonded solid electrolyte interface and nanochannel formation, J. Electrochem. Soc.,143 (1996) L4-L7.
    [14]J. Shim, K.A. Striebel, Electrochemical characterization of thermally oxidized natural graphite anode in lithium-ion batteries, J. Power Sources,164 (2006) 862-867.
    [15]Y.P. Wu, E. Rahm, R. Holze, Effects of Heteroatoms on electrchemical performance of electrode material for lithium ion batteries, Elctrochim. Acta,47 (2002)3491-3507.
    [16]K. Matsumoto, J. Li, Y. Ohzawa, T. Nakajima, Z. Mazej, B. Zemva, Surface structure and electrochemical characteristic of natural graphite fluorinated by ClF3, J. Fluorine Chem.,127 (2006) 1383-1389.
    [17]王国平,张伯兰,翟美臻,改性球形天然石墨锂离子电池负极材料的研究,合成化学,13(2005)249-253.
    [18]A. Trifonova, M. Winter, J.O. Besenhard, Structure and electrochemical characterization of tin-containing graphite compounds used as anodes for Li-ion batteries, J. Power Sources,174 (2007) 800-804.
    [19]B. Veeraraghavan, J. Paul, B. Haran, B. Popov, Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries, J. Power Sources,109(2002)377-387.
    [20]S.Iijima, Helical microtubules of graphitic carbon, Nature,354 (1991) 56-58.
    [21]P.J.F. Harris, Carbon nanotubes and related structures-new materials for the twenty-first century, Cambridge University Express,2001.
    [22]H. Chen, A. Roy, J.B. Baek, L. Zhu, J. Qu, L. Dai, Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications, Mater. Sci. Eng. Rep.,70 (2010) 63-91.
    [23]L. Qu, L. Dai, Direct growth of three-dimensional multicomponent micropatterns of vertically aligned single-walled carbon nanotubes interposed with their multi-walled counterparts on Al-activated iron substrates, J. Mater. Chem.,17 (2007)3401-3405.
    [24]Y. Yang, S. Huang, H. He, A.W.H. Mau, L. Dai, Patterned growth of well-aligned carbon nanotubes:a photolithographic approach, J. Am. Chem. Soc.,121 (1999) 10832-10833.
    [25]C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett.,70 (1997) 1480-1482.
    [26]B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett.,307 (1999) 153-157.
    [27]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature,407 (2000) 496-499.
    [28]E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon,37 (1999) 61-69.
    [29]G. Maurin, F. Henn, Encylopedia of nanoscience and nanotehnology, American Scientific Publisher,2003.
    [30]F. Leroux, K. Metenier, S. Gautier, E. Frackowiak, S. Bonnamy, F. Beguin, Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes, J. Power Sources,81-82 (1999) 317-322.
    [31]H. Shimoda, B. Gao, X.P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, O. Zhou, Lithium intercalation into opened single-wall carbon nanotubes:storage capacity and electronic properties, Phys. Rev. Lett.,88 (2001) 15502-15505.
    [32]P. Ajayan, O. Zhou, Applications of Carbon Nanotubes, Topics in Applied Physics,80 (2001) 391-425.
    [33]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science,306 (2004) 666-669.
    [34]F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Mater.,6 (2007) 652-655.
    [35]L.A. Ponomarenko, F.Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic dirac billiard in graphene quantum dots, Science, 320 (2008) 356-358.
    [36]D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett.,9 (2009) 1752-1758.
    [37]M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett.,8(2008) 3498-3502.
    [38]B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, G.X. Wang, Graphene nanosheets as cathode catalysts for lithium-air batteries, Carbon,50 (2012) 727-733.
    [39]X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H.J. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res.,1 (2008) 203-212.
    [40]W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80(1958)1339-1339.
    [41]D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, R. Schlogl, metal-free heterogeneous catalysis for sustainable chemistry, Chem. Sus Chem., 3(2010)169-180.
    [42]A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano,4(2010)6337-6342.
    [43]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,457 (2009) 706-710.
    [44]L. Qu, Y. Liu, J.B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano,4 (2010) 1321-1326.
    [45]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature,457 (2009) 706-710.
    [46]E.K. Choi, I.Y. Jeon, S.Y. Bae, H.J. Lee, H.S. Shin, L. Dai, J.B. Baek, High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets, Chem. Commun,46 (2010) 6320-6322.
    [47]L. Jiang, L. Gao, Modified carbon nanotubes:an effective way to selective attachment of gold nanoparticles, Carbon,41 (2003) 2923-2929.
    [48]S. Roy, A. Harding, A. Russell, K. Thomas, Spectroelectrochemical study of the role played by carbon functionality in fuel cell electrodes, J. Electrochem. Soc., 144(1997)2323-2328.
    [49]I.Y. Jeon, D. Yu, S.Y. Bae, H.J. Choi, D.W. Chang, L. Dai, J.B. Baek, Formation of large-area nitrogen-doped graphene film prepared from simple solution casting of edge-selectively functionalized graphite and its electrocatalytic activity, Chem. Mater.,23 (2011) 3987-3992.
    [50]E. Yoo, J. Kim, E. Hoson, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett.,8 (2008) 2277-2282.
    [51]G.X. Wang, X.P. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon,47 (2009) 2049-2053.
    [52]P. Guo, H.H. Song, X.H. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries, Electrochem. Commun., 11(2009)1320-1324
    [53]C. Wang, D. Li, C.O. Too, G.G. Wallace, Electrochemical properties of graphene paper electrodes used in lithium batteries, Chem. Mater.,21 (2009) 2604-2606.
    [54]A. Abouimrane, O.C. Compton, K. Amine, S.T. Nguyen, Non-annealed graphene paper as a binder-free anode for lithium-ion batteries, J. Phys. Chem. C,114 (2010) 12800-12804.
    [55]P. Guo, H. Song, X. Chen, Hollow graphene oxide spheres self-assembled by W/O emulsion, J. Mater. Chem.,20 (2010) 4867-4874.
    [56]S. Yin, Y. Zhang, J. Kong, C. Zou, C.M. Li, X. Lu, J. Ma, F.Y.C Boey, X. Chen, Assembly of graphene sheets into hierarchical structures for high-performance energy storage, ACS Nano,5 (2011) 3831-3838.
    [57]D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C Wang, L.V. Saraf, J. Zhang, LA. Aksay, J. Liu, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano,3 (2009) 907-914.
    [58]H. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries, J. Am. Chem. Soc.,132(2010) 13978-13980.
    [59]D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V. Saraf, D. Hu, J. Zhang, G.L. Graff, J. Liu, M.A. Pope, I.A. Aksay, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage, ACS Nano,4(2010)1587-1595.
    [60]A. Leela, M. Reddy, A. Srivastave, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano,4 (2010) 6337-6342.
    [61]Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Mullen, Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors, Adv. Mater.,24 (2012) 5130-5135.
    [62]X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.M. Tang, H. Li, T. Zhai, L. Li, Y. Bando, D. Golberg, N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries, Adv. Funct. Mater.,22 (2012) 2682-2690.
    [63]S.M. Paek, E.J. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett.,9 (2008) 72-75.
    [64]Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance, ACS Nano,4 (2010) 3187-3194.
    [65]X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries, ACS Nano,5 (2011) 3333-3338.
    [66]Y.J. Mai, X.L. Wang, J.Y. Xiang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, CuO/graphene composite as anode materials for lithium-ion batteries, Electrochim. Acta,56(2011)2306-2311.
    [67]Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano,4 (2010) 1790-1798.
    [68]Z.P. Zhu, D.S. Su, G. Weinberg, R.Schlogl, Supermolecular self-assembly of graphene sheets:formation of tube-in-tube nanostructures, Nano Lett.,4 (2004) 2255-2259.
    [69]Z. Tang, J. Zhuang, X. Wang, Exfoliation of graphene from graphite and their self-assembly at the oil-water interface, Langmuir,26 (2010) 9045-9049.
    [70]G.Q. Shi, Y.X. Xu, K.X. Sheng, G. Li, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano,4 (2010) 4324-4330.
    [71]M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc.,132(2010) 14067-14069.
    [72]X.T. Zhang, Z.Y. Sui, B. Xu, S.F. Yue, YJ. Luo, W.C. Zhan, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources, J. Mater. Chem.,21 (2011) 6494-6497.
    [73]K.X. Sheng, Y.Q. Sun, C. Li, W.J. Yuan, G.Q. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep., 2(2012)247-252.
    [74]Q. Wu, Y.Q. Sun, H. Bai, G.Q. Shi, High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties, Phys. Chem. Chem. Phys.,13 (2011) 11193-11198.
    [75]Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano,4 (2010) 4324-4330.
    [76]X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources, J. Mater. Chem.,21 (2011) 6494-6497.
    [77]K. Sheng, Y. Xu, C. Li, G. Shi, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide, New Carbon Mater.,26(2011)9-15.
    [78]W. Chen, L. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures, Nanoscale,3 (2011) 3132-3137.
    [79]H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process, ACS Nano,6 (2012) 2693-2703.
    [80]W. Chen, S. Li, C. Chen, L. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel, Adv. Mater.,23 (2011) 5679-5683.
    [81]Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, A Versatile, Ultralight, Nitrogen-doped graphene framework, Angew. Chem.,124 (2012) 11533-11537.
    [82]Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater.,10 (2011) 424-428.
    [83]F. Liu, T.S. Seo, A Controllable Self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Funct. Mater.,20 (2010) 1930-1936.
    [84]R.A. Huggins, Lithium alloy negative electrodes formed from convertible oxides, Solid State Ionics,113-115(1998)57-67.
    [85]B. Scrosati, Rencent advances in lithium ion battery materials, Elctrochim. Acta, 45(2000)2461-2466.
    [86]H. Kim, J.H. Choi, H.J. Sohn, T. Kang, The insertion mechanism of lithium into Mg2Si anode material for Li-Ion batteries, J. Electroanal. Soc.,146 (1999) 4401-4405.
    [87]K.D. Kepler, J.T. Vaughey, M.M. Thackeray, Copper-tin anodes for rechargeable lithium batteries:an example of the matrix effect in an intermetallic system,J. Power Sources,81-82 (1999) 383-387.
    [88]I.A. Courtney, J.R. Dahn, Electrochemical and in situ X-Ray diffraction studies of the reaction of lithium with tin oxide composites, J. Electrochem. Soc.,144 (1997)2045-2052.
    [89]C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Critical size of a nano SnO2 electrode for Li-secondary battery, Chem. Mater.,17 (2005) 3297-3301.
    [90]X.W. Lou, C.M. Li, L.A. Archer, Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage, Adv. Mater.,21 (2009) 2536-2539.
    [91]H.X. Zhang, C. Feng, Y.C. Zhai, K.L. Jiang, Q.Q. Li, S.S. Fan, Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles:a novel binder-free and high-capacity anode material for lithium-ion batteries, Adv. Mater.,21 (2009) 2299-2304.
    [92]M. Winter, J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta,45 (1999) 31-50.
    [93]M.G. Kim, S. Sim, J. Cho, Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction, Adv. Mater., 22(2010)5154-5158.
    [94]L. Wang, S. Kitamura, T. Sonoda, K. Obata, S. Tanase, T. Sakai, Electroplated Sn-Zn alloy electrode for Li secondary batteries, J. Electrochem. Soc.,150 (2003) A1346-A1350.
    [95]J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati, High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries, Adv. Mater.,19 (2007) 1632-1635.
    [96]J. Zhang, Y. Xia, Co-Sn alloys as negative electrode materials for rechargeable lithium batteries, J. Electrochem. Soc.,153 (2006) A1466-A1471.
    [97]C.K. Chan, H. Peng, G. Liu, K. Mcllwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol.,3 (2008) 31-35.
    [98]H. Duan, J. Gnanaraj, X. Chena, B. Lia, J. Liang, Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery, J. Power Sources,185 (2008) 512-518.
    [99]A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater.,4 (2005) 366-377.
    [100]D. Gaelle, H. Jusef, P. Stefania, S. Bruno, Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion Batteries, Adv. Mater., 19(2007)2336-2340.
    [101]N. Pereira, L.C. Klein, G.G. Amatucci, Particle size and multiphase effects on cycling stability using tin-based materials, Solid State Ionics,167 (2004) 29-40.
    [102]H.C. Shin, M. Liu, Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries, Adv. Funct. Mater.,15 (2005) 582-586.
    [103]F.S. Ke, L. Huang, H.B. Wei, J.S. Cai, X.Y. Fan, F.Z. Yang, S.G Sun, Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries, J. Power Sources,170 (2007) 450-455.
    [104]F.S. Ke, L. Huang, H.H. Jiang, H.B. Wei, F.Z. Yang, S.G. Sun, Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries, Electrochem. Commun.,9 (2007) 228-232.
    [105]F.S. Ke, L. Huang, J.S. Cai, S.G. Sun, Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries, Electrochim. Acta,52 (2007) 6741-6747.
    [106]Y. Yu, L. Gu, X. Lang, C. Zhu, T. Fujita, M. Chen, J. Maier, Li storage in 3D nanoporous Au-supported nanocrystalline tin, Adv. Mater.,23 (2011) 2443-2447.
    [107]L. Xue, Z. Fu, Y. Yao, T. Huang, A. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries, Electrochim. Acta,55 (2010) 7310-7314.
    [108]H. Zhao, C. Jiang, X. He, J. Ren, C. Wan, A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu-Sn alloy process, Ionics, 14(2008)113-120.
    [109]Y. Yu, L. Gu, C. Zhu, P.A.v. Aken, J. Maier, Tin nanoparticles encapsulated in porous multichannel carbon microtubes, J. Am. Chem. Soc.,131 (2009) 15984-15985.
    [110]B.A. Boukamp, G.C. Lesh, R.A. Huggins, All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc.,128 (1981) 725-729.
    [111]H.X. Chen, Z.X. Dong, Y.P. Fu, Y. Yang, Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries, J. Solid State Electrochem.,14(2010) 1829-1834.
    [112]M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Silicon nanotube battery anodes, Nano Lett.,9 (2009) 3844-3847.
    [113]H. Kim, M. Seo, M.H. Park, J.C. Prof., A critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed.,49 (2010) 2146-2149.
    [114]J.P. Maranchi, A.F. Hepp, P.N. Kumta, High Capacity, Reversible silicon thin-film anodes for lithium-ion batteries, Solid-State Lett.,6 (2003) A198-A201.
    [115]J.K. Lee, K.B. Smith, C.M. Hayner, H.H. Kung, Silicon nanoparticles-graphene paper composites for Li ion battery anodes, Chem. Commun.,46 (2010) 2025-2027.
    [116]L.F. Cui, Y. Yang, C.M. Hsu, Y. Cui, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett.,9 (2009) 3370-3374.
    [117]A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater.,9 (2010) 353-358.
    [118]J.W. Kim, J.H. Ryu, K.T. Lee, S.M. Oh, Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries, J. Power Sources,147 (2005) 227-233.
    [119]T. Zhang, J. Gao, H.P. Zhang, L.C. Yang, Y.P. Wu, H.Q. Wu, Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries, Elctrochem. Commun.,9 (2007) 886-890.
    [120]I.S. Kim, G.E. Blomgren, P.N. Kumta, Study of electrochemical inactivity of nanocomposites generated using high-energy mechanical milling, J. Electrochem. Soc.,152 (2005) A248-A254.
    [121]G.N. Zhu, Y.G. Wang, Y.Y. Xia, Ti-based compounds as anode materials for Li-ion batteries, Energy Environ. Sci.,5 (2012) 6652-6667.
    [122]L. Kavan, M. Gratzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, Electrochemical and photoelectrochemical investigation of single-crystal anatase, J. Am. Chem. Soc.,118(1996)6716-6723.
    [123]F. Dachille, P.Y. Simons, R. Roy, Pressure-temperature studies of anatase, brookite, rutile and TiO2-Ⅱ, Am. Mineral.,53 (1968) 1929-1939.
    [124]L. Kavan, D. Fattakhova, P. Krtil, Lithium insertion into mesoscopic and single-crystal TiO2 (Rutile) electrodes, J. Electrochem. Soc.,146 (1999) 1375-1379.
    [125]R.v.d. Krol, A. Goossens, J. Schoonman, Spatial extent of lithium intercalation in anatase TiO2, J. Phys. Chem. B,103 (1999) 7151-7159.
    [126]G. Nuspl, K. Yoshizawa, T. Yamabe, Lithium intercalation in TiO2 modifications, J. Mater. Chem.,7 (1997) 2529-2536.
    [127]L. Kavana, K. Kratochvilova, M. Gratzela, Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime, J. Electroanal. Chem.,394 (1995) 93-102.
    [128]X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc.,131 (2009) 3152-3153.
    [129]L. Kavan, J. Rathousky, M. Gratzel, V. Shklover, A. Zukal, Surfactant-templated TiO2 (Anatase):characteristic features of lithium insertion electrochemistry in organized nanostructures, J. Phys. Chem. B,104 (2000) 12012-12020.
    [130]Y. Tang, L. Yang, Z. Qiu, J. Huang, Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries, J. Mater. Chem.,19 (2009) 5980-9584.
    [131]P. Kubiak, J. Geserick, N. Husing, M. Wohlfahrt-Mehrens, Electrochemical performance of mesoporous TiO2 anatase, J. Power Sources,175 (2008) 510-516.
    [132]J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles, J. Phys. Chem. C,111 (2007)14925-14931.
    [133]Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2, Adv. Mater.,18 (2006) 1421-1426.
    [134]J. Yan, H. Song, S. Yang, X. Chen, Effect of heat treatment on the morphology and electrochemical performance of TiO2 nanotubes as anode materials for lithium-ion batteries, Mater. Chem. Phys.,118 (2009) 367-370.
    [135]H. Qiao, D. Tao, Y. Wang, Y. Cai, F. Huang, X. Yang, J. Wei, Q. Wei, Electrochemical charge storage of flowerlike rutile TiO2 nanorods, Chem. Phys. Lett.,490 (2010) 180-183.
    [136]K. Saravanan, K. Ananthanarayanan, P. Balaya, Mesoporous TiO2 with high packing density for superior lithium storage, Energy Environ. Sci.,3 (2010) 939-948.
    [137]F.F. Cao, Y.G. Guo, S.F. Zheng, X.L. Wu, L.Y. Jiang, R.R. Bi, L.J. Wan, J. Maier, Symbiotic coaxial nanocables:facile synthesis and an efficient and elegant morphological solution to the lithium storage problem, Chem. Mater.,22 (2010) 1908-1914.
    [138]Q. Wang, Z.H. Wen, J.H. Li, A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode, Adv. Funct. Mater.,16 (2006) 2141-2146.
    [139]D. Choi, D. Wang, V.V. Viswanathan, I.T. Bae, W. Wang, Z. Nie, J. Zhang, G.L. Graff, J. Liu, Z. Yang, T. Duong, Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage, Electrochem. Commun,12 (2010) 378-381.
    [140]M.A. Kanjwal, N.A.M. Barakat, F.A. Sheikh, G.G. kumar, D.K. Park, H.Y. Kim, Fabrication of titanium oxide nanofibers containing silver nanoparticles, J. Ceram. Process. Res.,11 (2010) 437-442.
    [141]G. Du, Z. Guo, P. Zhang, Y. Li, M. Chen, D. Wexler, H. Liu, SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries, J. Mater. Chem.,20 (2010) 5689-5694.
    [142]Y.G. Guo, Y.S. Hu, W. Sigle, J. Maier, Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks, Adv. Mater.,19 (2007) 2087-2091.
    [143]S.E. Park, B.E. Kim, S.W. Lee, J.K. Lee, Employment of encapsulated Si with mesoporous TiO2 layer as anode material for lithium secondary batteries, Trans. Nonferr. Met. Soc. Chin.,19 (2009) 1023-1026.
    [144]D. Peramunage, K.M. Abraham, Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells, J. Electrochem. Soc.,145 (1998) 2609-2615.
    [145]Y. Hao, Q. Lai, Z. Xu, X. Liu, X. Ji, Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery, Solid State Ionics,176 (2005) 1201-1206.
    [146]L. Cheng, H.J. Liu, J.J. Zhang, H.M. Xiong, Y.Y Xia, Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors, J. Electrochem. Soc.,153 (2006) A1472-A1477.
    [147]T. Yuan, K. Wang, R. Cai, R. Ran, Z. Shao, Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anataseTiO2 solid as raw material with high electrochemical performance, J. Alloys Compds.,477 (2009) 665-672.
    [148]K. Nakahara, R. Nakajima, T. Matsushima, H. Majima, Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells, J. Power Sources,117 (2003) 131-136.
    [149]M. Sugita, M. Tsuji, M. Abe, Synthetic inorganic ion-exchange materials (L Ⅷ) hydrothermal synthesis of a new layered lithium titanate and its alkali ion exchange, Bull. Chem. Soc. Jpn.,63 (1990) 1978-1984.
    [150]E.M. Sorensen, S.J. Barry, H.K. Jung, J.R. Rondinelli, J.T. Vaughey, K.R. Poeppelmeier, Three-dimensionally ordered macroporous Li4Ti5O12:effect of wall structure on electrochemical properties, Chem. Mater.,18 (2006) 482-489.
    [151]S. Huang, Z. Wen, X. Zhu, Z. Lin, Effects of Dopant on The electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries, J. Power Sources,165 (2007) 408-412.
    [152]G.J. Wang, J. Gao, L.J. Fu, N.H. Zhao, Y.P. Wu, T. Takamura, Preparation and characteristic of carbon-coated Li4Ti5O12 anode material, J. Power Sources,174 (2007)1109-1112.
    [153]S. Huang, Z. Wen, X. Zhu, X. Yang, Research on Li4Ti5O12/CuxO composite anode materials for lithium-ion batteries, J. Electrochem. Soc.,152 (2005) A1301-A1305.
    [154]Y. Tang, L. Yang, S. Fang, Z. Qiu, Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries, Electrochim. Acta,54 (2009) 6244-6249.
    [155]Y.F. Tang, L. Yang, Z. Qiu, J.S. Huang, Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets, Electrochem. Commun.,10(2008) 1513-1516.
    [156]J. Chen, L. Yang, S. Fang, Y. Tang, Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries, Electrochim. Acta,55 (2010) 6596-6600.
    [157]R.N. Singh, J.E. Koening, G. Poillerat, P. Chartier, Elelctrochemical studies on protective thin CO3O4 and NiCo204 film prepared on titanium bu spray pyrolysis for oxygen for oxygen evolution, J. Electrochem. Soc.,137 (1990) 1408-1413.
    [158]M. Mohamedi, S.J. Lee, D. Takahashi, M. Nishizawa, T. Itoh, I. Uchida, Amorphous tin oxide films:preparation and characterization as an anode active material for lithium ion batteries, Elctrochim. Acta,46 (2001) 1161-1168.
    [159]U. Morales, A. Campero, O. Solorza-Feria, Electrocatalysis of oxygen reduction on CO3O4 and PbCosOx synthesized by sol-gel, J. New Mater. Electrochem. Syst., 2(1999)89-93.
    [160]J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage, Adv. Mater.,24 (2012)5166-5180.
    [161]S. Yang, X. Feng, S. Ivanovici, K. Mullen, Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage, Angew. Chem. Int. Ed.,49 (2010) 8408-8411.
    [162]A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Coaxial MnO2/Carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett.,9 (2009) 1002-1006.
    [163]R. Liu, S.B. Lee, MnO2/Poly (3,4-ethylenedioxythiophene) Coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc.,130(2008)2942-2943.
    [1]白春礼,扫描隧道显微术及其应用,上海科学出版社,1992.
    [2]梁栋材,X射线晶体学基础,科学出版社,1991.
    [3]孟令芝,龚淑玲,何永炳,有机波谱分析,武汉大学出版社,2003.
    [4]黄可龙,王兆翔,刘索琴,锂离子电池原理与关键技术,北京化工出版社,2010.
    [5]田昭武等,电化学研究方法,科学出版社,1984.
    [6]周仲柏,陈永言,电极过程动力学基础,武汉大学出版社,1989.
    [1]R.A. Huggins, Lithium alloy negative electrodes, J. Power Sources,81-82 (1999) 13-19.
    [2]M. Winter, J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta,45 (1999) 31-50.
    [3]A. Sivashanmugam, T.P. Kumar, N.G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens, J. Garche, Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries, J. Power Sources,144 (2005) 197-203.
    [4]K. Ui, S. Kikuchi, Y. Kadoma, N. Kumagai, S.Ito, Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries, J. Power Sources,189 (2009) 224-229.
    [5]J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature,414 (2001) 359-367.
    [6]A.H. Whitehead, J.M. Elliott, J.R. Owen, Nanostructured tin for use as a negative electrode material in Li-ion batteries, J. Power Sources,81-82 (1999) 33-38.
    [7]N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes, J. Power Sources, 107(2002)48-55.
    [8]J. Zhang, Y. Xia, Co-Sn alloys as negative electrode materials for rechargeable lithium batteries, J. Electrochem. Soc.,153 (2006) A1466-A1471.
    [9]H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, T. Osaka, Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries, Electrochem. Solid-State Lett.,6 (2003) A218-A220.
    [10]Z. Chen, J. Qian, X. Ai, Y. Cao, H. Yang, Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries, J. Power Sources,189 (2009) 730-732.
    [11]G. Derrien, J. Hassoun, S. Panero, B. Scrosati,Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries, Adv. Mater.,19(2007)2336-2340.
    [12]C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Critical size of a nano SnO2 electrode for Li-secondary battery, Chem. Mater.,17 (2005) 3297-3301.
    [13]J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, D. Zhao, Ordered nanostructured tin-based oxides/carbon composite as the negtive-electrode material for lithium-ion batteries, Adv. Mater.,16 (2004) 1432-1436.
    [14]S. Liu, Q. Li, Y. Chen, F. Zhang, Carbon-coated copper-tin alloy anode material for lithium ion batteries, J. Alloys Compd.,478 (2009) 694-698.
    [15]K.D. Kepler, J.T.Vaughey, M.M. Thackray, Copper-tin anodes for rechargeable lithium batteries:an example of the matrix effect in an intermetallic system, J. Power Sources,81-82 (1999) 383-387.
    [16]S. Bourderau, T. Brousse, D.M. Schleich, Amorphous silicon as a possible anode material for Li-ion batteries, J. Power Sources,81-82 (1999) 233-236.
    [17]H. Yan, S. Sokolov, J.C. Lytle, A. Stein, F. Zhang, W.H. Smyrl, Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries, J. Electrochem. Soc.,150 (2003) A1102-A1107.
    [18]R. Kim, D. Nam, H. Kwon, Electrochemical performance of a tin electrodeposit with a multi-layered structure for Li-ion batteries, J. Power Sources,195 (2010) 5067-5070.
    [19]Y. Yu, L. Gu, C. Zhu, P.A.v. Aken, J. Maier, Tin nanoparticles encapsulated in porous multichannel carbon microtubes, J. Am. Chem. Soc.,131 (2009) 15984-15985.
    [20]Y. Yu, L. Gu, X.Y. Lang, C.B. Zhu, T. Fujita, M. Chen, J. Maier, Li storage in 3D nanoporous Au-supported nanocrystalline tin, Adv. Mater.,23 (2011) 2443-2447.
    [21]X.Y. Fan, F.S. Ke, G.Z. Wei, L. Huang, S.G. Sun, Sn-Co alloy anode using porous Cu as current collector for lithium ion battery, J. Alloys Compd.,476 (2009) 70-73.
    [22]Y. Ding, Y.J. Kim, J. Erlebacher, Nanoporous gold leaf:"Ancient technology"/advanced material, Adv. Mater.,16 (2004) 1897-1900.
    [23]H. Li, X. Huang, L. Chen, Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries, J. Power Sources, 81-82(1999)340-345.
    [24]Y.Y. Xia, T. Sakai, T. Fujieda, M. Wada, H. Yoshinaga, Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries, J. Electrochem. Soc.,148(2001)A471-A418.
    [25]L. Xue, Z. Fu, Y Yao, T. Huang, A. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries, Electrochim. Acta,55 (2010) 7310-7314.
    [26]N. Pereira, L.C. Klein, G.G. Amatucci, Particle size and multiphase effects on cycling stability using tin-based materials, Solid State Ionics,167 (2004) 29-40.
    [27]D. Kong, J. Wang, H. Shao, J. Zhang, C. Cao, Electrochemical fabrication of a porous nanostructured nickel hydroxide film electrode with superior pseudocapacitive performance, J. Alloys Compds.,509 (2011) 5611-5616.
    [28]E. Goamez, E. Guaus, J. Torrent, X. Alcobe, E. Valleas, Tin-cobalt electrodeposition from sulfate-gluconate baths, J. Appl. Electrochem.,31 (2001) 349-354.
    [29]M. Wachtler, M. Winter, J.O. Besenhard, Anodic materials for rechargeable Li-batteries, J. Power Sources,105 (2002) 151-160.
    [30]P.P. Ferguson, R.A. Dunlap, J.R. Dahn, An in situ study of the electrochemical reaction of Li with nanostructured Sn30Co30C40, J-Electrochem. Soc.,157 (2010) A326-A332.
    [31]C.M. Ionica-Bousquet, P.E. Lippens, L. Aldon, J. Olivier-Fourcade, J.C. Jumas, In situ 119Sn mossbauer effect study of Li-CoSn2 electrochemical system,J. Appl. Electrochem.,18 (2006) 6442-6447.
    [32]F.S. Ke, L. Huang, H.B. Wei, J.S. Cai, X.Y. Fan, F.Z. Yang, S.G. Sun, Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries, J. Power Sources,170 (2007) 450-455.
    [33]T. Watanabe, T. Hirose, K. Arai, M. Chikazawa, Metastable phases formed in Ni-Sn electroplated alloy film, J. Jpn. Inst. Met.,63 (1999) 496-501.
    [34]J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati, High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries, Adv. Mater.,19 (2007) 1632-1635.
    [35]F.S. Ke, L. Huang, J.S. Cai, S.G. Sun, Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries, Electrochim. Acta,52 (2007) 6741-6747.
    [36]H.C. Shin, M. Liu, Three dimensional porous copper tin alloy electrodes for rechargeable lithium batteries, Adv. Funct. Mater.,15 (2005) 582-586.
    [37]H.R. Jung, E.J. Kim, Y.J. Park, H.C. Shin, Nickel-tin foam with nanostructured walls for rechargeable lithium battery, J. Power Sources,196 (2011) 5122-5127.
    [38]樊小勇,庄全超,魏国祯,柯福生,黄.令,董全峰,孙世刚,以多孔铜为集流体制备Cu6Sn5合金负极及其性能,物理化学学报,25(2009)611-616.
    [39]L.J. Xue, Y.F. Xu, L. Huang, F.S. Ke, Y. He, Y.X. Wang, G.Z. Wei, J.T. Li, S.G. Sun, Lithium storage performance and interfacial processes of three dimensional porous Sn-Co alloy electrodes for lithium-ion batteries, Electrochim. Acta,56 (2011)5979-5987.
    [40]Z. Du, S. Zhang, T. Jiang, Z. Bai, Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance, Electrochim. Acta,55(2010)3537-3541.
    [41]L. Huang, H.B. Wei, F.S. Ke, X.Y. Fan, J.T. Li, S.G. Sun, Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes, Electrochim. Acta,54 (2009) 2693-2698.
    [42]C. Yang, D. Zhang, Y. Zhao, Y. Lu, L. Wang, J.B. Goodenough, Nickel foam supported Sn-Co alloy film as anode for lithium ion batteries, J. Power Sources, 196(2011)10673-10678.
    [1]M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries, Angew. Chem. Int. Ed.,46 (2007) 750-753.
    [2]Y. Wang, J.Y. Lee, H.C. Zeng, Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application, Chem. Mater.,17 (2005) 3899-3903.
    [3]F. Wang, G. Yao, M.W. Xu, M.S. Zhao, Z.B. Sun, X.P. Song, Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries, J. Alloys Compd.,509 (2011) 5969-5973.
    [4]H.X. Zhang, C. Feng, Y.C. Zhai, K.L. Jiang, Q.Q. Li, S.S. Fan, Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles:A novel binder-free and high-capacity anode material for lithium-ion batteries, Adv. Mater.,21 (2009) 2299-2304.
    [5]Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Liu, In situ generation of few layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage, Adv. Energy Mater.,2 (2012) 95-102.
    [6]B. Scrosati, Rencent advances in lithium ion battery materials, Elctrochim. Acta, 45(2000)2461-2466.
    [7]B.A. Boukamp, G.C. Lesh, R.A. Huggins, All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc.,128 (1981) 725-729.
    [8]J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries, J. Phys. Chem. C, 115(2011) 11302-11305.
    [9]L.S. Zhang, L.Y. Jiang, H.J. Yan, W.D. Wang, W. Wang, W.G. Song, Y.G. Guo, L.J. Wan, Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries, J. Mater. Chem.,20 (2010) 5462-5467.
    [10]P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Lett.,9(2009)612-616.
    [11]E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett.,8 (2008) 2277-2282.
    [12]Z.P. Zhu, D.S. Su, G. Weinberg, R. Schlogl, Supermolecular Self-assembly of graphene sheets:formation of tube-in-tube nanostructures, Nano Lett.,4 (2004) 2255-2259.
    [13]Z. Tang, J. Zhuang, X. Wang, Exfoliation of graphene from graphite and their self-assembly at the oil-water interface, Langmuir,26 (2010) 9045-9049.
    [14]G.Q. Shi, Y.X. Xu, K.X. Sheng, C. Li, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano,4 (2010) 4324-4330.
    [15]M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc.,132(2010)14067-14069.
    [16]X.T. Zhang, Z.Y. Sui, B. Xu, S.F. Yue, Y.J. Luo, W.C. Zhan, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources, J. Mater. Chem.,21 (2011) 6494-6497.
    [17]Q. Wu, Y.Q. Sun, H. Bai, G.Q. Shi, High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties, Phys. Chem. Chem. Phys.,13 (2011) 11193-11198.
    [18]K.X. Sheng, Y.Q. Sun, C. Li, W.J. Yuan, G.Q. Shi, Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering, Sci. Rep., 2(2012)247-252.
    [19]Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and Graphene Oxide:Synthesis Properties and Applications, Adv. Mater.,22 (2010) 3906-3924.
    [20]X. Zhou, T. Wu, B. Hu, G. Yang, B. Han, Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid, Chem. Commun., 46 (2010) 3663-3665.
    [21]X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon,49 (2011) 133-139.
    [22]C. Xu, X. Wang, J.W. Zhu, Graphene-metal particle nanocomposites, J. Phys. Chem. C,112 (2008) 19841-19845.
    [23]S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett.,9 (2009) 72-75.
    [24]J. Yao, X.P. Shen, B. Wang, H.K. Liu, G.X.Wang, In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries, Electrochem. Commun.,11 (2009) 1849-1852.
    [25]Y.M. Li, X.J. Lv, J. Lu, J.H. Li, Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability, J. Phys. Chem. C.,114 (2010) 21770-21774.
    [26]P.C. Lian, X.F. Zhu, S.Z. Liang, Z. Li, W.S. Yang, H.H. Wang, High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries, Electrochim. Acta,56 (2011) 4532-4539.
    [27]S.J. Ding, D.Y. Luan, F.Y.C. Boey, J.S. Chen, X.W. Lou, SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties, Chem. Comm.,47 (2011)7155-7157.
    [28]X.D. Huang, X.F. Zhou, L.A. Zhou, K. Qian, YH. Wang, Z.P. Liu, C.Z. Yu, A facile one-step solvothermal synthesis of SnO2/graphene nanocomposite and its application as an anode material for lithium-ion batteries, Chem. Phys. Chem., 12(2011)278-281.
    [29]G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries, J. Mater. Chem.,19 (2009) 8378-8384.
    [30]C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, Size-selected synthesis of PtRu nano-catalysts:reaction and size control mechanism, J. Am. Chem. Soc.,126 (2004) 8028-8037.
    [31]L.H. Jiang, G.Q. Sun, Z.H. Zhou, S.G. Sun, Q. Wang, S.Y. Yan, H.Q. Li, J. Tian, J.S. Guo, B. Zhou, Q. Xin, Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts, J. Phys. Chem. B,109 (2005) 8774-8778.
    [32]G.X. Wang, J. Yang, J. Park, X.L. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C,112 (2008) 8192-8195.
    [33]C. Xu, J. Sun, L. Gao, Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties, Nanoscale,4 (2012) 5425-5430.
    [34]B. Das, R. Voggu, C.S. Rout, C.N.R. Rao, Changes in the electronic structure and properties of graphene induced by molecular charge-transfer, Chem. Commun.,0 (2008)5155-5157.
    [35]J.G. Kim, S.H. Nam, S.H. Lee, S.M. Choi, W.B. Kim, SnO2 Nanorod-planted graphite:an effective nanostructure configuration for reversible lithium ion storage, ACS Appl. Mater. Interfaces,3 (2011) 828-835.
    [36]H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive and biocompatible graphene paper, Adv. Mater.,20 (2008) 3557-3561.
    [37]R. Demir-Cakan, Y.S. Hu, M. Antonietti, J. Maier, M.M. Titirici, Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties, Chem. Mater.,20 (2008) 1227-1229.
    [38]H. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries, J. Am. Chem. Soc.,132 (2010) 13978-13980.
    [39]F. Han, W.C. Li, M.R. Li, A.H. Lu, Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume, J. Mater. Chem.,22 (2012) 9645-9651.
    [40]L.Y. Jiang, X.L. Wu, Y.G. Guo, L.J. Wan, SnO2-based hierarchical nanomicrostructures:facile synthesis and their applications in gas sensors and lithium-ion batteries, J. Phys. Chem. C,113 (2009) 14213-14219.
    [41]G.X. Wang, X.P. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon,47 (2009) 2049-2053.
    [42]Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nat. Mater., 10(2011)780-786.
    [43]Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, A versatile, ultralight, nitrogen-doped graphene framework, Angew. Chem.,124(2012) 11533-11537.
    [44]X.S. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries, Adv. Mater., (2013) 2152-2157.
    [45]S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon,45 (2007) 1558-1565.
    [46]T. Akatsuka, M. Ushiro, S.I. Nagamatsu, Y. Takahashi, T. Fujikawa, Multiple-scattering approach to Sn L3-edge X-ray absorption near-edge structure (XANES) analyses for organic tin compounds, Polyhedron,27 (2008) 3146-3150.
    [47]D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett.,9 (2009)1752-1758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700