三螺旋电致化学发光生物传感器的研制及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三螺旋DNA是在双螺旋DNA的基础上形成的,三螺旋结构在研发新的生物分子工具以及治疗试剂等方面具有巨大的潜力,可以对特定序列的双链DNA予以识别,以及对基因调节,包括干扰基因转录、复制和重组。三螺旋DNA的研究有助于深入理解细胞过程,揭示某些基因疾病的形成机理,为建立基因疾病新疗法提供全新的思路。
     本论文以适体探针作为蛋白质与小分子的特异识别分子,结合具有灵敏的信号转换功能的电致化学发光技术,与三螺旋DNA杂交技术相结合,通过对DNA序列的设计来选择性的识别和检测凝血酶、腺苷的浓度,设计简单灵活,为蛋白质和小分子的研究提供了新的手段和思路。本论文主要内容包括以下三个方面:
     1研究了一种新颖的基于二茂铁猝灭联吡啶钌发光的三螺旋电致化学发光(ECL)生物传感器,首先将标记联吡啶钌的DNA自组装到金电极上,然后与特定序列的DNA、标记二茂铁羧酸的DNA,在绑定剂存在的条件下杂交,形成三螺旋DNA结构。然后对合成的发光标记物的浓度进行了标定,以及对探针溶液进行了表征,和对绑定剂进行了选择,初步形成了一种可行的三螺旋DNA生物传感器,为接下来的凝血酶和腺苷的检测提供了一种可行的方法。
     2在前期工作的基础了,我们改进了实验方法,研究了一种以适体为基础的ECL-三螺旋DNA生物传感器,使之用于凝血酶浓度的检测。在凝血酶存在下,DNA-3中凝血酶的适体部分与凝血酶结合,标有二茂铁的DNA-3被解离下来,二茂铁基团远离联吡啶钌基团,从而使联吡啶钌发光强度增强,以发光强度的变化值为信号实现了对凝血酶浓度的高灵敏度的检测。凝血酶浓度的线性范围是是4.0×10~(-15) ~ 3.0×10~(-14)mol L~(-1),检测限可达1.0 f mol L~(-1)。同时,设计了双螺旋检测凝血酶的对比试验,实验结果显示,我们的三螺旋生物传感器比其灵敏度提高了100倍。本方法对提高蛋白质检测的特异性与灵敏度提供了一条有效的途径。
     3在以上两种DNA传感器的研究基础上,我们探索了第三种传感器,将标记联吡啶钌的腺苷适体链固定到金电极表面,选择三螺旋特征链和标记二茂铁基团的DNA链与之互补,形成三螺旋结构,在腺苷的作用下,联吡啶钌标记的探针与腺苷结合,形成腺苷-适体的发夹式复合结构,从而联吡啶钌更接近于电极表面而远离二茂铁,使发光强度大大增强。以发光强度的变化值为信号对腺苷的浓度进行检测,在最佳条件下,腺苷浓度的线性范围是1.0×10~(-9) ~ 1.0×10~(-8) mol L~(-1),检测限可达2.7×10~(-10) mol L~(-1)。并进行了双螺旋对比试验,三螺旋生物传感器比双螺旋的灵敏度提高了大约10倍。同时我们用胞苷和尿苷对其选择性进行了研究,发现我们研制的传感器具有较好的选择性。本方法为电化学生物传感器检测小分子的方法提供了一种新的思路。
Triplex DNA is formed on the basis of the duplex DNA. The structure of triple-helix is with great potential in the development of new biological molecule tools and treatment reagents. It can identify specific sequences of duplex DNA as well as on gene regulation, including interference with transcription, replication and reorganization. The research of triplex DNA will help further understanding cellular processes, reveal the formation mechanism of genetic diseases, and provide a new method to new treatments for the establishment of these diseases.
     The main contents of this paper were to combine sensitive signal conversion function of ECL technology, triple helix DNA hybridization technique with the aptamer probes for protein and molecule specific recognition, and prepared a new ECL biosensor, which was designed by DNA sequence to identify and selectively detect the concentration of adenosine or thrombin. This method was simple and flexible. It provided new tools and ideas for protein and small molecule research. This thesis included the following three parts:
     1 A novel triplex electrochemiluminescence biosensor based on the ferrocene quenching of tris(2,2'-bipyridyl)ruthenium luminescence was developed. First the DNA tagged with tris(2,2'-bipyridyl)ruthenium was self-assembled onto the surface of gold electrodes. And then it hybrided with a specific sequence of DNA and ferrocene (Fc) labeled DNA, in the presence of binding agent to form the structure of triplex DNA. The concentration of the synthesized of luminous markers was calibrated, and the probe solution was characterized, and the binding agent was choosed. Finally a viable triplex DNA biosensor was constructed for the next detection of thrombin and adenosine.
     2 On the basis of preliminary work, a novel ECL-triplex aptamer-based biosensing method for the determination of thrombin was developed based on a structure-switching ECL-quenching mechanism, so that for the detection of thrombin concentrations. In the presence of thrombin, the aptamer sequence prefered to form the aptamer-thrombin complex and the switch of the binding partners occured in conjunction with the generation of a strong ECL signal owing to the dissociation of FcDNA. The luminous intensity changed with the concentration of thrombin can be tested, the linear range was 4.0×10~(-15) to 3.0×10~(-14)mol L~(-1). A detection limit of 1.0 f mol L~(-1) of thrombin was achieved with high sensitivity. At the same time, a duplex ECL contrast test was designed, the results showed that the sensitivity of our triplex biosensor increased more than 100-fold. The method provided an effective way to improve the specificity and sensitivity for protein detection.
     3 On the base of the above two sensors, a novel ECL-triplex aptamer-based biosensing method for the determination of adenosine was developed. In the presence of adenosine, the tris(2,2'-bipyridyl)ruthenium labeled DNA-1 probe combined with adenosine to form adenosine - aptamer hairpin complex structure, which is closer to the surface of electrode and away from the ferrocene to increase the luminous intensity. The ECL intensity was increased with the increase of the concentration of adenosine in the range of 1.0×10~(-9) to 1.0×10~(-8) mol L~(-1). The detection limit is 2.7×10~(-10)mol L~(-1). Meanwhile, we made a duplex contrast test, the sensitive of triplex biosensor increased about 10-fold. We used the cytidine and uridine for its selectivity, and we found that our triplex biosensor had good selectivity. The method provided a new thought for the detection of small molecules with electrochemical biosensor.
引文
[1]徐大炜,许丹科.适体生物传感器研究进展[J],化学传感器, 2005, 25(2): 20-21
    [2] Tuerk, C., Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA[J], Polymerase Science, 1990, 249: 505-510
    [3] Robertson, D. L., Joyce, G. F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA[J], Nature, 1990, 344: 467-468
    [4] Ellington, A. D., Szostak, J. W., In vitro selection of RNA molecules that bind specific ligands[J], Nature, 1990, 346: 818-822
    [5]张先恩,生物传感器技术原理与应用[J],吉林科学技术出版社, 1991
    [6] Jiang Y, Fang X, Bai C, Signaling aptamer/protein binding by a molecular light switch complex[J], Analytical Chemistry, 2004, 76(17): 5230-5235
    [7] Wang J, Jiang Y, Zhou C, et al, Aptamer-based ATP assay using a luminescent light switching complex[J], Analytical Chemistry, 2005, 77(11): 3542-3546
    [8] Li N, Ho C M, Aptamer-based optical probes with separated molecular recognition and signal transduction modules[J], Journal of the American Chemical Society, 2008, 130(8): 2380-2381
    [9] Zhou L, Ou L, Chu X, et al, Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein[J], Analytical Chemistry, 2007, 79(19): 7492-7500
    [10] Baker B R, Lai R Y, Wood M S, et al, An electronic,aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids[J], Journal of the American Chemical Society, 2006, 128(10): 3138-3139
    [11] Li B, Wang Y, Wei H, et al, Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model[J], Biosensors and Bioelectronics, 2008, 23(7): 965-970
    [12] Liss M, Petersen B, Wolf H, et al, An aptamer-based quartz crystal protein biosensor[J], Analytical Chemistry, 2002, 74(17): 4488-4495
    [13] Mosing R K,Mendonsa S D,Bowser M T.Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase[J], Analytical Chemistry, 2005, 77(19): 6107-6112
    [14]徐国宝,董绍俊,电化学发光及其应用[J],分析化学,2001,25(1): 103-108
    [15] Liu J F Xing D, Shen X Y, et al, Electrochemiluminescence polymerase chain reaction detection of genetically modified organisms[J], Anal. Chem., Acta, 1997, 341: 251-256
    [16] Karsten A F, Miloslav P, George G G. Recent application of electrogenerated chemiluminescence in chemical analysis [J]. Talanta, 2001, 54: 531-559
    [17] Hercules D M, Lytle F E. Chemiluminescence from Reduction Reactions[J], J. Am. Chem. Soc,1966, 88(20): 4745-4746
    [18] Martin J E, Hart E J, Adamson A W, et al. Chemiluminescence from the reaction of the hydrated electron with tris(bipyridyl) ruthenium(III)[J], J. Am. Chem. Soc, 1972, 94(26): 9238-9240
    [19] Tokel N E, Bard A. J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris (2, 2'-bipyridine) ruthenium (II) dichloride[J], J. Am. Chem. Soc, 1972, 94 (8): 2862-2863
    [20] Chang M M, Saji T, Bard A.J. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions[J], J. Am. Chem. Soc, 1977, 99 (16): 5399-5403
    [21] Rubinstein I, Bard A. J, Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2'-bipyridine) ruthenium (2+) and oxalate or organic acids[J], J. Am. Chem. Soc, 1981, 103 (3): 512-516
    [22] White H S, Bard A.J. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru (2, 2'-bpy)32+-S2O82- system in acetonitrile-water solutions[J], J. Am. Chem. Soc, 1982, 104(25): 6891-6895
    [23] Noffsinger J B, Danielson N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris (2, 2' -bipyridine) ruthenium (III)[J], Anal. Chem., 1987, 59(6): 865-868
    [24] Chandrasekaran K, Whitten D G. Applications of light-induced electron-transfer and hydrogen-abstraction processes: photoelectrochemical production of hydrogen from reducing radicals[J], J. Am. Chem. Soc, 1980, 102(15): 5119-5120
    [25] De Laive P J, Sullivan B P, Meyer T J, et al.Applications of light-induced electron-transfer reactions. Coupling of hydrogen generation with photoreduction of ruthenium (II) complexes by triethylamine [J], J. Am. Chem. Soc, 1979, 101(14): 4007-4008
    [26] Miao W, Choi J P, Bard A. J. Electrogenerated chemiluminescence 69[J], J. Am. Chem. Soc, 2002, 124(48): 14478-14485
    [27] J H Kenten, S Gudibande, J Link, J J Willey, B Curfman, E O Major, R J Massey, Improved electrochemiluminescent label for DNA probe assays: rapid quantitative assays of HIV-1 polymerase chain reaction products[J], Clin. Chem., 1992, 38(16): 873-879
    [28] W J Miao, A J Bard, Electrogenerated Chemiluminescence. 72. Determination of immobilized DNA and C-Reactive Protein on Au (III) Electrodes Using Tris(2,2'-bipyridyl)ruthenium(II) Labels[J], Anal. Chem., 2003, 75: 5825-5834
    [29] W J Miao, A J Bard, Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres[J], Anal. Chem., 2004, 76:5379-5386
    [30] Jing Zhang, Hongian Qi, Yan Li, Qiang Gao, and Chengxiao Zhang, Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex[J], Anal. Chem., 2008, 80: 2888-2894
    [31]王鹏,景晓燕,梅长松等,两种ω-二茂铁羧酸的改进合成及其电化学行为[J],化学试剂,2000, 22(4): 196-197
    [32]刘万毅,袁耀锋,张凌云等,烷基桥联双二茂铁衍生物的取代基效应与电化学性质的研究[J],高等学校化学学报,1998, 19(8): 1251-1255
    [33]蒲陆梅,莫尊理,杨武等,含二茂铁单元的分子树络合物的电化学性质[J],化学试剂,2001, 13(1): 21-23
    [34]杨庆华,叶宪曾,陶家洵,二茂铁单羧基衍生物/Nafion修饰电极对多巴胺的电化学催化研究[J],北京大学学报(自然科学版),1999, 35(6): 38-44
    [35]杜丹,王升富,二茂铁-磷钼酸电荷转移配合物修饰电极的制备及电化学性能的研究分析科学学报[J],2001, 17(1): 21-24
    [36]徐春,蔡宏,何品刚等,二茂铁标记DNA电化学探针的研制及性质研究[J],高等学校化学学报,2001, 22(9): 1492-1495
    [37]陈灿辉,叶华,二茂铁及其衍生物的电化学研究进展[J],化工时刊,2004, 18(10): 1-4
    [38]陈灿辉,李红,朱伟,二茂铁及其与DNA复合物的电化学行为[J],Acta Phys. Chim. Sin., 2005, 21(10): 1067-1072
    [39]徐春,蔡宏,何品刚等,二茂铁标记DNA电化学探针的研制及性质研究[J],高等学校化学学报,2001, 22(9): 1492-1495
    [40] Juris A, Balzani V, Barigelletti F, et al, Ru(Ⅱ)polypyridine complexes: photophysics, photochemistry, electrochemistry and chme-luminescene[J].Coord chem. Bev., 1998, 84-85
    [41]段春迎,朱龙根,游效曾,二茂铁衍生物合成、表征及猝灭发光的研究.化学学报[J],1992, 50, 715-720
    [42] Yan Li, Honglan Qi, Yage Peng, Qiang Gao, Chengxiao Zhang, Y. Li, et al, Electrogenerated chemiluminescence aptamer-based method for the determination of thrombin incorporating quenching of tris(2,2′-bipyridine)ruthenium by ferrocene[J], Electrochemistry Communications, 2008, 10: 1322-1325
    [43] Felsenfeld G, Davies D R, Rich A. Formation of a 3-stranded polynucleotide molecule[J], J. Am. Chem. Soc., 1957, 79: 2023-2024
    [44] Mirkin S M, Lyamichev V I , Drushyak K N, Filippov S A, Fromk-Kamenetskii D P, DNA H form requires a homopurine–homopyrimidine mirror repeat Nature[J], 1987, 330: 495-497
    [45] Moser H, Dervan P B, Sequence-Specific Cleavage of Double Helical DNA by Triple HelixFormation[J], Science, 1987, 238: 645-650
    [46] Hoyne P R , Gacy A M, McMurray C T, Maher III L. J, Stabilities of intrastrand pyrimidine motif DNA and RNA triple helices, Nucleic Acids Research[J], 2000, 28: 770-775
    [47] Mergny JL Duval-Valentin, C. H. Nguyen, L. Perrouault, Intercalation of ethidium bromide into a triple-stranded oligonucleotide[J], Science, 1992, 256: 1681-1683
    [48] Nielsen PE, Egholm M, Berg RH, Buchardt O, Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide[J], J Mol Recognit, 1994, 7: 165-167
    [49] Povsic TJ, Dervan PB, Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation[J], J Am Chem. Soc, 1989, 111: 3059-3522
    [50] Ono A, Ts’o PO, Kan LS, Triplex Formation of an Oligonu-of Oligonucleotides[J], J Am Chem. Soc, 1991, 113: 4032-4036
    [51] Miller PS, Bhan P, Cushman CD, Trapane,T.L., Recognition of a guanine-cytosine base pair by 8-oxoadenine Biochemistry[J], 1992, 31: 6788-6792
    [52] Huang CY, Cushman CD, Miller PS, Triplex formation by oligonucleotides containing novel deoxycytidine derivatives[J], J org Chem., 1993, 58: 5048-5053
    [53] Stilz HU, Dervan PB, Specific recognition of CG base pairs by 2-deoxynebularine within the purine-purine-pyrimidine triple-helix motif[J], Biochemistry, 1993, 32: 2177-2181
    [54] Kessler DJ, Pettitt BM, Cheng YK et al, Triple helix formation at distant sites: hybrid Oligonucleotides containing a polymeric linker, Nucleic Acids Res[J], 1993, 21: 4810-4814
    [55] Escude C, Francois JC, sun JS et al, Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies[J], Nucleic Acids Res, 1993, 21: 5547-5553
    [56] Frochier BC, Riccca DJ, Triple-helix formation by oligodeoxynucleotides containing the carbocyclic analogs of thymidine and 5-methyl-2'-deoxycytidine[J], J. Am. Chem. Soc., 1992, 114: 8320-8322
    [57] Kibler-Herzog L, Kell B, Zon G et al. Sequence dependent effects in methylphosphonate deoxyribonucleotide double and triple helical complexes[J], Nucleic Acids Res, 1990, 18: 3545-3555
    [58] Hacia JG, Wold BJ, Dervan PB, Phosphorothioate oligonucleotide-directed triple helix formation[J], Biochemistry, 1994, 33: 5367-5373
    [59] Musso M, Van-Dyke MW, The yeast CDP1 gene encodes a triple-helical DNA-binding protein[J], Nucleic Acids Res, 1995, 23: 2320-2326
    [60] Demidov V, Frank-Kamentskii MD, Egholm M et al, Triplex forming oligonucleotides,Nucleic Acids Res[J], 1993, 21: 2103-2108
    [61] Singleton SF, Dervan PB, Symmetry and molecular structure of a DNA triple helix Biochemistry[J], 1993, 32: 1317-1322
    [62]刘定樊,王昌才,Tb3+荧光离子探针检测三链DNA的形成[J],生物化学杂志,1997
    [63] Cooney M, Czernuszcwicz G, Postel EH, Down-regulation of the nm23.h1 gene inhibits cell proliferationScience[J], 1988, 241: 456-463
    [64] Husler PL, Klump HH, Prediction of pH-Dependent Properties of DNA Triple Helices. Arch Biochem Biophysis[J], 1995, 317: 46-52
    [65] Mergny JL, Colloier D, Rougee M et al, Intercalation of ethidium bromide in a triple-stranded oligonucleotide Nucleic Acids Res[J], 1991, 19: 1521-1526
    [66] Pilch DS, Waring MJ, Sun JS, et al, Stabilization of Triple Helical DNA by a Benzopyridoquinoxaline Intercalator[J], J Mol Biol., 1993, 232: 926-931
    [67] Pilch DS, Kirolos MA, Liu X et al, Targeting human telomeric G-quadruplex DNA with oxazole-containing macrocyclic compounds[J], Biochemistry, 1995, 34: 9962-9968
    [68] Durand M, Nguyen TT, Maurizot JC. Binding of netropsin to a DNA triple helix[J], J Biol Chem., 1992, 267: 2439-2446
    [69] Umemoto U, Sarma MH, Gupta G et al, NMR characterisation of a triple stranded complex formed by homo-purine and homo-pyrimidine DNA strands at 1:1 molar ratio and acidic pH[J], J Am Chem. Soc., 1990, 112: 4539-4547
    [70] Kazuhito Tanabe,*,? Haruka Iida,? Ken-ichi Haruna,? Taku Kamei,? Akimitsu Okamoto,? and Sei-ichi Nishimoto*,? Electrochemical Evaluation of Alternating Duplex?Triplex Conversion Effect on the Anthraquinone-Photoinjected Hole Transport through DNA Duplex Immobilized on a Gold Electrode[J], J. Am. Chem. Soc., 2006, 128: 692-693
    [71] Yi Chen, Seung-Hyun Lee, and Chengde Mao*, Angew. Chem., Int. Ed, A DNA Nanomachine Based on a Duplex-Triplex Transition[J], 2004, 43: 5335-5338
    [72] Xiaogang Han, Zihao Zhou, Fan Yang, and Zhaoxiang Deng*, Catch and Release: DNA Tweezers that Can Capture, Hold, and Release an Object under Control[J], J. Am. Chem. Soc., 2008, 130: 14414-14415
    [73] John Tumpane,? Bengt Norde′n*,?et, al, Nanocrystalline Nanowires: 2. Phonons[J], Nano Lett., 2007, 7: 12-14
    [74] Cheng A J, Van-Dyke MW, Monovalent cation effects on inter-molecular purine-purine-pyrimidine triple-helix formation[J], Nucleic Acid, 1993, 21: 5630-5637
    [75] Tom N, Grossmann, Lars Rglin, and Oliver Seitz*, Triplex Molecular Beacons as Modular Probes for DNA Detection[J], Angew. Chem., Int. Ed., 2007, 46: 5223 -5225
    [76] Xiaogang Han, Zihao Zhou, Fan Yang, and Zhaoxiang Deng*, Catch and Release: DNA Tweezers that Can Capture, Hold, and Release an Object under Control[J], J. Am. Chem. Soc., 2008, 130: 14414–14415
    [77] D. P. Arya,* R. L. Coffee, Jr., B. W, and A. I. Abramovitch, Major Groove Recognition of DNA by Carbohydrates[J], J. Am. Chem. Soc., 2001, 123: 5385-5395
    [78] Terpetschnig E, Szmacinski H, Malak H, Lakkowicz J R, Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics [J], Biophysical Journal, 1995, 68: 342-350
    [79] Shimidzu T, Iyoda T, Izaki K. Phoroelectrochemical properis of bis(2,2'-bipyridine)(4,4'- dicarboxy-2,2'-bipyridine)ruthenlum (II) chioride [J], J. Phys. Chem., 1985, 89: 642-645
    [80] Jing Zhang, Honglan Qi, Yan Li, Jia Yang, Qiang Gao, and Chengxiao Zhang, Electrogenerated Chemiluminescence DNA Biosensors Based on Hairpin DNA Probe Labeled with Ruthenium Complex[J], Anal. Chem., 2008, 80: 2888-2894
    [81] Xiaoying Wang, Wen Yun, Ping Dong, Jingming Zhou, Pingang He*, and Yuzhi Fang*, A Controllable Solid-State Ru(bpy)32+ Electrochemiluminescence Film Based on Conformation Change of Ferrocene-Labeled DNA Molecular Beacon[J], Langmuir, 2008, 24: 2200-2205
    [82] Abigail K. R, Lytton-Jean, Minsu Han, and Chad A Mirkin, Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles[J], Anal. Chem., 2007, 79: 6037-6041
    [83] Min Su Han, Abigail K. R. Lytton-Jean, and Chad A. Mirkin A, Gold Nanoparticle Based Approach for Screening Triplex DNA Binders[J], J. Am. Chem. Soc. 2006, 128: 4954-4955
    [84]张成孝,漆红兰,电化学发光分析研究进展,世界科技研究与发展,2004, 26: 7-8
    [85] Ihmels H, Otto D, Intercalation of organic dye molecules into double-stranded DNA: general principles and recent developments Topics[J], Springer, Berlin, 2005, 258: 161-204
    [86] Strekowski L, Say M, Zegrocka O, et.al, Toll-like receptor signaling in intestinal epithelial cells contributes to colonic homoeostasis[J], Bioorg. Med. Chem., 2003, 11: 1079-1085
    [87] Han M S, Lytton-Jean A K R, Mirkin C A, Colorimetric Screening of DNA Binding Molecules with Gold Nanoparticle Probes, Angew. Chem., 2006, 45: 1807-1810
    [88] Han M S, Lytton-Jean A K R., Mirkin C A, A gold nanoparticle based approach for screening triplex DNA binders[J], J. Am. Chem. Soc., 2006,128: 4954 -4955
    [89] Yang X L, Wang A H J, Pharm, Structure Studies of Atom-specific Drugs Acting on DNA[J], 1999, 83: 181-215
    [90] Praseuth D, Guieysse A L, Triple helix formation and the antigene strategy for sequence-specific control of gene expression[J], Biochim. Biophys. Acta, 1999, 1489:181-206
    [91] Haq I, Ladbury J J, Drug-DNA recognition: Energetics and implications for design[J], Mol. Recognit, 2000, 13: 188-197
    [92] Mergny J L, Duval-Valentin G, Nguyen C H. Triple-helix specific ligands[J], Science, 1992, 256: 1681-1684
    [93] Abigail K. R. Lytton-Jean, Min Su Han,? and Chad A. Mirkin*, Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles[J], Anal. Chem., 2007, 79: 6037-6041
    [94] Hamaguchi N, Ellington A, Stanton M, et al, Aptamer beacons for the direct detection of proteins[J], Analytical Biochemistry, 2001, 294(2): 126-131
    [95] Li J W, Fang X, Tan W, et al, Molecular aptamer beacons for real-time protein recognition[J], Biochemical and Biophysical Research Communications, 2002, 292(1): 31-40
    [96] Zhang G, Zhou Y, Yuan J, A chemiluminescence fiber-optic biosensor for detection of DNA hybridization[J], Anal. Lett., 1999, 32(14): 2725-2736
    [97] Baraldi P. G., Tabrizi M .A., Gessi S., et. al, Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility[J], Chem. Rev., 2008, 108: 238-263
    [98] Newby A. C., Adenosine and the concept of‘retaliatory metabolites’[J], Trends Biol. Sci., 1984, 9(2): 42-44
    [99] Nutiu R., Li Y., Structure-switching signaling aptamers[J], J. Am. Chem. Soc., 2003, 125: 4771-4778
    [100] Wu Z. S., Guo M. M., Zhang S. B., et. al, Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers [J], Anal. Chem., 2007, 79: 2933-2939
    [101] Zayats M., Huang Y., Gill R., et. al, Label-free and reagentless aptamer-based sensors for small molecules[J], J. Am. Chem. Soc., 2006, 128: 13666-13667
    [102] Liu J., Lu Y., Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor[J], Anal. Chem., 2004, 76: 1627-1632
    [103] Liu J., Lee J. H., Lu Y., Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes[J], Anal. Chem., 2007, 79: 4120-4125
    [104] Liu J., Lu Y., Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors[J], J. Am. Chem. Soc., 2007, 129: 8634-8643
    [105] Cai, H.,Lee, T. M. H., Hsing, I. M., Label-free protein recognition using an aptamer-based impedance measurement assay, Sensor. Actuat. B Chem., 2006, 114: 433 -437
    [106] Cao, W. D., Ferrance, J. P., Demas, J., James P. L., Quenching of the Electrochemiluminescence of Tris(2,2’-bipyridine)ruthenium(II) by Ferrocene and Its Potential Application to Quantitative DNA Detection, J. AM. CHEM. SOC, 2006, 128: 7572-7578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700