稀土掺杂类普鲁士蓝化学修饰电极上甲醇、甲醛的电催化性质及分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是电化学及电分析化学研究的一个热点领域。在制备修饰电极的材料中,以普鲁士蓝为代表的多核金属铁氰化物具有其良好的化学性质和电化学性质。该薄膜修饰电极在物质检测、生物传感器、电池电极材料、固态电池等方面已得到了广泛的应用。基于上述原因,本文旨在研究新型的稀土掺杂类普鲁士蓝化学修饰电极,以提高其电催化活性和分析测定性能,同时也拓宽了它在电分析化学领域的应用范围。
     本文采用电化学沉积法制备了新型的稀土掺杂类普鲁士蓝化学修饰电极,首次发现了甲醇在该修饰电极上有良好的电催化活性及抗毒化作用,对甲醛有很好的电催化氧化作用,并将该修饰电极成功用于环境水样中甲醛含量的检测。
     本论文共分为四章:
     第一章:综述
     该部分主要综述了以下几个方面:(1)普鲁士蓝及类普鲁士蓝化学修饰电极的特点、制备方法以及表征方法,总结归纳了类普鲁士蓝化学修饰电极的分析应用情况,并对稀土铁氰化物化学修饰电极的发展趋势进行了展望。(2)简述了直接甲醇燃料电池的发展及存在的问题,列举了甲醇在各种铂基阳极材料及复合阳极催化剂上的电催化氧化行为。(3)甲醛的危害及常用的检测方法,甲醛在化学修饰电极上的电催化氧化行为及检测。这部分共引用文献119篇。
     第二章:通过电沉积法将铕-铁氰桥双核配合物修饰在铂电极表面(Eu-Fe film),首次发现甲醇在该修饰电极上有良好的电催化氧化活性及良好的抗毒化中间体的作用。通过对比甲醇在修饰电极与裸铂电极上的循环伏安数据,发现在修饰电极上甲醇的催化氧化电流增大了约20倍,且峰电位略有负移,并初步推测了甲醇在该修饰电极上氧化过程定速步骤的反应机理。
     第三章:通过电沉积法将掺杂钕离子(III)的类普鲁士蓝修饰在铂电极表面上(Nd-PB/Pt),发现甲醛在该修饰电极上有良好的电催化氧化活性及良好的抗中间体毒化作用。通过对比甲醛在修饰电极与裸铂电极上的循环伏安数据,发现在修饰电极上甲醛的催化氧化电流增大了约3倍,且峰电位略有负移;该电极对甲醛的伏安响应具有良好的重现性与稳定性。
     第四章:先将掺杂钕离子(III)的类普鲁士蓝修饰在铂电极表面上(Nd-PB/Pt),再通过电沉积法将铂微粒共沉积在修饰电极的表面,制备了铂微粒/类普鲁士蓝复合膜化学修饰电极(Pt /Nd-PB/Pt)。在优化的实验条件下,将该修饰电极用于甲醛的检测,甲醛的氧化峰电流与其浓度在1×10-4~1×10-2 mol/L范围内呈现出良好的线性关系,检测限为5×10-5 mol/L,测定了模拟黄河水样、模拟废水样的甲醛含量,回收率为95.6%~103.4%,结果令人满意。
Chemically modified electrodes (CMEs) was one of the active research areas in modern electrochemistry and electroanalytical chemistry. Due to its good chemical properties and electrochemical properties, polynuclear metal hexacynoferrates, especially Prussian blue widely used in determination, bio-sensor, battery electrode materials, solid state batteries and so on. For these reasons, this paper aimed to develop a novel type of Prussian blue analogue chemically modified electrode, improving their electrocatalytic activity and analytical performance, expanding its applications in the electroanalytical chemistry field.
     A novel type of Prussian blue analogue chemically modified electrode was prepared by means of electrodeposition in this paper. It was discovered the electrocatalytic oxidation of methanol on the modified electrode for the first time, and the capacity of tolerated intermediates poison; It was unearthed for the electrocatalytic oxidation and determination of formaldehyde.
     There were four chapters in this paper:
     Chapter one: This part introduced briefly the following aspects: firstly,it was summed up the characteristics, preparation,characteristics and electroanalytical applications of Prussian blue and Prussian blue chemically modified electrode, and outlined the future prospects of the rare earth hexacyanoferrates chemically modified electrode. Secondly it was descripted the development and problems of the direct methanol fuel cell (DMFC), and list the literatures about the electrocatalytic oxidation behavior of methanol on the platinum anode catalyst and composite anode catalyst. In addition, it was introduced the hazards and the conventional detection methods of formaldehyde, and detection of formaldehyde on the chemically modified electrode.
     Chapter two: The Eu-Fe film modified electrode was prepared by means of electrodeposition and the electrocatalytic oxidation of methanol on the modified electrode was discovered for the first time. It was proved that the oxidation current of methanol in the modified electrode increased more than about 20 times, a slight negative shifted of peak potential of methanol oxidation and the electrode tolerated intermediates poison strongly by comparing cyclic voltammetry data of the electrocatalytic oxidation of the methanol at the modified electrode and the bare platinum electrode.
     Chapter three: The Nd-PB/Pt modified electrode was prepared by means of electrodeposition and discovered that there exist the electrocatalytic oxidation activity for formaldehyde and enhenced tolerated poison effect on the modified electrode. By comparing cyclic voltammetry data of the electrocatalytic oxidation of formaldehyde at the modified electrode and the bare platinum electrode, it was found that the oxidation current of formaldehyde on the modified electrode increased more than about 3 times, peak potential of formaldehyde oxidation shifted slight negatively. The modified electrode possessed good stability and reproducibility.
     Chapter four: After the Nd-PB/Pt modified electrode was prepared by means of electrodeposition, the electrodeposied platinum particles was attached on the modified electrode surface by means of constant potential electrolysis, in order to manufacture the platinum particles/Prussian blue composite film modified electrode(Pt/Nd-PB/Pt). This composite film modified electrode was successfully applied to determination of formaldehyde, and obtained good linearity in the formaldehyde concentration range of 1×10-4~1×10-2 mol/L with detection limit 5×10-5 mol/L under the optimum conditions. The proposed method was applied to the determination of formaldehyde in imitative Yellow water samples and imitative water samples with the recovery of 95.6%~103.4% and good results.
引文
[l]董绍俊,车广礼,谢远武,化学修饰电极.北京:科学出版社, 2003
    [2] B. F. Watkins, J. R. Behling, E. Kariv, L. L. Miller, A chiral electrode. J. Am. Chem. Soc., 1975, 97(12): 3549-3550.
    [3] P. R. Moses, L. Wier, R. W. Murray,Chemically modified tin oxide electrode. Anal. Chem., 1975, 47(12): 1882-1886.
    [4] V. D. Neff,Electrochemical oxidation and reduction of thin films of Prussian blue. J.Electrochem.Soc., 1978, 125: 886-887
    [5] F. Keggin, F. D. Miles,Stuctures and formulus of the Prussian blues and related compounds. Nature, 1936, 38: 577-578
    [6] C. X. Cai, K. H. Xue, S. M. Xu, Electrocatalytic activity of a cobalt hexacyanoferrate modified glassy carbon electrode tow ard ascorbic acid oxidation. J. Electroana.Chem., 2000, 486: 111-118
    [7]李凤斌,董绍俊,抗坏血酸在普鲁士蓝薄膜修饰电极上的电催化氧化.化学学报,1990,48: 653-659
    [8] A. K. Jain,R. P. Singh, C. Bala,Solid membranes of copper hexacyanoferrate (III) as thalliumo sensitive electrode. Anal. Lett., 1982, 15(19): 1557-1563
    [9] M. Hartmann, P. Bergveld,Prussian blue-coated interdigited array electrodes for possible analytical application. Anal.Chim.Acta., 1991, 242: 249-257
    [10] Y. Tani, H. Eun, Y. Umezawa, Acation selective electrode based on copper (II) and nickel(II) hexacyanoferrates:dual response mechanisms,selective uptake or adsorption of analyte canons. Electrochim. Acta., 1998, 43: 3431-3441
    [11] D. Rave Shankaran, S. Sriman Narayana, Amperometric sensor for thiosulphate based on cobalt hexacyanoferrate modified electrode. Sensors and Actuators B,2002, 86: 180-184
    [12] P. Wang, Y. Yuan, X. Y. Jing, G. Y. Zhu, Amperometric determination of thiosulfate at a surface-renewable nickel (II) hexacyanoferrate-modifed carbon ceramic electrode. Talanta, 2001, 53: 863-869
    [13] G. Constantinos,T. Tsiafoulis, I. Mama, Prodromidis, Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2 O2. Electrochemistry Communications, 2005, 7(12): 1398-1404
    [14] K. C. Pan,C. S. Chuang,et alElectrocatalytic reactions of nitric oxide on Prussian blue film modified electrodes. Journal of Electroana.Chem., 2001, 501:160-165
    [15]朱明霞,马永钧,康敬万等,稀土掺杂普鲁士蓝化学修饰电极上过氧化氢的伏安性质研究.西北师范大学学报(自然科学版), 1998, 34(3): 38-40
    [16] S. L. Suely,C. Castro,R. Valdir,J. Paulo, S. Barbeira,etc,Flow injection amperometric detection of ascorbic acid using a Prussian blue film modified electrode. Talanta, 2001, (55): 249-254
    [17] C. H. Kuo,L. L. Cheng,A novel potassium ion sensing based on Prussian blue thin films. Sensors and A ctuators B., 2001, 76: 512-518
    [18] A. Radoi, D. Compagnone, E. Devic, G. Palleschi, Low potential detection of NADH with Prussian Blue bulk modified screen-printed electrodes and recombinant NADH oxidase from Thermus thermophilus. Sensors and Actuators B:Chemical, 2007, 121(2): 501-506
    [19] S. L. Meng,C. S. Wei, Chromium hexacyanoferrate based glucose biosensor. Anal.Chim.Acta., 1999, 381: 183-189
    [20]王荣,郭晓明,吴霞琴等,基于普鲁士蓝(PB)膜修饰铂电极的葡萄糖传感器的研究.化学研究与应用, 2001, 13(4): 380-382
    [21] K. C. Hou, C.Y. Chen, H. C. Hua,et al.Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosensors and Bioelectronics., 2004, 20: 3-8
    [22] S. Lupu,C. Mihailciuc,R. Seeber,etal. Electrochemical preparation and characterisation of bilayer films composed by Prussian blue and conducting polymer. Electrochemistry Communications, 2002, 4: 753-758
    [23] B. Haghighi,S. Varma,S. F. M. Alizadeh,Y. Yigzaw,L. Gorton,Prussian blue modified glassy carbon electrodes-study on operational stability and its application as a sucrose biosensor. Talanta, 2004, 64: 3-12
    [24] M. Jayalakshmi,F. Scholz,Charge-discharge characteristics of a solid-state Prussian blue secondary cell. Journal of Power Sources, 2000, 87: 212-217
    [25] M. Jayalakshmi, F. Scholz, Performance characteristics of zinc hexacyanoferrate /Prussian blue and copper hexacyanoferrate/Prussian blue solid state secondarycells. Journal of Power Sources, 2000, 91: 217-223
    [26] K. Honda,A. Kuwano,Solid state electrochromic device using polymuclear metal complex-containing solid polymer electrolyte. J. Eelectrochem.Soc.,1986, 133:85-89
    [27]王荣,吴霞琴,黄春琴等,普鲁士蓝修饰膜及其复合膜电变色性能的研究.上海师范大学学报(自然科学版), 2001, 30(1): 57-60.
    [28]丘思畴,刘晖,黄汉尧等,普鲁士蓝单膜电致变色器件.功能材料,1992,23(1): 50-53
    [29] K. Itaya,I. Uchida,V. D. Neff,Electrochemistry of polynuclear transition metal cyanides:Prussian blue and its analogues. Acc.Chem.Res., 1986, 19:162-168
    [30] K. Itaya, T. Ataka, S. Toshima,Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes.J. Am.Chem.Soc.,1982, 104: 4767-4772
    [31] S. M. Chen,Preparation,characterization,and electrocatalytical oxidation properties of iron,cobalt,nickel,and indium hexacyanoferrate. J. Electroanal. Chem., 2002, 521: 29-52
    [32] S. Q. Liu,Y. Chen, H. Y. Chen,Studies of spectroscopy and cyclic voltammetry on a zirconium hexacyanoferrate modified electrode. J. Electroanal.Chem.,2001, 502: 197-203
    [33] A. A. Karyakin,Prussian blue and its analogues:electrochemistry and analytical applications. Electroanalysis, 2001, 13: 813-819
    [34] S. Liu,H. Li,M. Jiang,P. Li,Platinum hexacyanoferrate:a novel Prussian blue analogue with stable electroactive properties,Platinum hexacyanoferrate:a novel Prussian Blue analogue with stable electroactive properties.J. Electroanal. Chem., 1997, 426: 27-30
    [35] M. H. Pournaghi-Azar,H. Razmi-Nerbin,Voltammetric behaviour and electrocatalytic activity of the aluminum electrode modified with nickel and nickel hexacyanoferrate films,prepared by electroless deposition. J. Electroanal. Chem., 1998, 456: 83-90
    [36] L. M. Siperko,T. Kuwana,Electrochemical and spectroscopic studies of metal hexacyanometalate films.J. Electrochem.Soc., 1983, 130: 396-402
    [37] S. J. Dong, F. Song, B. F. Liu,Isopolymolybdic acid-poly(4-vinyl)pyridine film modified electrode. Electroanalysis, 1992, 4(6): 643-646
    [38] W. B. Zhang,S. J. Dong,Ion-sieving effect of poly(3-methylthiophene) thin film modified glassy carbon electrodes.J. Electroanal.Chem., 1990, 284(2): 517-521
    [39] S. J. Dong,G. H. Lian,Redox reactions of Fe(CN)63?/4? in polypyrrole films:Accumulation and removal of cations.J. Electroanal.Chem., 1990, 291(1-2):23-27
    [40] X. Q. Lu,B. Q. Lv,Z. H. Xue,M. Zhang,Y. S. Wang,J. W. Kang,Monomolecular films for electrocatalytic oxidation of ascorbic acid at gold electrodes. Anal. Lett., 2002, 35(11): 1811-1822
    [41] S. Q. Liu,Z. Y. Tang,A. L. Bo,E. K. Wang,S. J. Dong,Electrochemistry of heteropolyanions in coulombically linked self–assembled monolayers. J. Electroanal.Chem., 1998, 458: 87-97
    [42] A. P. Brown,F. C. Anson,Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal.Chem., 1977, 49(11): 1589-1595
    [43] T. Okajima,T. Ohsaka,O. Hatozaki,N. Oyama,Electrode kinetics of Ru(NH3)6]3+/2+ couple confined in montmorillonite clay/poly(vinyl alcohol) composite films on graphite electrodes and film permeation of electroactive solution species. Electrochim. Acta., 1992, 37(10): 1865-1872
    [44] B. Lindholm,AC-impedance studies of charge transport and redox capacities at poly(-vinylpyridine) films on electrode surfaces. J. Electroanal. Chem., 1990, 289(1-2): 85-89
    [45] G. Lang, G. Inzelt,Some problems connected with impedance analysis of polymer film electrodes:effect of the film thickness and the thickness distribution. Electrochim.Acta., 1991, 36(5-6): 847-854
    [46]崔晓丽,蒋殿录,刁鹏,硫醇自组装膜的电化学表观有效厚度.电化学,1999,5(3): 267-270
    [47] P. Diao,D. L. Jiang,X. L. Cui,et al,Studies of structural disorder of self-assembled thiol monolayers on gold by cyclic voltammetry and AC impedance. J. Electroanal.Chem., 1999, 464(1): 61-67
    [48] X. L. Cui, D. L. Jiang, P. Diao,et al,Assessing the apparent effective thickness of alkanethiol self-assembled monolayers in different concentrations of Fe(CN)63?/Fe(CN)64? by AC impedance spectroscopy.J. Electroanal.Chem.,1999, 470(1): 9-13
    [49]魏晓红,梁文权,潘远江,PEG化壳聚糖DNA自组装复合物的制备、表征和体外HELA细胞传染研究.高等学校化学学报, 2003, 24(11):1993-1996
    [50]朱梓华,盛晓霞,张智军,朱涛,刘忠范,表面增强拉曼光谱检测卟啉单分子膜.高等学校化学学报, 2001, 22(8):1368-1372
    [51] P. J. Kulesza, T. Jedral, A new development in polynuclear inorganic films: silver(I) corsslinked nickel(II)-hexacyanoferrate(II,III) microstructures. Electrochim. Acta, 1989, 34(6): 851-853
    [52] J. K. Walkiewicz, J. Stroka, Films of mixed nickel(II) and thallium(I) hexacynoferrates: voltammetric preparation and characterization. Electrochim. Acta, 2001, 46: 4057-4063
    [53] X. P. Cui, X. Q. Lin, Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacynoferrates of copper and cobalt. Electrochim. Acta, 2002, 526(1-2): 115-124
    [54] P. J. Kulesza, M. A. Malik, Electrochemical charging and spect eochemical identity of heteronuclear nickel/cobalt hexacynofeerate. Electrochim.Acta, 1999, 146 (10): 3757-3761
    [55] P. J. Kulesza, M. A. Malik,Electrochemical preparation and characterization of electrodes modified with mixed hexacynoferrates of nickel and palladium. Electrochim.Acta, 2000, 487(1): 57-65
    [56] P. J. Kulesza, K. Mieczriikowski,Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate. Electrochim. Acta. 2001, 46 (28): 4371-4376
    [57] M. Hermes, M. Lovric,On the electrochemically driven formation of belayed systems of solid Prussian blue metal hexacyanoferrats: a model cadium hecacyanofeeate supported by finite difference simulations. Electrochim. Acta.,2001, 501: 193-204
    [58]石彦茂,杜攀,吴萍,周耀明,蔡称心,铁氰化钆修饰电极的制备及表征.电化学, 2006, 12(4): 382-386
    [59]吴萍,蔡称心,陆天虹,铁氰化钐修饰电极的制备、表征及电催化.应用化学, 2004, 21(11): 1101-1104
    [60] Z. Y. Xun, C. X. Cai, W. Xing, T. H. Lu, Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method.Electroanalytical chemistry, 2003, 545(27): 19-27
    [61] P. Wu, C. X. Cai, Electrochemical preparation and characterization of lanthanum hexacyanoferrate modified electrode.Chinese Journal Chemistry, 2005, 23(2): 127-131
    [62] P. Wu, Y. M. Shi, C. X. Cai, Electrochemical preparation and characterization of dysprosium hexacyanoferrate modified electrode. Solid State Electro.Chem, 2006, 10(5): 270-276
    [63]蒋淇忠,马紫峰,黄碧纯,林维明,仪器分析技术在直接甲醇燃料电池研究中的应用.光谱实验室,2000, 17(2): 129-132
    [64] B. D. McNicol, D. A. J. Rand,Direct methanol-air fuel cells for road transportation. Journal of Power Sources, 1999, 83: 15-31
    [65]李文震,孙公权,严玉山,低温燃料电池担载型贵金属催化剂.化学进展,2005, 17(5): 761-772
    [66]王振波,尹鸽平,史鹏飞, DMFC阳极多元和金催化剂的研究进展.工业催化, 2005, 13(2): 1-6
    [67] P. Tameka,R. Jchnson,J. Hormes etal,A study of methanol electro oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-eatalysts by EXAFS. Journal of Electroanalytical Chemistry,2000,485:34-41
    [68] H. J. Doo, C. H. Lee, C. S. Kim, D. R.l Shin, Performance of a direct methanol polymer electrolyte fuel cell. Journal of Power Sources,1998, 71(1-2): 169-173
    [69] A. S. Arico, P. Creti, P. L. Antonucci, J. Cho, H. Kim, V. Antonucci, Optimization of operating parameters of a direct methanol fuel cell and physieo-chemical investigation of catalyst-electrolyte interfaee. Electrochemica Acta, 1998, 43(3-4): 3719-3729
    [70] Z. M. Cui, C. P. Liu, J. H. Liao,W. Xing, Highly active PtRu catalysts supported on carbon nanotubes prepared by modified impregnation method for methanol electro-oxidation. Electrochimica Acta, 2008, 53(27): 7807-7811
    [71] E. Elise Switzer, S. Tim Olson, K. Abhaya Datye, P. Atanassov, R. Michael Hibbs, J. Christopher Cornelius, Templated Pt–Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochimica Acta,2009, 54(3): 989–995
    [72]罗宿星,廖钫,何晓英, Pt-W/GC的制备及其对甲醇的电催化氧化.西华师范大学学报(自然科学版),2006, 27(1): 67-70
    [73] F. Kadirgan, S. Beyhan, T. Atilan, Preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. International Journal of Hydrogen Energy, 2009, 34(10): 4312-4320
    [74] J. S. Cooper, M. K. Jeon, P. J. Mcginn, Combinatorial screen- ing of ternary Pt-Ni-Cr catalysts for methanol electro-oxidation. Electrochemistry Communications, 2008, 10(10): 1545-1547
    [75] G. Perez, E. Pastor, C.F. Zinola, A novel Pt/Cr/Ru/C cathode catalyst for direct methanol fuel cells (DMFC) with simultaneous methanol tolerance and oxygen promotion. International Journal of Hydrogen Energy, 2009, 34(23): 9523-9530
    [76] L. Kevin, R. X. Liu, P. Congetal, Methanol oxidation on single phase Pt-Ru-Os ternary alloys. J. Electrochem Soc., 1997, 144:1543-1548
    [77] J. Y. Liu, J. Y. Cao, Q. H. Huang, X. W. Li, Z. Q. Zou, H. Yang, Methanol oxidation on carbon-supported Pt-Ru-Ni ternary nanoparticle electrocatalysts. Journal of Power Sources, 2008, 175(1): 159-165
    [78] M. Chen, Z. B. Wang, Y. Ding, G. P. Yin, Investigation of the Pt–Ni–Pb/C ternary alloy catalysts for methanol electrooxidation. Electrochemistry Communications, 2008, 10(3): 443-446
    [79] B. Gurau,R. Viswanathan,etal, Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. Journal of Phys Chem B, 1998, 102: 9997-10003
    [80] A. S. Arico, Z. Poltarzewski, H. Kim, Investigation of a carbon-supported quaternary Pt- Ru - Sn -W catalyst for direct methanol fuel cells. Journal of Power Sources, 1995, 55: 159-166
    [81] P. Justin, G. Ranga Rao, Enhanced activity of methanol electro-oxidation on Pt–V2O5/C catalysts. Catalysis Today, 2009, 141: 138–143
    [82] Z. P. Sun, X. G. Zhang, Y. Y. Liang, H. L. Li, Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution. Electrochemistry Communications, 2009, 11: 557–561
    [83] D. J. Guo, X. P. Qiu, W. T. Zhu, L. Q. Chen, Synthesis of sulfated ZrO2/ MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application. Applied Catalysis B: Environmental, 2009, 89(3-4): 597-601
    [84] N. Nakagawa, K. Sekimoto, M. Shahbudin Masdar, R. Noda, Reaction analysis of a direct methanol fuel cell employing a porous carbon plate operated at high methanol concentrations. Journal of Power Sources,2009, 186: 45–51
    [85] E. Borja-Arco, R. H. Castellanos, J. Uribe-Godínez, A. Altamirano-Gutierrez, O. Jimenez-Sandoval, Osmium–ruthenium carbonyl clusters as methanol tolerant electrocatalysts for oxygen reduction. Journal of Power Sources, 2009, 188:387-396
    [86]周海晖,焦树强,陈金华,魏万之,旷亚非,Pt微粒修饰纳米纤维聚苯胺电极对甲醇氧化电催化.物理化学学报, 2004, 20(1): 9-14
    [87]任莉君,胡中爱,李宗孝,王晓梅,载铂聚苯胺/聚砜复合膜修饰电极对甲醇的电催化氧化行为研究.应用化工,2009, 38(4): 521-524
    [88]魏杰,杨红,杨玉光,张忠林,磷钼酸修饰铂电极的电化学行为及对甲醇氧化的电催化作用.无机化学学报, 2003, 19(9): 945-949
    [89]吴婉群,万本强,罗维忠,载铂微粒的聚苯胺薄膜电极对甲醇的电催化氧化.应用化学, 1994, 11(2): 40-43
    [90]都君华,李伟善,李红,黄启明,陈红雨,袁中直,氢钼青铜修饰铂电极对甲醇氧化的电催化作用.精细化工, 2002, 19(10): 571-574
    [91]徐红艳,吴华强,徐冬梅,王谦宜,碳纳米管负载纳米Ni修饰电极及碱液中电氧化甲醇.应用化学, 2007, 24(5): 503-506
    [92]易清风, CHEN Ai Cheng,章晶晶,黄武,一种新型的钛基纳米多孔网状铂电极对甲醇氧化反应的电催化活性.高等学校化学学报, 2007, 28(9): 1768-1770
    [93]李国华,田伟,汤俊艳,马淳安,WC/CNT纳米复合材料制备及其对甲醇氧化的电催化性能.物理化学学报, 2007, 23(9): 1370-1374
    [94]赵彦春,兰黄鲜,田建袅,杨秀林,王凤阳,多孔聚乙酰苯胺纳米纤维载铂催化剂对甲醇的电催化氧化.物理化学学报, 2009, 25(10): 2050-2054
    [95]赵彦春,兰黄鲜,田建袅,罗全迁,蔡英,铂钴修饰聚乙酰苯胺复合膜对甲醇的电催化氧化.广西师范大学学报(自然科学版),2009, 27(1):63-66
    [96]董军,何晓英,郭红,许秀琴,蔡铎昌,Pt2羧基化CNTs/GC复合修饰电极的制备及对甲醇电催化氧化性能.西华师范大学学报(自然科学版),2004, 25(2): 172-175
    [97]陈立军,张心亚,黄洪等,化妆品中甲醛含量的测定方法.香料香精化妆品, 2005, 10(5): 27-30
    [98]欧阳小清,谢增鸿,郭祖奉等,静态抑制荧光法和流动注射抑制荧光法测定微量甲醛的研究.光谱学与光谱分析, 2004, 24(11): 1395-1399
    [99]张文德,孙仕萍,马志东,食品包装材料中甲醛的极谱快速测定.卫生研究, 2003, 7: 391-392
    [100]刘文君,赵红,白亮等,分光光度法测定室空气中甲醛的方法研究.中国环境检测, 2003, 19(4): 32-35
    [101]刘世伟,华凯峰,苏怡,吕翔宇,李翠玲,王玉江,空心纳米金在甲醛气体传感器中的应用研究.分析化学, 2009, 37: 1092-1096
    [102]周考文,徐峥,静态注射化学发光法测定空气中的微量甲醛.北京联合大学学报(自然科学版), 2008, 22(1): 68-74
    [103]吴娜,王兢,杜海英,甲醛气敏元件的研制.传感器技术, 2005, 24(10): 83-85
    [104]顾达萨,邵敏,陆思华,城市大气中甲醛来源分析的示踪技术.北京大学学报(自然科学版), 2008, 44(2): 317-322
    [105]高桂莲,卢萍,杨秋霞,王雪琳,奚正楷,不对称草酰胺镍配合物修饰电极的制备及其对甲醛的电催化研究.济南大学学报(自然科学版),2002,16(4): 319-323
    [106]王喆,朱赞赞,力虎林,铂粒子修饰单壁碳纳米管/聚苯胺复合膜对甲醛的电催化氧化.化学学报, 2007, 65(12): 1149-1154
    [107] G. Y. Gao, D. J. Guo, H. L. Li,Electrocatalytic oxidation of formaldehyde on palladium nanoparticles supported on multi-walled carbon nanotubes. Journal of Power Sources, 2006, 162: 1094–1098
    [108] V. Selvaraj, A. Nirmala Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. Journal of Colloid and Interface Science, 2009, 333: 254–262
    [109] V. Selvaraj, M. Alagar, K. Sathish Kumar, Synthesis and characterization of metal nanoparticles-decorated PPY–CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Applied Catalysis B: Environmental, 2007, 75: 129–138
    [110] Z. Wang, Z. Z. Zhu, J. Shi, H. L. Li, Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/ polyaniline composite film. Applied Surface Science, 2007, 253: 8811–8817
    [111]钱功明,杨昌柱,方柏,陈铁军,新型聚邻苯二酚/铂复合膜修饰电极对甲醛电化学氧化.分析科学学报, 2009, 25(3): 341-343
    [112]上官灵芝,乔洁,郭玉晶,常燕,李忠平,董川,电沉积纳米钯修饰玻碳电极对甲醛的电催化氧化.武汉大学学报(理学版), 2008, 54(6):661-664
    [113]吴婉群,王月丰,掺铂微粒的聚2, 5-二甲氧基苯胺膜电极对甲醛氧化的电催化作用.西南师范大学学报(自然科学版), 1996, 21(6): 579-584
    [114]马玉荣,杨秋霞,李国宝,奚正楷,王雪琳,甲醛在脯氨酸膜修饰电极上的电催化氧化.电化学, 2002, 8(2): 207-212
    [115]旷亚非,游军飞,周海晖,李云飞,陈金华, Pt修饰聚苯胺-WO3复合膜电极对甲醛的电催化氧化.湖南大学学报(自然科学版),2007, 34(3):57-60
    [116]贾晶晶,张国荣,聚组氨酸-镍复合膜电极对甲醛的电催化氧化.化学传感器, 2007, 27(1): 49-52
    [117]李正,赵燕荣,晏青峰,吴莹,金核-铂壳纳米修饰电极在酸性溶液中对甲醛的电催化氧化.光谱实验室, 2008, 25(2): 236-239
    [118]刘峥,温玉清,吴高亮,溴代水杨醛席夫碱镍配合物修饰碳糊电极的制备及其对甲醛电催化研究.分析科学学报, 2008, 24(4): 421-424
    [119]李红,李伟善,田立朋,蒋雄,甲醛和甲酸在Pt/Biad电极上的电催化氧化.华南师范大学学报(自然科学版),2001, 1: 108-111
    [1] B. D. McNicol, D. A.J. Rand,K. R. Williams, Direct methanol-air fuel cells for road transportation. Journal of Power Source, 1999, 83: 15-31
    [2] H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell. Journal of power sources, 2006,155(2): 95-110
    [3] C. W. Yang, X. G. Hu, D. L. Wang, C. S. Dai, L. Zhang, H. B. Jin, Simeno Agathopoulos,Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation. Journal of power sources, 2006, 160 (1): 187-193
    [4] Z. A. Hu, L. J. Ren, X. J. Feng, Y. P. Wang, Y. Y. Yang, J. Shi, L. P. Mo, Z. Q. Lei, Platinum-modified polyaniline/polysuifone composite Film electrodes and their electrocatalytic activity for methanol oxidation. Electrochem. Commun. 2007, 9: 97-102
    [5] M. H. Pournaghi-Azar, B. Habibi, Nickel hexacyanoferrate film immobilized on the aluminum electrode as an inorganic matrix for dispersion of platinum and some platinum alloys particles for electrocatalytic oxidation of methanol. Journal of Electrocatalytical Chemistry, 2007, 605(2) : 136-144
    [6] B.Q. Ma, S. Gao, G. Su, G. X. Xu, Cyano-Bridged 4f-3d Coordination Polymers with a Unique Two-Dimensional Topological Architecture and Unusual Magnetic Behavior. Angew. Chem. Int. Ed. 2001, 40: 434-438
    [7] R. Koner, M. G. B. Drew, A. T. Figuerola, C. Diaz, S. Mohanta, A new cyano-bridged one-dimensional GdIIIFeIII coordination polymer with o-phenanthroline as the blocking ligand: synthesis, structure, and magnetic properties. Inorganica Chimica Acta, 2005, 358: 3041-3045
    [8] S. G. Shore, D. W. Knoeppel, H. B. Deng, J. P. Liu, J. P. White, S. H. Chun, Coordination chemistry of lanthanides with transition metal anions. Journal of Alloys and Compounds, 1997, 249: 25-32
    [9]马永钧,付周周,任小娜,周秀英,宋青云,2,4-二硝基苯酚在类普鲁士蓝化学修饰电极上的电化学行为及分析应用研究.分析化学,2008, 36(2):241-244
    [10]周秀英,周敏,付周周,马永钧,铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶合钌(II)的电催化氧化研究.西北师范大学学报(自然科学版), 2007,43(1): 54-58
    [11] S. Stevanovic, V. Panic, D. Tripkovic, V. M. Jovanovic, Promoting effect of carbon functional groups in methanol oxidation on supported Pt catalyst. Electrochem. Commun., 2009, 11: 18-21
    [12] Z. L. Liu, X. Y. Ling, X. D. Su, J. Y. Lee, Carbon- Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell. J. Phys. Chem. B, 2004, 108: 8234-8240
    [13] A. Abbaspour, M. A. Kamyabi, Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. Journal of Electroanalytical Chemistry, 2005, 576: 73-83
    [14] A. J. Bard, L. R. Faulkner, Electrochemical Methods fundamentals and applications. Second Edition Wiley, New York, 2001, p. 163.
    [15] D. J. Guo, H. L. Li, Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes. Journal of Power Sources, 2006,160: 44-49
    [16] A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 1997, 38: 445-457
    [17] H. Razmi, E. Habibi, H. Heidari, Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles. Electrochimica Acta, 2008, 53: 8178–8185
    [1] R. Parsons, T. VanderNoot. The oxidation of small organic molecules: A survey of recent fuel cell related research. Journal of Electroanalytic Chemistry. 1988, 257, (1-2): 9-45
    [2]孙世刚,王津建,穆纪千,甲酸在Pt (100)单晶电极表面解离吸附过程的动力学.物理化学学报,1992, 8 (6): 732-734
    [3] C. H. Yang, T. C. Wen. Electrodeposited platinum microparticles in sulfonatepolyaniline film for the electrosorption of mechanol and sorbitol. Electrochim Acta, 1998, 44(2-3) : 207-208
    [4]王喆,朱赞赞,力虎林.铂粒子修饰单壁碳纳米管/聚苯胺复合膜对甲醛的电催化氧化.化学学报, 2007, 65(12): 1149-1154
    [5]杨宏洲,邓友全.Au/PAni/GC电极的制备及对甲醛的电催化氧化研究.化学学报, 2004, 60(4): 569-573
    [6]马玉荣,杨秋霞,李国宝等,甲醛在脯氨酸膜修饰电极上的电催化氧化.电化学, 2002, 8(2): 207-212
    [7]李红,江琳才,蒋雄,甲醛和甲酸在Pt/Sbad电极上的电催化氧化.电化学, 1995, 1(1): 56-63
    [8] H. Yang, T. H. Lu, K. H. Xue, S. G. Sun, G. Q. Lu,S. P. Chen, Electrocatalytic mechanism for formaldehyde oxidation on the highly dispersed gold microparticles and the surface characteristics of the electrode. Journal of Molecular Catalysis A: Chemical, 1999, 144: 315–321
    [9] V. Selvaraj, M. Alagar, K. Sathish Kumar, Synthesis and characterization of metal nanoparticles-decorated PPY–CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Applied Catalysis B: Environmental, 2007 (75): 129–138
    [10] M. Krausa, W. Vielstich, Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. Journal of Electroanal. Chem., 1994, 379(1-2): 307-314
    [11] A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V.Antonucci, Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells. Journal of Power Sources. 1995, 55(2): 159-166
    [12] K. Wang, H. A. Gasteiger, N. Markovic, P. N. Ross, On the reaction pathwayfor methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim. Acta., 1996, 41(16): 2587-2593
    [13] M. Gotz, H. Wendt, binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or refoemate gas. Electrochim. Acta , 1998, 43: 3637-3644
    [14] H. M. Villullas, F. I. Mattos-Costa, P. A. P. Nascente, L. O. S. Bulhoes, Anodic oxidation of formaldehyde on Pt-modified SnO2 thin film electrodes prepared by a sol–gel method. Electrochimica Acta, 2004 (49): 3909–3916
    [15] Y. Wang, G. Y. Zhu, E. K. Wang, Electrochemical quartz crystal microbalance study for vanadium hexacyanoferrates: monitoring of film growth and ion dffects during reactions. Electroanal Chem., 1997, 430(1-2): 127-132
    [16] S. J. Reddy, A. Dostal, F. Scholz, Solid state electrochrmical studies of mixed nickel-ion hexacyanoferrates with the help of abrasive stripping voltammetry. Journal of Electroanalytical Chemistry, 1996, 403(1-2): 209-212
    [17] O. L. Reynaldo, R. Roberto, Spectroelectrochemistry of palladium hexacyanoferrate films on platinum substrates. Journal of Electroanalytical Chemistry, 2003, 544: 101-106
    [18]吴萍,蔡称心,陆天虹,铁氰化钐修饰电极的制备、表征及电催化.应用化学, 2004, 21(11): 1101-1104
    [19]朱明霞,马永钧,康敬万,稀土掺杂类普鲁士蓝化学修饰电极上过氧化氢的伏安性质研究.西北师范大学学报(自然科学版),1998, 32(4): 38-40
    [20]马永钧,付周周,任小娜,周秀英,宋青云,2,4-二硝基苯酚在类普鲁士蓝化学修饰电极上的电化学行为及分析应用研究.分析化学, 2008, 36(2):241-244
    [21]周秀英,周敏,付周周,马永钧,铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶合钌(II)的电催化氧化研究.西北师范大学学报(自然科学版),2007, 43(1): 54-58
    [22] H. Razmi, E. Habibi, H. Heidari, Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles. Electrochimica Acta, 2008, 53: 8178–8185
    [1]姚亚东,浅谈水产品中的甲醛对人体的危害.中国动物检疫,2004, 21(1): 22-26
    [2]刘世伟,华凯峰,苏怡,吕翔宇,李翠玲,王玉江,空心纳米金在甲醛气体传感器中的应用研究.分析化学, 200, 37(7): 1092-1096
    [3]华红慧,岳振峰,郑卫平,林燕奎,韩瑞阳,王耀宇,乙酰丙酮分光光度法检测菌菇类及水产品中甲醛含量的研究.食品科学, 2007, 28(4): 273-276
    [4]马敬军,周德庆,柳淑芳,马洪明,二硝基苯肼衍生-高效液相色谱测定水产品中甲醛含量的研究.海洋水产研究, 2005, 26(1): 28-31
    [5] M. Possanzini, V. D. Palo, Simultaneous Determination of HCHO and O(x) in Ambient Air By Hydrazine Reageat and HPLC. Annali di Chimica, 2003, 93(1-2): 149-156.
    [6]黄雪娟,张大年,用高效液相色谱测定雨水中的甲醛.环境化学,2000,19(6): 566-571
    [7] S. Ngamchana, W. Surareungchai, Sub-Millimolar. Determination of Formalin by pulsed Amperometric Detection. Analytica Chimica Acta, 2004, 510(2): 195-201
    [8]张志慧,赵常治,李明华,柴晓雨,电化学发光传感器测定雨水中的甲醛.青岛科技大学学报, 2006, 27(5): 407-410
    [9]张雁,康天放,郝玉翠,尹红霞,基于铂/碳纳米管修饰电极的甲醛传感器.北京工业大学学报, 2008, 34(11): 1191-1195
    [10] L. Bareket, A. Rephaeli, G. Berkovitch, A. Nudelman, J. Rishpon, Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde releasinganticancer prodrugs. Bioelectrochemistry, 2010, 77(2): 94-99
    [11] Y. I. Korpan, M. V. Gonchar, A. A. Sibirny, C. Martelet, A. V. Elskaya, T. D. Gibson, A. P. Soldatkin, Development of highly selective and stable potentiometric sensors for formaldehyde determina tion. Biosensors & Bioelectronics, 2000, 15: 77–83
    [12]周忠亮,郭秀锐,鲁理平,康天放,程水源,李珊曼,DNA-纳米金修饰玻碳电极用于水中甲醛的测定.分析测试学报, 2009, 28(6): 697-700
    [13]李正,赵燕荣,晏青峰,吴莹,金核-铂壳纳米修饰电极在酸性溶液中对甲醛的电催化氧化.光谱实验室, 2008, 25(2): 236-239
    [14] A. Safavi, N. Maleki, F. Farjami, E. Farjami, Electrocatalytic oxidation of Formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. Journal of Electroanalytical Chemistry, 2009, 626: 75-79
    [15] J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, B. K. Xu, An enrichment method to detect low concentration formaldehyde. Sensors and Actuators B, 2008, 134: 1010–1015
    [16] Z. Wang, Z. Z. Zhu, J. Shi, H. L. Li, Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/poly aniline composite film. Applied Surface Science, 2007, 253:8811–8817
    [17] P. Wu, S. Lu, C. X. Cai, Electrochemical preparation and characterization of a samarium hexacyanoferrate modified electrode. Journal of Electroanalytical Chemistry, 2004, 569(1): 143-150
    [18] Y. M. Shi, P. Wu, P. Du, C. X. Cai. Solid-state Electrochemistry of Gadolinium Hexacyanoferrate Modified Electrode and Electrocatalytic Properties of Gadolinium Hexacyanoferrate. Acta Physico-Chimica Sinica, 2006, 22(10): 1227-1233
    [19]周秀英,周敏,付周周,马永钧,铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶合钌(II)的电催化氧化研究.西北师范大学学报(自然科学版), 2007, 43(1): 54-58
    [20]马永钧,付周周,任小娜,周秀英,宋青云,2,4-二硝基苯酚在类普鲁士蓝化学修饰电极上的电化学行为及分析应用研究.分析化学,2008,36(2):241-244
    [21]付周周,任小娜,周秀英,宋青云,周敏,马永钧,2,4,6-三硝基苯酚在掺杂了铕(III)离子的类普鲁士蓝膜修饰的玻碳电极上的电催化还原反应.理化检验(化学分册), 2009, 45: 270-272
    [22] X. N. Ren, Y. J. Ma, M. Zhou, S. H. Huo, J. L. Yao, H. Chen, Determination of tropane alkaloid components in Przewalskia tangutica Maxim by capillary electrophoresis with electrochemiluminescence detection. Chinese Journal of chromatography, 2008, 26 (2): 223-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700