ACF/CNT复合材料的制备、表征及其吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年工业的发展和人口的增加,水体污染治理面临严峻挑战。染料废水和重金属废水的高效治理成为目前研究的热点和难点。吸附法因其具有成本低,效率高,简单易操作并对有毒物质不敏感等优点,成为本研究首选治理技术。
     本研究首次提出并以Ni(NO3)2·6H2O为催化剂前驱体,C2H2为碳源,H2为还原气体,N2为载气,采用化学气相沉积法(CVD)在粘胶基活性炭纤维(ACFs)毡体中纤维表面催化生长碳纳米管(CNTs)制备了一种新型吸附材料-ACF/CNT复合材料。
     研究了制备条件的影响,分析研究了ACF/CNT复合材料的结构特征,查明了ACF/CNT复合材料制备机理并阐明了碳纳米管生长机制。结果表明:在活性炭纤维的表面生长了均匀而稠密的碳纳米管;在碳纳米管尖端发现碳、镍和氧三种元素;存在石墨态碳纳米管和面心立方结构的晶体镍;生长碳纳米管后材料的表面官能团发生了改变;ACF/CNT复合材料以微孔和中孔为主。复合材料中碳纳米管生长遵循气-液-固(VLS)顶部生长机制,而且发现碳纳米管优先生长在活性炭纤维的开孔边缘。
     针对罗丹明B、甲基橙、次甲基蓝和六价铬,通过改变C2H2裂解温度、裂解时间、催化剂前躯体浓度、C2H2流量和H2流量等制备条件,实现了ACF/CNT复合材料比表面积、表面基团和孔径分布等结构性能参数可控。
     研究ACF/CNT复合材料对水溶液中罗丹明B的吸附性能及机理,结果表明:当pH从2升高到3,吸附容量从16.36降低到16.29mg/g,而后吸附容量随着pH的增加而增加;对罗丹明B的吸附数据符合Langmuir吸附等温线和准二级动力学方程;颗粒间扩散不是唯一的控制步骤,吸附速率还受膜扩散控制。根据热力学计算结果,表明吸附过程为非自发的、吸热的物理吸附。
     研究ACF/CNT复合材料对水溶液中甲基橙的吸附性能及机理,结果表明:pH从2到3时,吸附剂吸附容量从96.88增加到114.81mg/g,而后增加幅度变慢;对甲基橙的吸附数据符合Langmuir等温吸附模型和准二级动力学方程;颗粒间扩散和膜扩散共同为吸附过程的控制步骤;热力学计算结果揭示吸附过程为自发的、放热的物理吸附过程。
     研究ACF/CNT复合材料对水溶液中次甲基蓝的吸附性能及机理,结果表明:吸附容量随着pH的增加而增加;对次甲基蓝的吸附数据符合Freundlich吸附等温线模型和准二级动力学方程;吸附过程被颗粒间扩散和膜扩散控制;热力学计算结果阐明吸附为自发的、吸热的物理吸附。
     研究ACF/CNT复合材料对水溶液中六价铬的吸附性能及机理,结果表明:当pH从2到3时,吸附容量从4.992下降为4.987mg/g;而后随着pH的增加,吸附容量急剧下降。吸附实验数据遵循Freundlich吸附等温线和准二级动力学模型,颗粒间扩散不是吸附速率唯一的控制步骤,还要考虑膜扩散的影响;经热力学计算,证明吸附过程为自发的、吸热的物理吸附。
     ACF/CNT复合材料吸附罗丹明B和次甲基蓝的吸附机理包括氢键作用力、静电引力、Π-Π键和微孔填充;吸附甲基橙的吸附机理包括氢键作用力、Π-Π键和微孔填充。ACF/CNT复合材料吸附六价铬的机理主要包含静电引力和微孔填充。
Water pollution has become more and more serious with the development of industry and increase of population in recent years. The efficient treatment of dyes and heavy metals wastewater was proved to be one of the research hotspots and problems. The adsorption was selected to be preferred treatment technology in this study for its low cost, high efficiency, easy control and insensitive to toxic substance.
     In this paper, a new adsorption materials-ACF/CNT composites were firstly proposed and prepared with Ni(NO3)2·6H2O as catalyst precursor, C2H2as carbon source, H2as reduction gas and N2as carrier gas by growing carbon nanotubes(CNTs) on the surface of activated carbon fibers(ACFs) by chemical vapor deposition(CVD).
     The effects of preparation conditions and structure features were investigated for ascertaining the preparation mechanism of ACF/CNT composites and the growth mechanism of carbon nanotube. The results showed that CNTs were densely and well distributed on the surface of ACFs; C, Ni and O elements were found on the tip of CNTs; graphite CNTs and fcc nickel were found; the surface functional groups were changed after growing CNTs; micropores and mesopores dominated the ACF/CNT composites. The growth of CNTs followed VLS and top growth mechanism, and CNTs were found easy to grow on the pore sides.
     Aiming to rhodamine B, methyl orange, methylene blue and Cr(Ⅵ), controllability of performance and structure parameters including BET specific surface area, surface functional groups and pore size distribution was realized by adjusting pyrolysis temperature, pyrolysis time, catalyst precursor concentration, C2H2and H2flux.
     The adsorption abilities and mechanism of ACF/CNT composites for rhodamine B were showed that the adsorption capacity decreased from16.36to16.29mg/g with increasing pH from2to3, and then the adsorption capacity rised with increasing pH. The adsorption experimental data for rhodamine B were well fitted by Langmuir equation and pseudo-second-order kinetic model. The adsorption rate was not only controlled by intra-particle diffusion, but also by film diffusion. According to thermodynamic calculation, the adsorption process was a nonspontaneous and endothermic physisorption.
     The adsorption abilities and mechanism of ACF/CNT composites for methyl orange were investigated. The results showed that when pH rised from2to3, the adsorption capacity increased from96.88to114.81mg/g, then the increase rate droped. The adsorption experimental data of methyl orange were well described by Langmuir equation and pseudo-second-order kinetic model. The adsorption rate was controlled by intra-particle and film diffusion. The results from thermodynamic calculations suggested the the adsorption process was a spontaneous and exothermic physisorption.
     The adsorption abilities and adsorption mechanism of ACF/CNT composites for methylene blue were researched. The results declared that the adsorption capacity increased with increasing pH. The adsorption experimental data of ACF/CNT composites for methylene blue were well fitted by Freundlich equation and pseudo-second-order kinetic model. The adsorption rate was controlled by intra-particle diffusion and film diffusion. The results from thermodynamic calculations demonstrated that the adsorption process was a spontaneous and endothermic physisorption process.
     The adsorption abilities and adsorption mechanism of ACF/CNT composites for Cr(VI) were studied. The results indicated that when pH rised from2to3, the adsorption capacity decreased from4.992to4.987mg/g, then the decrease rate increased. The adsorption experimental data were well fitted by Freundlich equation. Furthermore, the kinetic data were well described by pseudo-second-order kinetic model. The adsorption rate was not only controlled by intra-particle diffusion, but also by film diffusion. The results from thermodynamic calculations indicated the adsorption process was a spontaneous and endothermic physisorption process.
     The adsorption mechanisms of rhodamine B and methylene blue are hydrogen bond, electrostatic attraction, n-n bond and micropore filling; the adsorption mechanisms of methyl orange are hydrogen bond, π-π bond and micropore filling. The adsorption mechanisms of Cr(VI) include electrostatic attraction and micropore filling.
引文
[1]Chatterjee S., Chatterjee T., Lim S.-R., et al. Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution[J]. Bioresource Technology,2011,102(6): 4402-4409.
    [2]Yang S., Yang F., Fu Z., et al. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment[J]. Journal of Hazardous Materials,2010,175(1-3):551-557.
    [3]Zhu Y, Zuo T., Jiang L., et al. Pore structure analysis on activated carbon fibers-By cluster and watershed transform method[J]. Applied Surface Science,2009,256(3): 587-592.
    [4]Winnicki T., Szetela R.. Wisniewski J.. Immobilized Microorganisms in Wastewater Treatment[C]. Studies in Environmental Science. Poland:Elsevier,1982:341-352.
    [5]Qin Z., Liang Y, Liu Z., et al. Preparation of InYO3 catalyst and its application in photodegradation of molasses fermentation wastewater[J]. Journal of Environmental Sciences,2011,23(7):1219-1224.
    [6]Lin S.W.. Navarro R.M.F. An innovative method for removing Hg2+ and Pb2+ in ppm concentrations from aqueous media[J]. Chemosphere,1999,39(11):1809-1817.
    [7]Jin Z., Yang D.L., Zhang S.H., et al. Removal of 2,4-dichlorophenol from wasterwater by vacuum membrane distillation using hydrophobic PPESK hollow hiber membrane[J]. Chinese Chemical Letters,2007,18(12):1543-1547.
    [8]Franco A.P., Recio M.A.L., Szpoganicz B., et al. Complexes of carboxymethylcellulose in water. Part 2. Co2+ and Al3+ remediation studies of wastewaters with Co2+, Al3+, Cu2+, VO2+ and Mo6+[J]. Hydrometallurgy,2007,87(3-4):178-189.
    [9]Afrane G. Achaw O.-W. Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons [J]. Bioresource Technology,2008,99(14):6678-6682.
    [10]Gercel O., Gercel H.F., Koparal A.S., et al. Removal of disperse dye from aqueous solution by novel adsorbent prepared from biomass plant material [J]. Journal of Hazardous Materials,2008,160(2-3):668-674.
    [11]Bradu C., Frunza L., Mihalche N., et al. Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3[J]. Applied Catalysis B:Environmental,2010,96(3-4):548-556.
    [12]徐丽娜,赵华章,叶正芳,等.生物-微电解组合工艺处理染料废水研究[J].环境工程学报,2007,1(12):10-14.
    [13]祁佩时,陈战利,李辉,等.微电解-Fenton工艺预处理难降解染料废水研究[J].中国矿业大学学报,2008,37(5):685-689.
    [14]Furlan F.R., de Melo da Silva L.G., Morgado A.F., et al. Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon[J]. Resources, Conservation and Recycling,2010,54(5):283-290.
    [15]Guibal E.. Roussy J. Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan)[J]. Reactive and Functional Polymers,2007,67(1):33-42.
    [16]Qi K. Residual color profiles of simulated reactive dyes wastewater in flocculation processes by polydiallyldimethylammoniumchloride[J]. Separation and Purification Technology,2007,57(2):356-365.
    [17]Safarikova M., Ptackova L., Kibrikova I., et al. Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells[J]. Chemosphere, 2005,59(6):831-835.
    [18]Kim T.-H., Park C.. Kim S. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration[J]. Journal of Cleaner Production,2005,13(8):779-786.
    [19]Katarzyna M M.-N. Development of new rod-type membranes for effluent decolorization:performance tests on model dye solutions[J]. Journal of Membrane Science,1992,68(3):307-317.
    [20]Akbari A., Desclaux S., Rouch J.C., et al. New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents[J]. Journal of Membrane Science,2006,286(1-2):342-350.
    [21]林海,菅小东.李天听.活性炭纤维电化学处理染料废水[J].北京科技大学学报,2003,25(2):124-126.
    [22]胡祺昊,王黎明,黄兴华,等.高压脉冲放电降解染料废水的实验研究[J].清华大学学报(自然科学版),2002,42(9):1148-1150.
    [23]Yi F., Chen S.. Yuan C.e. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater[J]. Journal of Hazardous Materials,2008,157(1):79-87.
    [24]Shen Z., Wang W., Jia J., et al. Degradation of dye solution by an activated carbon fiber electrode electrolysis system[J]. Journal of Hazardous Materials,2001,84(1): 107-116.
    [25]Lei W. Aqueous organic dye discoloration induced by contact glow discharge electrolysis[J]. Journal of Hazardous Materials,2009,171(1-3):577-581.
    [26]Gao J., Wang X., Hu Z., et al. Plasma degradation of dyes in water with contact glow discharge electrolysis[J]. Water Research,2003,37(2):267-272.
    [27]Dong Y, He K., Zhao B., et al. Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite[J]. Catalysis Communications,2007,8(11): 1599-1603.
    [28]Ling S.K., Wang S.. Peng Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J]. Journal of Hazardous Materials,2010,178(1-3): 385-389.
    [29]Sugiarto A.T., Ito S., Ohshima T., et al. Oxidative decoloration of dyes by pulsed discharge plasma in water[J]. Journal of Electrostatics,2003,58(1-2):135-145.
    [30]史惠祥,赵伟荣.汪大晕.偶氮染料的臭氧氧化机理研究[J].浙江大学学报(工学版),2003,37(6):734-738.
    [31]罗汉金,刘佳乐,韦朝海,等.染料溶液的臭氧脱色效率和残留物的分析研究[J].环境化学,2006,25(5):602-606.
    [32]Barka N., Qourzal S., Assabbane A., et al. Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media[J]. Arabian Journal of Chemistry,2010,3(4):279-283.
    [33]Daneshvar N., Salari D.. Khataee A.R. Photocatalytic degradation of azo dye acid red 14 in water:investigation of the effect of operational parameters [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,157(1):111-116.
    [34]Daneshvar N., Salari D.. Khataee A.R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,162(2-3):317-322.
    [35]Lin W.-C., Yang W.-D.. Jheng S.-Y. Photocatalytic degradation of dyes in water using porous nanocrystalline titanium dioxide[J]. Journal of the Taiwan Institute of Chemical Engineers,2012,43(2):269-274.
    [36]Nikazar M., Gholivand K.. Mahanpoor K. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst[J]. Desalination, 2008,219(1-3):293-300.
    [37]Song S., Xu L., He Z., et al. Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst[J]. Journal of Hazardous Materials,2008,152(3):1301-1308.
    [38]Tayade R.J., Surolia P.K., Kulkarni R.G., et al. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2[J]. Science and Technology of Advanced Materials,2007,8(6):455-462.
    [39]Huang J., Liu Y., Jin Q., et al. Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay[J]. Journal of Hazardous Materials,2007,143(1-2):541-548.
    [40]Janos P., Coskun S., Pilarova V., et al. Removal of basic (Methylene Blue) and acid (Egacid Orange) dyes from waters by sorption on chemically treated wood shavings[J]. Bioresource Technology,2009,100(3):1450-1453.
    [41]Janos P.. Smidova V. Effects of surfactants on the adsorptive removal of basic dyes from water using an organomineral sorbent-iron humate[J]. Journal of Colloid and Interface Science,2005,291(1):19-27.
    [42]Khattri S.D.. Singh M.K. Removal of malachite green from dye wastewater using neem sawdust by adsorption[J]. Journal of Hazardous Materials,2009,167(1-3): 1089-1094.
    [43]Lin S.-H., Juang R.-S.. Wang Y.-H. Adsorption of acid dye from water onto pristine and acid-activated clays in fixed beds[J]. Journal of Hazardous Materials,2004, 113(1-3):195-200.
    [44]Machado F.M., Bergmann C.P., Fernandes T.H.M., et al. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon[J]. Journal of Hazardous Materials,2011,192(3):1122-1131.
    [45]Yu Y., Zhuang Y.-Y., Wang Z.-H., et al. Adsorption of water-soluble dyes onto modified resin[J]. Chemosphere,2004,54(3):425-430.
    [46]Liu W., Zhang J., Zhang C., et al. Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk[J]. Chemical Engineering Journal, 2010,162(2):677-684.
    [47]Trezza M.A.. Ferraiuelo M.F. Hydration study of limestone blended cement in the presence of hazardous wastes containing Cr(VI)[J]. Cement and Concrete Research, 2003,33(7):1039-1045.
    [48]Bhatti M.S., Reddy A.S.. Thukral A.K. Electrocoagulation removal of Cr(VI) from simulated wastewater using response surface methodology [J]. Journal of Hazardous Materials,2009,172(2-3):839-846.
    [49]潘留明.含铬废水的电化学法处理研究[D].武汉:武汉科技大学,2005.
    [50]Erdem M., Gur F.. Tumen F. Cr(VI) reduction in aqueous solutions by siderite[J]. Journal of Hazardous Materials,2004,113(1-3):217-222.
    [51]Jiang F., Zheng Z., Xu Z., et al. Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2[J]. Journal of Hazardous Materials,2006,134(1-3):94-103.
    [52]Olad A.. Nabavi R. Application of polyaniline for the reduction of toxic Cr(Ⅵ) in water[J]. Journal of Hazardous Materials,2007,147(3):845-851.
    [53]Park D., Lim S.-R., Lee H.W., et al. Mechanism and kinetics of Cr(Ⅵ) reduction by waste slag generated from iron making industry[J]. Hydrometallurgy,2008,93(1-2): 72-75.
    [54]Shao D., Wang X.. Fan Q. Photocatalytic reduction of Cr(Ⅵ) to Cr(Ⅲ) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment[J]. Microporous and Mesoporous Materials,2009,117(1-2):243-248.
    [55]Arslan G., Tor A., Muslu H., et al. Facilitated transport of Cr(Ⅵ) through a novel activated composite membrane containing Cyanex 923 as a carrier[J]. Journal of Membrane Science,2009,337(1-2):224-231.
    [56]Shukla A.. Kumar A. Separation of Cr(Ⅵ) by zeolite-clay composite membranes modified by reaction with NOx[J]. Separation and Purification Technology,2007,52(3): 423-429.
    [57]Kathiravan M.N., Karthiga Rani R., Karthick R., et al. Mass transfer studies on the reduction of Cr(Ⅵ) using calcium alginate immobilized Bacillus sp. in packed bed reactor[J]. Bioresource Technology,2010,101(3):853-858.
    [58]Pang Y., Zeng G.-M., Tang L., et al. Cr(Ⅵ) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes[J]. Bioresource Technology,2011,102(22):10733-10736.
    [59]Venugopal V.. Mohanty K. Biosorptive uptake of Cr(Ⅵ) from aqueous solutions by Parthenium hysterophorus weed:Equilibrium, kinetics and thermodynamic studies[J]. Chemical Engineering Journal,2011,174(1):151-158.
    [60]Wen Y., Tang Z., Chen Y., et al. Adsorption of Cr(Ⅵ) from aqueous solutions using chitosan-coated fly ash composite as biosorbent[J]. Chemical Engineering Journal,2011, 175(0):110-116.
    [61]Xu W.-h., Liu Y.-g., Zeng G.-m., et al. Characterization of Cr(Ⅵ) resistance and reduction by Pseudomonas aeruginosa[J]. Transactions of Nonferrous Metals Society of China,2009,19(5):1336-1341.
    [62]柴立元,唐宁,闵小波,等.硫酸盐还原菌包埋固定化技术处理含铬废水[J].中 南大学学报(自然科学版),2005,36(6):965-969.
    [63]Alemayehu E., Thiele-Bruhn S.. Lennartz B. Adsorption behaviour of Cr(VI) onto macro and micro-vesicular volcanic rocks from water[J]. Separation and Purification Technology,2011,78(1):55-61.
    [64]Hong H., Jiang W.-T., Zhang X., et al. Adsorption of Cr(VI) on STAC-modified rectorite[J]. Applied Clay Science,2008,42(1-2):292-299.
    [65]Kong M.-1., Ma X.-o.. Shi J. The Adsorption of CHS-1 Resin for Cr (VI) of Low Concentration from Electroplating Wastewater[J]. Procedia Engineering,2011,18(0): 116-121.
    [66]Li J., Miao X., Hao Y., et al. Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI)[J]. Journal of Colloid and Interface Science,2008,318(2): 309-314.
    [67]Rodrigues L.A., Maschio L.J., da Silva R.E., et al. Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide[J]. Journal of Hazardous Materials,2010, 173(1-3):630-636.
    [68]Soto M.L., Moure A., Dominguez H., et al. Recovery, concentration and purification of phenolic compounds by adsorption:A review[J]. Journal of Food Engineering,2011, 105(1):1-27.
    [69]Barnthip N., Parhi P., Golas A., et al. Volumetric interpretation of protein adsorption: Kinetics of protein-adsorption competition from binary solution[J]. Biomaterials,2009, 30(33):6495-6513.
    [70]Feng L.. Andrade J.D. Protein adsorption on low temperature isotropic carbon:Ⅲ. Isotherms, competitivity, desorption and exchange of human albumin and fibrinogen[J]. Biomaterials,1994,15(5):324-333.
    [71]Bretag J., Kammerer D.R., Jensen U., et al. Adsorption of rutin onto a food-grade styrene-divinylbenzene copolymer in a model system[J]. Food Chemistry,2009,114(1): 151-160.
    [72]Dotto G.L.. Pinto L.A.A. Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan:Stirring rate effect in kinetics and mechanism[J]. Journal of Hazardous Materials,2011,187(1-3):164-170.
    [73]Demir H., Mobedi M.. Ulku S. A review on adsorption heat pump:Problems and solutions[J]. Renewable and Sustainable Energy Reviews,2008,12(9):2381-2403.
    [74]Wang D.C., Li Y.H., Li D., et al. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems [J]. Renewable and Sustainable Energy Reviews,2010,14(1):344-353.
    [75]Gil A., Assis F.C.C., Albeniz S., et al. Removal of dyes from wastewaters by adsorption on pillared clays[J]. Chemical Engineering Journal,2011,168(3): 1032-1040.
    [76]Rafatullah M., Sulaiman O., Hashim R., et al. Adsorption of methylene blue on low-cost adsorbents:A review[J]. Journal of Hazardous Materials,2010,177(1-3): 70-80.
    [77]Qi S., Schideman L., Marinas B.J., et al. Simplification of the IAST for activated carbon adsorption of trace organic compounds from natural water[J]. Water Research, 2007,41(2):440-448.
    [78]Pastrana-Martinez L.M., Lopez-Ramon M.V., Fontecha-Camara M.A., et al. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity[J]. Water Research,2010,44(3): 879-885.
    [79]Miyake Y., Sakoda A., Yamanashi H., et al. Activated carbon adsorption of trichloroethylene(TCE) vapor stripped from TCE-contaminated water[J]. Water Research,2003,37(8):1852-1858.
    [80]Chornaya V.N., Todosiichuk T.T., Menzheres G.Y., et al. Effect of flexibility of polymer chains on the kinetics of adsorption of polymer mixtures from solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,318(1-3): 53-61.
    [81]Zhang Q., Gao Z., Xu F., et al. Adsorption and corrosion inhibitive properties of gemini surfactants in the series of hexanediyl-1,6-bis-(diethyl alkyl ammonium bromide) on aluminium in hydrochloric acid solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,380(1-3):191-200.
    [82]Benhima H., Chiban M., Sinan F., et al. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants[J]. Colloids and Surfaces B:Biointerfaces,2008,61(1):10-16.
    [83]Wajima T.. Sugawara K. Adsorption behaviors of mercury from aqueous solution using sulfur-impregnated adsorbent developed from coal[J]. Fuel Processing Technology, 2011,92(7):1322-1327.
    [84]Takehiko T. Adsorption of uranium from acidic solution by microbes and effect of thorium on uranium adsorption by Streptomyces levoris[J]. Journal of Bioscience and Bioengineering,2004,97(4):275-277.
    [85]Miller M.J., Critchley M.M., Hutson J., et al. The adsorption of cyanobacterial hepatotoxins from water onto soil during batch experiments[J]. Water Research,2001, 35(6):1461-1468.
    [86]Nasuha N.. Hameed B.H. Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea[J]. Chemical Engineering Journal,2011,166(2):783-786.
    [87]Gregorio C. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer[J]. Dyes and Pigments, 2008,77(2):415-426.
    [88]Dogan M., Ozdemir Y. Alkan M. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite[J]. Dyes and Pigments,2007, 75(3):701-713.
    [89]Baral S.S., Das S.N., Chaudhury G.R., et al. Adsorption of Cr(VI) using thermally activated weed Salvinia cucullata[J]. Chemical Engineering Journal,2008,139(2): 245-255.
    [90]Chen S., Yue Q., Gao B., et al. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue[J]. Journal of Colloid and Interface Science,2010,349(1):256-264.
    [91]Huang Y, Ma X., Liang G, et al. Adsorption behavior of Cr(VI) on organic-modified rectorite[J]. Chemical Engineering Journal,2008,138(1-3):187-193.
    [92]Zimmermann A.C., Mecabo A., Fagundes T., et al. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe)[J]. Journal of Hazardous Materials,2010, 179(1-3):192-196.
    [93]SING K.S. W. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry,1982,54 (11):2201-2218.
    [94]Al-Ghouti M.A., Khraisheh M.A.M., Ahmad M.N.M., et al. Adsorption behaviour of methylene blue onto Jordanian diatomite:A kinetic study[J]. Journal of Hazardous Materials,2009,165(1-3):589-598.
    [95]Han X., Wang W. Ma X. Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf[J]. Chemical Engineering Journal,2011,171(1):1-8.
    [96]Almeida C.A.P., Debacher N.A., Downs A.J., et al. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay[J]. Journal of Colloid and Interface Science,2009,332(1):46-53.
    [97]Fernandes A.N., Almeida C.A.P., Debacher N.A., et al. Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat[J]. Journal of Molecular Structure,2010,982(1-3):62-65.
    [98]傅敏.活性炭纤维改性及对焦化废水中有机物吸附作用的研究[D],重庆:重庆大学,2004.
    [99]WF A. Method for carbonizing fibers. US Patent:3053775[P],1962-9-11.
    [100]Arons GN M.R. Activated carbon fiber and fabric achieved by pyrolysis and activation of phenolic precursors [J]. Textile research Journal,1972,42(1):60-63.
    [101]Suzuki M.活性炭纤维一基础和应用[J].新型炭材料,1994,(2):24-32.
    [102]王丽平,黄柱成,张明瑜,等.活性炭纤维治理大气污染的性能及机理研究[J].材料导报,2008,22(10):76-79.
    [103]邹勇.废旧有机纤维布制备活性炭纤维布的工艺研究[D],西安:西安科技大学,2010.
    [104]王春云.活性炭纤维的制造及其吸附特性[J].化工新型材料,1997,(4):35-36.
    [105]Das D., Gaur V.. Verma N. Removal of volatile organic compound by activated carbon fiber[J]. Carbon,2004,42(14):2949-2962.
    [106]朱敬,范浩杰.章明川.粘胶基活性炭纤维用于低浓度S02常温脱除的实验研究[J].环境工程学报,2007,1(7):83-86.
    [107]Fontecha-Camara M.A., Lopez-Ramon M.V., Alvarez-Merino M.A., et al. About the endothermic nature of the adsorption of the herbicide diuron from aqueous solutions on activated carbon fiber[J]. Carbon,2006,44(11):2335-2338.
    [108]Park S.-J.. Kim B.-J. Ammonia removal of activated carbon fibers produced by oxyfluorination[J].Journal of Colloid and Interface Science,2005,291(2):597-599.
    [109]Shen W., Wang H., Guan R., et al. Surface modification of activated carbon fiber and its adsorption for vitamin B1 and folic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,331(3):263-267.
    [110]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [111]Sumio Iijima. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,363: 603-605.
    [112]Bethune C.H.K., Vries de M. S., Gorman G., et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature,1993,363:605-607.
    [113]Dillon M.D.L., Webb J.D., Jones K.M., et al. Hydrogen Adsorption in Carbon Nanotubes [J]. Proceedings of the Electrochemical Society,1997,97-4:916-929.
    [114]Liu C., Liu M., Cong H. T., et al. Dresselhaus. Hydrogen storage in Single-walled Carbon Nanotubes at Room Temperature[J]. Science,1999,286:1127-1129.
    [115]L. Liu, Cheng H. M, Zhou B. L.. Semi-continuous synthesis of single-walled carbon nanotubes by hydrogen arc method[J]. Carbon,1999,37:1865-1868.
    [116]Lai H.J., Lin M.C.C., Yang M.H., et al. Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge[J]. Materials Science and Engineering:C,2001,16(1-2):23-26.
    [117]Qiu J., Chen G, Li Z., et al. Preparation of double-walled carbon nanotubes from fullerene waste soot by arc-discharge[J]. Carbon,2010,48(4):1312-1315.
    [118]Yuge R., Toyama K., Ichihashi T., et al. Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation[J]. Applied Surface Science,2012,258(18):6958-6962.
    [119]Yudasaka M., Komatsu T., Ichihashi T., et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal [J]. Chemical Physics Letters, 1997,278(1-3):102-106.
    [120]Du G., Zhou Y. Xu B. Preparation of carbon nanotubes by pyrolysis of dimethyl sulfide[J]. Materials Characterization,2010,61(4):427-432.
    [121]Cao L., Li Z., Fan G., et al. The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol[J]. Carbon,2012,50(3):1057-1062.
    [122]Zhuo C., Hall B., Richter H., et al. Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene[J]. Carbon,2010,48(14):4024-4034.
    [123]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002:50-56.
    [124]Lithoxoos G.P., Labropoulos A., Peristeras L.D., et al. Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes:A combined experimental and Monte Carlo molecular simulation study[J]. The Journal of Supercritical Fluids,2010,55(2): 510-523.
    [125]Sheng G., Li J., Shao D., et al. Adsorption of copper(Ⅱ) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids [J]. Journal of Hazardous Materials,2010,178(1-3):333-340.
    [126]Yao Y., Xu F., Chen M., et al. Adsorption behavior of methylene blue on carbon nanotubes[J]. Bioresource Technology,2010,101(9):3040-3046.
    [127]Arasteh R., Masoumi M., Rashidi A.M., et al. Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions [J]. Applied Surface Science,2010, 256(14):4447-4455.
    [128]Sinnott S.B., Andrews R., Qian D., et al. Model of carbon nanotube growth through chemical vapor deposition[J]. Chemical Physics Letters,1999,315(1-2):25-30.
    [129]He C.N., Zhao N.Q., Shi C.S., et al. Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition[J]. Journal of Alloys and Compounds,2009,487(1-2):258-262.
    [130]何春年.化学气相沉积法原位合成碳纳米管增强铝基复合材料[D].天津:天津大学,2008.
    [131]Liu H., Zhang Y, Arato D., et al. Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition:Critical effects of buffer layer[J]. Surface and Coatings Technology,2008,202(17):4114-4120.
    [132]康建立.铜基体上原位合成碳纳米管(纤维)及其复合材料的性能[D].天津:天津大学,2009.
    [133]Huang J.-H., Huang K.-L., Liu S.-Q., et al. Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,330(1):55-61.
    [134]Pan B.. Xing B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes[J]. Environmental Science & Technology,2008,42(24):9005-9013.
    [135]Chang P.R., Zheng P., Liu B., et al. Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes[J]. Journal of Hazardous Materials,2011,186(2-3):2144-2150.
    [136]Kuo C.-Y, Wu C.-H.. Wu J.-Y. Adsorption of direct dyes from aqueous solutions by carbon nanotubes:Determination of equilibrium, kinetics and thermodynamics parameters[J]. Journal of Colloid and Interface Science,2008,327(2):308-315.
    [137]Lawrence N.S.. Wang J. Chemical adsorption of phenothiazine dyes onto carbon nanotubes:Toward the low potential detection of NADH[J]. Electrochemistry Communications,2006,8(1):71-76.
    [138]Wu C.-H. Adsorption of reactive dye onto carbon nanotubes:Equilibrium, kinetics and thermodynamics[J]. Journal of Hazardous Materials,2007,144(1-2):93-100.
    [139]杨文金.炭气凝胶对溶液中有机物吸附特性的研究[D].广州:中山大学,2007:98.
    [140]Pillay K., Cukrowska E.M.. Coville N.J. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution[J]. Journal of Hazardous Materials,2009,166(2-3):1067-1075.
    [141]裘凯栋.黎维彬.水溶液中六价铬在碳纳米管上的吸附[J].物理化学学报,2006,22(12):1542-1546.
    [142]Zhao N., He C., Jiang Z., et al. Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition[J]. Materials Letters,2006,60(2): 159-163.
    [143]Emmenegger C., Bonard J.M., Mauron P., et al. Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism[J]. Carbon,2003,41(3): 539-547.
    [144]Inoue S.. Kikuchi Y. Diameter control and growth mechanism of single-walled carbon nanotubes[J]. Chemical Physics Letters,2005,410(4-6):209-212.
    [145]Grujicic M., Cao G.. Gersten B. Optimization of the chemical vapor deposition process for carbon nanotubes fabrication[J]. Applied Surface Science,2002,191(1-4): 223-239.
    [146]Chen L., Liu H., Yang K., et al. The effect of reaction temperature on the diameter distribution of carbon nanotubes grown from ethylene decomposition over a Co-La-O catalyst[J]. Materials Chemistry and Physics,2008,112(2):407-411.
    [147]Niu Z.. Fang Y. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst[J]. Materials Research Bulletin,2008,43(6):1393-1400.
    [148]Tan S.-M., Chai S.-P., Liu W.-W., et al. Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane[J]. Journal of Alloys and Compounds,2009, 477(1-2):785-788.
    [149]Dang C. Wang T. Study on effects of substrate temperature on growth and structure of alignment carbon nanotubes in plasma-enhanced hot filament chemical vapor deposition system[J]. Applied Surface Science,2006,253(2):904-908.
    [150]Son S.Y., Lee Y, Won S., et al. High-Quality Multiwalled Carbon Nanotubes from Catalytic Decomposition of Carboneous Materials in Gas-Solid Fluidized Beds[J]. Industrial & Engineering Chemistry Research,2008,47(7):2166-2175.
    [151]Gary G T. Why are carbon filaments tubular?[J]. Journal of Crystal Growth,1984, 66(3):632-638.
    [152]Chingombe P., Saha B.. Wakeman R.J. Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water[J]. Journal of Colloid and Interface Science,2006,297(2): 434-442.
    [153]Danafar F., Fakhru'1-Razi A., Salleh M.A.M., et al. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review[J]. Chemical Engineering Journal,2009,155(1-2):37-48.
    [154]Lee C.J., Park J., Huh Y., et al. Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition[J]. Chemical Physics Letters,2001,343(1-2): 33-38.
    [155]Li W.Z., Wen J.G. Ren Z.F. Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition[J]. Applied Physics A:Materials Science & Processing,2002,74(3):397-402.
    [156]Brukh R... Mitra S. Mechanism of carbon nanotube growth by CVD[J]. Chemical Physics Letters,2006,424(1-3):126-132.
    [157]Niu Z.. Fang Y. Effects of synthesis time for synthesizing single-walled carbon nanotubes over Mo-Fe-MgO catalyst and suggested growth mechanism[J]. Journal of Crystal Growth,2006,297(1):228-233.
    [158]Bahrami B., Khodadadi A., Mortazavi Y, et al. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles[J]. Applied Surface Science,2011,257(23):9710-9716.
    [159]Kouravelou K.B., Sotirchos S.V.. Verykios X.E. Catalytic effects of production of carbon nanotubes in a thermogravimetric CVD reactor[J]. Surface and Coatings Technology,2007,201(22-23):9226-9231.
    [160]Bai X., Li D., Wang Y, et al. Effects of Temperature and Catalyst Concentration on the Growth of Aligned Carbon Nanotubes[J]. Tsinghua Science & Technology,2005, 10(6):729-735.
    [161]Zhao J., Liu L., Guo Q., et al. Growth of carbon nanotubes on the surface of carbon fibers[J]. Carbon,2008,46(2):380-383.
    [162]Unalan H.E., Chhowalla M. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition[J]. Nanotechnology, 2005,16(10):2153.
    [163]Kukovitsky E.F., L'Vov S.G., Sainov N.A., et al. Correlation between metal catalyst particle size and carbon nanotube growth[J]. Chemical Physics Letters,2002,355(5-6): 497-503.
    [164]耿梅艳,王海燕,邹上荣,等.氢气流量对定向碳纳米管生长的影响及其生长机理研究[J].化工新型材料,2009,37(9):86-88.
    [165]Escobar M., Moreno M.S., Candal R.J., et al. Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics[J]. Applied Surface Science, 2007,254(1):251-256.
    [166]Xiong GY., Suda Y, Wang D.Z., et al. Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition[J]. Nanotechnology,2005,16(4):532.
    [167]侯珂珂.崔平.氢气流量和反应时间对焦化苯裂解制备碳纳米管的影响[J].高科技纤维与应用,2007,32(4):14-18.
    [168]Kuo D.-H.. Su M.-Y. The effects of hydrogen and temperature on the growth and microstructure of carbon nanotubes obtained by the Fe(CO)5 gas-phase-catalytic chemical vapor deposition[J]. Surface and Coatings Technology,2007,201(22-23): 9172-9178.
    [169]Lin J.X., Zhan S.L., Fang M.H., et al. Adsorption of basic dye from aqueous solution onto fly ash[J]. Journal of Environmental Management,2008,87(1):193-200.
    [170]Long C., Lu Z., Li A., et al. Adsorption of reactive dyes onto polymeric adsorbents: effect of pore structure and surface chemistry group of adsorbent on adsorptive properties[J]. Separation and Purification Technology,2005,44(1):91-96.
    [171]Zhang X., Li A., Jiang Z., et al. Adsorption of dyes and phenol from water on resin adsorbents:Effect of adsorbate size and pore size distribution[J]. Journal of Hazardous Materials,2006,137(2):1115-1122.
    [172]Guo Y, Zhao J., Zhang H., et al. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions[J]. Dyes and Pigments,2005,66(2):123-128.
    [173]Das S.K., Ghosh P., Ghosh I., et al. Adsorption of rhodamine B on Rhizopus oryzae: Role of functional groups and cell wall components[J]. Colloids and Surfaces B: Biointerfaces,2008,65(1):30-34.
    [174]王矫娜,段晋明,徐绪筝.改性硅藻土对三种有机染料的吸附作用研究[J].环境科学学报,2012,32(6):1364-1369.
    [175]Kiincek L. Sener S. Adsorption of methylene blue onto sonicated sepiolite from aqueous solutions[J]. Ultrasonics Sonochemistry,2010,17(1):250-257.
    [176]Deligeer W., Gao Y.W.. Asuha S. Adsorption of methyl orange on mesoporous Y-Fe2O3/SiO2 nanocomposites[J]. Applied Surface Science,2011,257(8):3524-3528.
    [177]Chen H., Zhao J., Wu J., et al. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae [J]. Journal of Hazardous Materials,2011,192(1):246-254.
    [178]Wang L., Zhang J.. Wang A. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite[J]. Desalination, 2011,266(1-3):33-39.
    [179]Rawajfih Z., Mohammad H.A., Nsour N., et al. Study of equilibrium and thermodynamic adsorption of a-picoline, P-picoline, and y-picoline by Jordanian zeolites:Phillipsite and faujasite[J]. Microporous and Mesoporous Materials,2010, 132(3):401-408.
    [180]Wang S., Zhu Z.H., Coomes A., et al. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater[J]. Journal of Colloid and Interface Science,2005,284(2):440-446.
    [181]Deng H., Lu J., Li G, et al. Adsorption of methylene blue on adsorbent materials produced from cotton stalk[J]. Chemical Engineering Journal,2011,172(1):326-334.
    [182]Cheng Q., Li C., Xu L., et al. Adsorption of Cr(VI) ions using the amphiphilic gels based on 2-(dimethylamino)ethyl methacrylate modified with 1-bromoalkanes[J]. Chemical Engineering Journal,2011,173(1):42-48.
    [183]Zeng Y., Woo H., Lee G., et al. Adsorption of Cr(VI) on hexadecylpyridinium bromide (HDPB) modified natural zeolites [J]. Microporous and Mesoporous Materials, 2010,130(1-3):83-91.
    [184]Guo Y., Qi J., Yang S., et al. Adsorption of Cr(VI) on micro-and mesoporous rice husk-based active carbon[J]. Materials Chemistry and Physics,2003,78(1):132-137.
    [185]近藤精一,安部郁夫.吸附科学[M].北京:化学工业出版社,2006:115-116.
    [186]A T.P. Chemistry and physics of carbon[M]. New York:Dekker,1994:213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700