基于纳米金和酶切信号放大的生物传感分析方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分析科学的不断发展,生命科学领域中的各种分析和检测过程越来越多地需要要借助于生物传感技术获取所需的信息。生物传感器具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测等优点,在化学、生物医学、环境监测、食品、医药和军事等领域有重要的应用价值。理想的生物传感器对目标物应该具有非常高的检测灵敏度(低检测限),高特异性(低干扰)宽的动力学检测范围,快速响应时间,以及通用性等特点。
     功能核酸是基于体外筛选或指数富集配体系统进化法(systematic evolution of ligands by exponential enrichment, SELEX),筛选得到的与生物小分子、蛋白质分子、细胞、金属离子等高亲和力和高特异性结合的DNA或RNA片段。功能核酸通常包括两大类具有特殊功能的核酸分子:一类具有类似于蛋白酶的催化活性,称为DNA酶(DNAzymes),另一类能够像抗体一样特异性结合目标分子,称为核酸适配体(Aptamer)。功能核酸的发现突破了传统意义上关于核酸只是遗传信息存储和转运载体的认识,为构建用于各种分析对象的生物传感体系提供了全新的设计思路和平台。
     灵敏度是衡量生物传感器性能的最重要参数之一,而单纯利用功能核酸结合目标物前后构象变化引起信号的改变,在进一步提高灵敏度方面已经十分有限。近年来,设计新的信号放大方法用于目标物的高灵敏检测已经引起了研究人员的广泛关注。提高传感器灵敏度的方法通常有两种,一种是降低检测背景,另外种是采用信号放大技术。其中,由于信号放大技术在提高灵敏度方面的显著效果,近年来受到了研究者更为广泛的关注
     基于以上考虑,综合文献报道,本文主要利用信号放大技术在提高生物传感器的检测灵敏度方面做了一些工作,主要内容如下:
     (1)基于纳米金信号放大技术的生物传感器的研究。利用纳米金比表面积大、具有良好生物相容性以及表面核酸高负载量的特点,在第2章提出了一种基于
     ‘T-Hg2+-T”特异性强结合作用和纳米金信号放大的新型非标记Hg2+电化学传感器。在Hg2+存在的条件下,连接DNA与电极表面的捕获探针通过“T-Hg2+-T”相互杂交,然后引入纳米金功能化的信号DNA与连接DNA另外一端序列杂交。以亚甲基蓝作为电活性物质,由于纳米金功能化信号DNA的引入能够放大检测信号,因此当进行DPV检测时,可得到明显增强的电化学信号。该方法可获得0.5nM的检测限,且选择性好、操作简单,并可用于实际样品的检测。在第3章,我们基于利用距离决定电磁场(EM)增强作用的指数减弱,即拉曼标记物离纳米粒子表面越近,Raman信号越强的原理,发展了一种基于树枝状纳米分子结信号放大技术的新型SERS传感器。以基于GR-5DNA酶的Pb2+SERS传感器和基于核酸适配体的腺苷SERS传感器作为分析模型,验证了通过层层自组装形成纳米分子实现拉曼信号放大的可行性,以及该设计策略的通用性。为了构建Pb2+SERS传感器,首先将巯基标记的GR-5DNA酶组装在金电极表面,当Pb2+存在时,能够催化镶嵌在该DNA酶底物链中RNA碱基的水解,使其被剪切为两部分。金电极表面剩余的核酸片段部分可以和纳米金标记的报告探针链杂交,通过层层自组装,纳米金之间形成了纳米结,拉曼信号得到显著增强,对Pb2+检测限可达0.1nM。为了检测腺苷,采用目标导致链置换构建核酸适配体SERS传感器。核酸适配体首先与金电极表面的捕获探针互补杂交被固定在电极表面,当腺苷存在时,与核酸适配体发生特异性结合,导致其构型发生变化,从电极表面脱落。然后,捕获探针可以和纳米金标记的报告探针链杂交,同样通过层层自组装形成纳米结,从而导致拉曼信号的显著增强。该传感器具有较好的选择性,检测下限为50nM。
     (2)基于酶切循环信号放大技术的生物传感器的研究。基于核酸切口酶能够识别特异性的双链序列而只酶切其中一条单链从而可以实现循环信号放大的特点,在第4章利用分子信标低背景、高灵敏的优点提出了一种新型、能够实现目标诱导酶切循环信号放大过程的“Y型”探针用于高灵敏检测目标DNA,该探针同时具有较强的单碱基错配识别能力。当目标DNA存在时,可以和辅助探针协同打开分子信标的发夹型结构,三者相互杂交形成“Y型”结构,从而形成了切口酶Nt.BbvCI的识别序列。分子信标被核酸切口酶识别切断后,从传感系统上游离释放出来。释放出的辅助探针和目标DNA可以继续和另外一个分子信标进行杂交,同时诱发第二次酶切循环。经多次酶切循环反应后,实现了真正的目标DNA诱发酶切循环信号放大,与第一代基于中间标记的直线型信号探针构建的“Y型”探针相比更加灵敏,检测下限为5pM。在第5章,我们采用将分子识别和信号报告基团进行分离的设计策略,避免了对DNA酶进行修饰,并采用酶切循环信号放大技术构建了一种新型荧光催化信标,显著提高了对目标物的检测灵敏度。以L-组氨酸作为分析模型,采用DNA酶链和底物链以聚T连接的一体化DNA酶作为识别基团,L-组氨酸导致底物链酶切后的产物序列能够与作为信号报告基团的分子信标杂交,进一步采用核酸切口酶实现酶切循环信号放大,实现了对目标物的高灵敏和特异性检测,检测限为200nM。由于DNA酶具有可以循环剪切的性质,也可以用于酶切信号放大技术。在第6章,我们利用连接反应触发DNA酶和催化分子信标信号放大技术,提出了一种零背景、高灵敏的小分子检测方法。以ATP和NAD+作为分析模型,利用DNA连接酶对生物小分子的高特异性依赖,以连接反应触发劈开DNA酶的激活,然后与设计为分子信标的底物链杂交,在Zn2+存在的条件下进行DNA酶的酶切循环反应,实现了对生物小分子高灵敏、高特异性的荧光检测,其灵敏度和特异性均优于以前所报道的传感器。
     (3)基于纳米金和酶切循环双信号放大的生物传感器的研究。基于核酸外切酶和纳米金双重信号放大策略,在第7章提出了一种非标型、高灵敏、高特异性电化学DNA传感器。该传感器首先在均相中进行发夹型探针和目标DNA之间的杂交及酶切反应,避免了电极表面进行酶切所遇到的酶效率降低等缺点,而且该发夹型探针能够提供较好的碱基错配识别能力;然后将酶切产物序列与电极表面的发夹型捕获探针杂交,进一步提高了碱基错配识别能力;最后利用纳米金功能化的报告探针进行信号放大,以亚甲基蓝为电活性物质,实现了对目标DNA的高灵敏和高特异性电化学检测,检测限为0.6pM。
With the continuous development of the analytical science, various analysis and testing process in life sciences are increasingly needed the help of biosensing technology to obtain the required information. Due to many advantages such as good selectivity, high sensitivity, fast response, low cost and continuous on-line detection in complex system, biosensors have valuable applications in chemistry, biomedicine, environmental protection, food industry, medicine and military affairs. Ideally, biosensors for the target detection should have high detection sensitivity (low detection limit), high specificity (low interference), wide dynamic range, fast response time, and universal characteristics.
     Functional nucleic acids are short synthetic DNA and RNA sequences which have been isolated via a combinatorial biology technique known as in vitro selection, or a process also known as systematic evolution of ligands by exponential enrichment (SELEX). The functional nucleic acids can specifically bind a broad of analytes including small biomolecules, proteins, cancer cells as well as metal ions with high affinity. Typically, functional nucleic acids include two types of nucleic acid molecules, one type of them have been shown to perform catalytic reactions (called DNAzymes, or deoxyribozymes) like protein enzymes, and the other can bind to a specific target molecule (called aptamers) like antibodies. In the traditional understanding, the nucleic acids are only the storage and transfer carrier of genetic information. However, the discovery of functional nucleic acids has resulted in a breakthrough in such traditional sense, and provided an interesting alternative to biosensing system.
     One of the most important performances of biosensor is sensitivity, and it is very limited in further improving the sensitivity by simply using the conformational changes of the functional nucleic acid before and after bind to the target. In recent years, the design of new signal amplification method for ultrasensitive detection of target has attracted attentions of researchers. Two different strategies have been widely employed to improve the sensitivity of a sensor:lower the detection background and signal amplified detection. Recently, signal amplification technology has attracted more concerns due to the significant effect on improving sensitivity.
     Based on the above considerations and the reported literatures, in this doctoral thesis, several bioassay systems have been developed focused on new methods for enhancing the detection sensitivity of biosensors by using signal amplification technology. The details are summarized as follows:
     (1) Study on the biosensors based on gold nanoparticle signal amplification technology. Due to the large specific surface area, good biocompatibility and surface characteristics of nucleic acids of high load, a novel electrochemical label-free biosensor for Hg2+has been developed in chapter2based on the "T-Hg2+-T" specific interaction and the gold nanoparticle signal amplification technology. In the presence of Hg2+, the linker DNA hybridized with the electrode surface-tethered capture probe via the "T-Hg2+-T" specific interaction, and the gold nanoparticles functionalized reporter DNA subsequently hybridized with the linker. Methylene blue was selected as electrically active substances, which can specifically bind with guanine bases to form methylene blue-guanine complexes, resulting in a significant increase in the electrochemical signal. The proposed biosensor exhibits high sensitivity, high specificity, and a detection limit of0.5nM could be achieved for Hg2+, which makes the biosensor favorable for Hg2+assays in practical samples of very low concentration. Based on the distance dependent exponentially decreased enhancement of the EM (electromagnetic) field, in chapter3, the use of a nanoscale DNA-Au dendrimer as a signal amplifier was proposed for the design of functional DNA-based ultra-sensitive SERS biosensors. As a proof-of-concept, a Pb2+-dependent DNAzyme and the anti-adenosine aptamer was chosen to develop novel SERS biosensors to verify the feasibility of our DNA-Au dendrimer amplification strategy. For the detection of Pb2+the DNAzyme strand was immobilized on the electrode surface first, in the presence of Pb2+, the DNAzyme was activated and it cleaved the substrate section into two parts. The remaining oligonucleotide moiety on the electrode surface hybridized with the reporter DNA1and DNA2to form nanoscale junctions through layer by layer assembling. The DNA-Au dendrimer could then be formed to give a strong SERS signal, and a detection limit of0.1nM could be achieved for Pb2+. For the detection of adenosine, the SERS aptamer sensor was designed based on target-induced strand displacement. A thiolated DNA sequence was first immobilized on gold electrode surface as a capture probe, and then hybridized with the anti-adenosine aptamer. The introduction of target adenosine could trigger the release of the aptamer from the duplex. The free capture probe could then hybridize with the reporter DNA2and DNA1, thereby forming the DNA-Au dendrimer to trigger a remarkable SERS signal enhancement. A low detection limit of50nM was obtained with good selectivity.
     (2) Study on the biosensors based on enzymatic recycling signal amplification technology. Based on ssDNA-cleaved property of nicking endonuclease, and take advantage of the unique features of molecular beacons (MBs) such as high sensitivity and low fluorescent background, in chapter4, a new MB-based junction sensing system with highly sensitive DNA detection and a strong capability to identify SNPs was developed. In the presence of a target, the assistant probe, together with the target, can hybridize with the MB and open its hairpin structure to form a "Y" junction structure, as well as form the doublestranded recognition sequence for nicking endonuclease Nt.BbvCI. Once the MB is cleaved, it is dissociated from the sensing system, and fluorescence is restored. The released hybrid of the assistant probe with the target can then hybridize with another MB and trigger the second cycle of cleavage. Eventually, each hybrid of the assistant probe with the target can undergo many cycles to trigger the cleavage of many MBs, providing a true and efficient target-triggered enzymatic recycling amplification signal. Moreover, compared with the first-generation junction sensing system, our proposed sensing sytem also afforded a faster and more sensitive response, and a detection limit of5pM was obtained. In chapter5, by separating the molecular recognition module from the signal reporter to avoid DNAzyme modifications, and improves sensitivity through an endonuclease-based cascadic enzymatic signal amplification, we constructed a new fluorescent cascadic catalytic beacon sensing platform. An L-histidine-dependent DNAzyme was chosen as a model to construct the cascadic catalytic beacon. The unmodified unimolecular DNAzyme was linked by a polyT sequence which serves as a molecular recognition module for L-histidine, and a molecular beacon was selected as the signal reporter. The introduction of target resulted in the cleavage of DNAzyme, and the cleaved partial substrate is released from the DNAzyme and hybridized with the MB, the further using of nicking endonuclease resulted in signal amplification detection for the target. Under the optimized experimental conditions, the proposed sensing strategy provides a low detection limit of200nM with high selectivity. Due to the enzymatic recycling cleavage property, the DNAzyme also can be used to develop signal amplification technology. In chapter6, we proposed a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based signal amplification to develop a ligation-triggered DNAzyme cascade for small molecules detection. ATP and NAD+were chosen as analytical models to verify the feasibility of the CAMB sensing system. As two kinds of DNA ligases which specifically employ ATP and NAD+as cofactors, respectively, we employed the ligation to trigger DNAzyme cascade and realize zero-background signal. Then the activated DNAzyme could hybridize with substrate sequence which was designed as MB to form the CAMB, which was employed for amplified signal detection. The cycling and regenerating of DNAzyme could lead to a true enzymatic multiple turnovers of catalytic beacons. This combination of and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of100pM and50pM for ATP and NAD+, respectively, much lower than those of previously reported biosensors. Moreover, the developed DNAzyme cascades show significantly high selectivity towards the target cofactor (ATP or NAD+), and the target biological small molecule can be distinguished from its analogues.
     (3) Study on the biosensors based on dual signal amplification strategy that combines the gold nanoparticle with enzymatic recycling signal amplification technologies. In chapter7, a label-free electrochemical DNA biosensor with high sensitivity and selectivity has been reported by employing both gold nanoparticle and enzymatic recycling signal amplification technology. In the design, take advantage of the improved mismatch distinguishing ability of MB, the hairpin probe first hybridizes with target DNA to trigger the enzymatic recycling reaction in the presence of exonuclease Ⅲ, which could avoid the low enzymatic reaction efficiency, effectively. Then, the cleaved sequences hybridize with the hairpin capture probe, which can further improve the mismatch distinguishing ability of the sensing system. Finally, the gold nanoparticles functionalized reporter DNA hybridized with the opened capture probe to amplify the electrochemical signal. Methylene blue was selected as electrically active substances as the sensor in chapter2, and the results demonstrated that the presented dual signal amplification strategy was highly sensitive and specific with a detection limit of0.6pM for target DNA.
引文
[1]李松林,崔建明.材料导报,2006,20(4):38-40
    [2]钱军民,奚西峰,黄海燕.石化技术与应用,2002,20(5):333-336
    [3]许春向.生物传感器及其应用.北京:科学出版社,1993,1-12
    [4]蒋中华,马立人.化学传感器和生物传感器的研究进展.军事医学科学院院刊,1995,19(4):306-309
    [5]Watson J D, Crick F H. C. A structure for deoxyribose nucleic acid. Nature, 1953,171(4356):737-738
    [6]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249(4968): 505-510
    [7]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346(6287):818-822
    [8]Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA. Chemistry & Biology,1994,1(4):223-229
    [9]Breaker R R. DNA enzymes. Nature Biotechnology,1997,15(5):427-431
    [10]Silverman S K. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Research,2005,33(19): 6151-6163
    [11]Wilson D S, Szostak J W. In vitro selection of functional nucleic acids. Annual Review of Biochemistry,1999,68:611-647
    [12]Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009, 109(5):1948-1998
    [13]Robertson D L, Joyce G F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature,1990,344(6265):467-468
    [14]Ellington A D, Szostak J W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature,1992, 355(6363):850-852
    [15]Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(Ⅱ) in aqueous solutions. Angewandte Chemie International Edition,2004,43(33): 4300-4302
    [16]Miyake Y, Togashi H, Tashiro M, et al. MercuryⅡ-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes. Journal of the American Chemical Society,2006,128(7):2172-2173
    [17]Ono A, Cao S, Togashi H, et al.2008. Specific interactions between silver(Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes. Chemical Communications, 2008,39:4825-4827
    [18]Guschlbauer W, Chantot J F, Thiele D. Four-stranded nucleic acid structures 25 years later:from guanosine gels to telomere DNA. Journal of Biomolecular Structure and Dynamics,1990,8(3):491-511
    [19]Smirnov I, Shafer R H. Lead is unusually effective in sequence-specific folding of DNA. Journal of Molecular Biology,2000,296(1):1-5
    [20]Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination. Nature Biotechnology,1998,16(1):49-53
    [21]Tyagi S, Kramer F R. Molecular beacons:probes that fluoresce upon hybridization. Nature Biotechnology,1996,14(3):303-308
    [22]Tyagi S, Marras S A, Kramer F R. Wavelength-shifting molecular beacons. Nature Biotechnology,2000,18(11):1191-1196
    [23]Song S, Wang L, Li J, et al. Aptamer-based biosensors. Trends in Analytical Chemistry,2008,27(2):108-117
    [24]Jhaveri S D, Kirby R, Conrad R, et al. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. Journal of the American Chemical Society,2000,122(11):2469-2473
    [25]Lu Y. New transition-metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. Chemistry-A European Journal,2002,8(20): 4589-4596
    [26]White R R, Sullenger B A. Rusconi C P. Developing aptamers into theraoeutics. Journal of Clinical Investigation,2000,106(8):929-934
    [27]Navani N K, Li Y. Nucleic acid aptamers and enzymes as sensors. Current Opinion in Chemical Biology,2006,10(3):272-281
    [28]O'Sullivan C K. Aptasensors-the future of biosensing. Analytical and Bioanalytical Chemistry,2002,372(1):44-48
    [29]Huizenga D E, Szostak J W. A DNA aptamer that binds adenosine and ATP. Biochemistry,1995,34(2):656-665
    [30]Green L S, Jellinek D, Jenison R, et al. Inhibitory DNA Ligands to platelet-derived growth factor B-chain. Biochemistry,1996,35(45): 14413-14424
    [31]Jenison R D, Gill S C, Pardi A, et al. Highresolution molecular discrimination by RNA. Science,1994,263(5152):1425-1429
    [32]Wang Z D, Lee J H, Lu Y. Label-free colorimetric detection of lead ionswith a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Advanced Materials,2008,20(17):3263-3267
    [33]Radi A-E, Sanchez J L A, Baldrich E, et al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society,2006,128(1):117-124
    [34]Mei S H J, Liu Z, Brennan J D, et al. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. Journal of the American Chemical Society,2003,125(2):412-420
    [35]Zhang L, Li T, Li B, et al. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury ion. Chemical Communications, 2010,46(9):1476-1478
    [36]Ono A, Cao S, Togashi H, et al. Specific interactions between silver(Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes. Chemical Communications,2008,39: 4825-4827
    [37]Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet potassium ion complex formation. Journal of the American Chemical Society,2002,124(48):14286-14287
    [38]Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48): 17278-17283
    [39]Huang C C, Huang Y F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry,2005,77(17):5735-5741
    [40]Xiao Y, Rowe A A, Plaxco K W. Electrochemical detection of parts-per-billion lead via an electrodebound DNAzyme assembly. Journal of the American Chemical Society,2007,129(2):262-263
    [41]Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor. Analytical Chemistry,2002,74 (17):4488-4495
    [42]Hu J, Zheng P C, Jiang J H, et al. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Analytical Chemistry,2009,81(1):87-93
    [43]Wilson R. The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews,2008,37(9):2028-2045
    [44]El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research,2001, 34(4):257-264
    [45]Daniel M C, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004,104(1):293-346
    [46]Rosi N L,Mirkin C A. Nanostructures in biodiagnostics. Chemical Reviews, 2005,105(4):1547-1562
    [47]Song S, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews,2010,39(11):4234-4243
    [48]Alivisatos A P, Johnsson K P, Peng X, et al. Organization of "nanocrystal molecules" using DNA. Nature,1996,382(6592):609-611
    [49]Mirkin C A, R L Letsinger, R C Mucic, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996, 382(6592):607-609
    [50]Kim Y, Cao Z, Tan W. Molecular assembly for high-performance bivalent nucleic acid inhibitor. Proceedings of the National Academy of Sciences of the United States of America,2008,105 (15):5664-5669
    [51]Huang Y F, Chang H T, Tan W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Analytical Chemistry,2008,80 (3):567-572
    [52]Fei Y, Jin X Y, Wu Z S, et al. Sensitive and selective DNA detection based on the combination of hairpin-type probe with endonuclease/GNP signal amplification using quartz-crystal-microbalance transduction. Analytica Chimica Acta,2011,691, (1-2):95-102
    [53]Chen Q, Tang W, Wang D, et al. Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles. Biosensors and Bioelectronics. 2010,26(2):575-579
    [54]Chen Q, Wu X, Wang D, et al. Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(Ⅱ) ions with high sensitivity and tunable dynamic range. Analyst,2011,136(12):2572-2577
    [55]Zhang J, Song S, Zhang L, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS):effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. Journal of the American Chemical Society,2006,128(26): 8575-8580
    [56]Cao Y C, Jin R, Mirkin C A. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science,2002,297(5586):1536-1540
    [57]Polsky R, Gill R, Kaganovsky L, et al Nucleic acid-functionalized Pt nanoparticles:catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry,2006,78(7):2268-2271
    [58]Shen L, Chen Z, Li Y, et al. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Analytical Chemistry,2008,80(16): 6323-6328
    [59]Zhang S, Xia J, Li X. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Analytical Chemistry,2008,80(22): 8382-8388
    [60]Wang J, Meng W Y, Zheng X F, et al. Combination of aptamer with gold nanoparticles for electrochemical signal amplification:Application to sensitive detection of platelet-derived growth factor. Biosensors and Bioelectronics,2009, 24(6):1598-1602
    [61]Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical "turn-on" label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier. Chemical Communications,2009,37:5633-5635
    [62]Zhu Z, Su Y, Li J, et al. Highly sensitive electrochemical sensor for mercury(Ⅱ) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Analytical Chemistry,2009,81(18): 7660-7666
    [63]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301(5641):1884-1886
    [64]Nam J M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society,2004,126(19): 5932-5933
    [65]Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science,1997,275(5303):1102-1106
    [66]Kneipp J, Kneipp H, Kneipp K. SERS—A single-molecule and nanoscale tool for bioanalytics. Chemical Society Reviews,2008,37(5):1052-1060
    [67]Bonham A J, Braun G, Pavel L, et al. Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. Journal of the American Chemical Society,2007,129(47):14572-14573
    [68]Han X, Kitahama K, Itoh T, et al. Protein-mediated sandwich strategy for surface-enhanced Raman scattering:application to versatile protein detection. Analytical Chemistry,2009,81(9):3350-3355
    [69]Wang Y, Wei H, Li B, et al. SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chemical Communications, 2007,48:5220-5222
    [70]Hu J, Zheng P C, Jiang J H, et al. Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Analyst,2010,135(5):1084-1089
    [71]Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes. Science,2000,289(5485):1757-1760
    [72]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [73]Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles:catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry,2006,78(7):2268-2271
    [74]Li Y Y, Zhang C, Li B S, et al. Ultrasensitive densitometry detection of cytokines with nanoparticle-modified aptamers. Clinical Chemistry,2007,53(6): 1061-1066
    [75]Jana N R, Ying J Y. Synthesis of functionalized Au nanoparticles for protein detection. Advanced Materials,2008,20(3):430-434
    [76]Wang Y, Li D, Ren W, et al. Ultrasensitive colorimetric detection ofprotein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chemical Communications,2008,22:2520-2522
    [77]Cao Y C, Jin R, Mirkin C A. Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science,2002,297(5586):1536-1540
    [78]Frenkel J, Dorfman J. Spontaneous and induced magnetization in ferromagnetic bodies. Nature,1930,126(3173):274-275
    [79]Vazquez M, C Luna, M P Morales, et al. Magnetic nanoparticles:synthesis, ordering and properties. Physica B:Condensed Matter,2004,354(1-4):71-79
    [80]Tartaj P, Gonzalez-Carreno T, Serna C J. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Advanced Materials,2001,13(21):1620-1624
    [81]Battle X, Labarta A. Finite-size effects in fine particles:magnetic and transport properties. Journal of Physics D:Applied Physics,2002,35(6):R15-R42
    [82]Lewin M, Carlesso N, Tung C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology,2000,18(4):410-414
    [83]Harisinghani M G, Barentsz J, Hahn P F, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. The New England Journal of Medicine,2003,348(25):2491-2499
    [84]Pankhurst Q A, Connolly J, Jones S K, et al. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D:Applied Physics,2003, 36(13):R167-R181
    [85]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials,2005,26(18): 3995-4021
    [86]Weissleder R, Bogdanov A, Neuwelt E A, et al. Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Reviews,1995,16(2-3):321-334
    [87]Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry,2007,79(4):1466-1473
    [88]Zhu D, Tang Y, Xing D, et al. An electrochemiluminescence-based bio bar code method. Analytical Chemistry,2008,80(10):3566-3571
    [89]Pan Y, Guo M, Nie Z, et al. Selective collection and detection of leukemia cells on a magnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads. Biosensors and Bioelectronics,2010,25(7):1609-1614
    [90]Trewyn B G, Slowing I I, Giri S, et al. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Accounts of Chemical Research,2007,40(9):846-853
    [91]Yao G, Wang L, Wu Y, et al. FloDots:luminescent nanoparticles. Analytical and Bioanalytical Chemistry,2006,385(3):518-524
    [92]Zhao X, Tapec-Dytioco R, Tan W. Ultrasensitive DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles. Journal of the American Chemical Society,2003,125(38):11474-11475
    [93]Zhao X, Hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America,2004,101(42): 15027-15032
    [94]Deng T, Li J, Zhang L L, et al. A sensitive fluorescence anisotropy method for the direct detection of cancer cells in whole blood based on aptamer-conjugated near-infrared fluorescent nanoparticles. Biosensors and Bioelectronics,2010,25 (7):1587-1591
    [95]Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry,2006, 78(9):2918-2924
    [96]Smith J E, Medley C D, Tang Z, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Analytical Chemistry,2007, 79(8):3075-3082
    [97]Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials,2005,4(6):435-446
    [98]Shan Y, Xu J J, Chen H Y. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chemical Communications,2009,8: 905-907
    [99]Shan Y, Xu J J, Chen H Y. Opto-magnetic interaction between electrochemiluminescent CdS:Mn film and Fe3O4 nanoparticles and its application to immunosensing. Chemical Communications,2010,46(23): 4187-4189
    [100]Bruchez M, Moronne J M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016
    [101]Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology,2004,22(8):969-976
    [102]Bakalova R, Zhelev Z, Ohba H, et al. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. Journal of the American Chemical Society,2005,127(26):9328-9329
    [103]Yan J, Hu M, Li D, et al. A nano- and micro-integrated protein chip based on quantum dot probes and a microfluidic network. Nano Research,2008,1(6): 490-496
    [104]Hu M, Yan J, He Y, et al. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano,2010,4(1):488-494
    [105]Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor. Nature Materials,2005,4(11):826-831
    [106]Bailey V J, Easwaran H, Zhang Y, et al. MS-qFRET:A quantum dot-based method for analysis of DNA methylation. Genome Research,2009,19: 1455-1461
    [107]Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Journal of the American Chemical Society,2006,128(7):2228-2229
    [108]Huang H, Zhu J J. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin. Biosensors and Bioelectronics,2009, 25(4):927-930
    [109]Yang R H, Tang Z W, Yan J L, et al. Noncovalent assembly of carbon nanotubes and single-stranded dna:An effective sensing platform for probing biomolecular interactions. Analytical Chemistry,2008,80(19):7408-7413
    [110]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules. Angewandte Chemie International Edition,2009,48(26):4785-4787
    [111]Ou L J, Liu S J, Chu X, et al. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Analytical Chemistry,2009,81(23):9664-9673
    [112]Nielsen L J, Olsen L F, Ozalp V C. Aptamers embedded in polyacrylamide nanoparticles:a tool for in vivo metabolite sensing. ACS Nano,2010,4(8): 4361-4370
    [113]Kamidate T, Komatsu K, Tani H, et al. Estimation of the membrane permeability of liposomes via use of eosin Y chemiluminescence catalysed by peroxidase encapsulated in liposomes. Luminescence,2007,22(3):236-240
    [114]Zhan W, Bard A J. Electrogenerated chemiluminescence.83. Immunoassay of human C-reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels. Analytical Chemistry,2007,79(2):459-463
    [115]Kamidate T, Kikuchi N, Ishida A, et al. Determination of peroxidase encapsulated in liposomes using homogentisic acid y-lactone chemiluminescence. Analytical Sciences,2005,21(6):701-704
    [116]Ho J A, Hsu H W. Procedures for preparing escherichia coli O157:H7 immunoliposome and its application in liposome immunoassay. Analytical Chemistry,2003,75(16):4330-4334
    [117]Ho J A, Wauchope R D. A strip liposome immunoassay for aflatoxin B1. Analytical Chemistry,2002,74(7):1493-1496
    [118]Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for Dengue Virus Detection:Sensitive, Rapid, and Serotype Specific. Analytical Chemistry,2002, 74(6):1442-1448
    [119]Alfonta L, Willner I. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GMl-functionalized liposomes. Analytical Chemistry,2001,73(21):5287-5295
    [120]Rosenqvist E, Vistnes A I. Immune lysis of spin label loaded liposomes incorporating cardiolipin; a new sensitive method for detecting anti-cardiolipin antibodies in syphilis serology. Journal of Immunological Methods,1977,15(2): 147-155
    [121]Patolsky F, Lichtenstein A, Willner I. Amplified Microgravimetric Quartz-Crystal-Microbalance Assay of DNA Using Oligonucleotide-Functionalized Liposomes or Biotinylated Liposomes. Journal of the American Chemical Society,2000,122(2):418-419
    [122]Yun K, Kobatake E, Haruyama T, et al. Use of a quartz crystal microbalance to monitor immunoliposome-antigen interaction. Analytical Chemistry,1998, 70(2):260-264
    [123]Wink T, Van Zuilen S J, Bult A, et al. Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry. Analytical Chemistry,1998,70(5):827-832
    [124]Jeon J, Lim D K, Nam J M. Functional nanomaterial-based amplified bio-detection strategies. Journal of Materials Chemistry,2009,19(15): 2107-2117
    [125]Guo Q, Yang X, Wang K, et al. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Research,2009,37(3):e20
    [126]Ding C, Li X, Ge Y, et al. Fluorescence detection of telomerase activity in cancer cells based on isothermal circular strand-displacement polymerization reaction. Analytical Chemistry,2010,82(7):2850-2855
    [127]He J L, Wu Z S, Zhou H, et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Analytical Chemistry,2010, 82(4):1358-1364
    [128]Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence. Analytical Chemistry,2011,83(8):3050-3057
    [129]Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science,1988,241(4869):1077-1080
    [130]Qi X, Bakht S, Devos K M, et al. L-RCA (ligation-rolling circle amplification): A general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Research,2001,29(22):e116
    [131]Li J, Deng T, Chu X, et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Analytical Chemistry,2010,82(7):2811-2816
    [132]Yang L, Fung C W, Cho E J, et al. Real-time rolling circle amplification for protein detection. Analytical Chemistry,2007,79(9):3320-3329
    [133]Patolsky F, Weizmann Y, Willner I. Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of Viral DNA. Journal of the American Chemical Society,2002,124(5):770-772
    [134]Cheglakov Z, Weizmann Y, Basnar B, et al. Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes. Organic & Biomolecular Chemistry, 2007,5(2):223-225
    [135]Huang Y, Nie X M, Gan S L, et al. Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification. Analytical Biochemistry,2008,382(1):16-22
    [136]Giusto D A D, Wlassoff W A, Gooding J J, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Research,2005, 33(6):e64-e70
    [137]Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification:A platform for electrochemical detection of protein. Analytical Chemistry,2007, 79(19):7492-7500
    [138]Morgan R D, Calvet C, Demeter M, et al. Characterization of the specific DNA nicking activity of restriction endonuclease N.BstNBI. Biological Chemistry, 2000,381(11):1123-1125
    [139]Higgins L S, Besnier C, Kong H. The nicking endonuclease N.BstNBI is closely related to Type Ⅱs restriction endonucleases Mlyl and Plel. Nucleic Acids Research,2001,29(12):2492-2501
    [140]Wang H, Hays J B. Preparation of DNA substrates for in vitro mismatch repair. Molecular Biotechnology,2000,15(2):97-104
    [141]Nakayama S, Yan L, Sintim H O. Junction probes-sequence specific detection of nucleic acids via template enhanced hybridization processes. Journal of the American Chemical Society,2008,130,12560-12561
    [142]Li J J, Chu Y, Lee B Y, et al. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Research,2008,36(6):e36
    [143]Chen J, Zhang J, Li J, et al. An ultrahighly sensitive and selective electrochemical DNA sensor via nicking endonuclease assisted current change amplification. Chemical Communications,2010,46(32):5939-5941
    [144]Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by an autonomous DNA machine. Angewandte Chemie International Edition,2006, 45(44):7384-7388
    [145]Beissenhirtz M K, Elnathan R, Weizmann Y, et al. The aggregation of Au Nanoparticles by an Autonomous DNA machine detects viruses. Small,2007, 3(3):375-379
    [146]Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society, 2007,129 (13):3814-3815
    [147]Willner I, Cheglakov Z, Weizmann Y, et al. Analysis of DNA and single-base mutations using magnetic particles for purification, amplification and DNAzyme detection. Analyst,2008,133(7):923-927
    [148]Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angewandte Chemie International Edition,2008,47(21):3927-3931
    [149]Zhu C, Wen Y, Li D, et al. Inhibition of the in vitro replication of dna by an aptamer-protein complex in an autonomous DNA machine. Chemistry-A European Journal,2009,15(44):11898-11903
    [150]Connolly A R, Trau M. Isothermal detection of DNA by beacon-assisted detection amplification. Angewandte Chemie International Edition,2010,49(15): 2720-2723
    [151]Bi S, Zhang J, Zhang S. Ultrasensitive and selective DNA detection based on nicking endonuclease assisted signal amplification and its application in cancer cell detection. Chemical Communications,2010,46(30):5509-5511
    [152]Xue L, Zhou X, Xing D. Highly sensitive protein detection based on aptamer probe and isothermal nicking enzyme assisted fluorescence signal amplification. Chemical Communications,2010,46(39):7373-7375
    [153]Guo Y, Jia X, Zhang S. DNA cycle amplification device on magnetic microbeads for determination of thrombin based on graphene oxide enhancing signal-on electrochemiluminescence. Chemical Communications,2011,47(2): 725-727
    [154]Jie G, Wang L, Yuan J, et al. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS quantum dot nanoclusters. Analytical Chemistry,2011,83(10):3873-3880
    [155]Zuo X, Xia F, XiaoY, et al. Sensitive and selective amplified fluorescence DNA detection based on exonuclease Ⅲ-aided target recycling. Journal of the American Chemical Society,2010,132(6):1816-1818
    [156]Hsieh K, Xiao Y, Soh H T. Electrochemical DNA Detection via Exonuclease and Target-Catalyzed Transformation of Surface-Bound Probes. Langmuir,2010, 26(12):10392-10396
    [157]Cui L, Ke G, Wang C, et al. A cyclic enzymatic amplification method for sensitive and selective detection ofnucleic acids. Analyst,2010,135(8): 2069-2073
    [158]Zhao C, Wu L, Ren J, et al. A label-free fluorescent turn-on enzymatic amplification assay for DNA detection using ligand-responsive G-quadruplex formation. Chemical Communications,2011,47(19):5461-5463
    [159]Dougan J A, MacRae D, Graham D, et al. DNA detection using enzymatic signal production and SERS. Chemical Communications,2011,47(16):4649-4651
    [160]Sando S, Sasaki T, Kanatani K, et al. Amplified Nucleic Acid Sensing Using Programmed Self-Cleaving DNAzyme. Journal of the American Chemical Society,2003,125(51):15720-15721
    [161]Tian Y, Mao C. DNAzyme amplification of molecular beacon signal. Talanta, 2005,67(3):532-537
    [162]Sun C, Zhang L, Jiang J, et al. Electrochemical DNA biosensor based on proximity-dependent DNA ligation assays with DNAzyme amplification of hairpin sub strate signal. Biosensors and Bioelectronics,2010,25(11): 2483-2489
    [163]Sun C, Liu X, Feng K, et al. An aptazyme-based electrochemical biosensor for the detection of adenosine. Analytica Chimica Acta,2010,669(1-2):87-93
    [164]Wilson S J, Steenhuisen F, Pacyna J M, et al. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories. Atmospheric Environment,2006,40(24):4621-4623
    [165]Zhang X B, Guo C C, Li Z Z, et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Analytical Chemistry,2002,74(4):821-825
    [166]Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion. Chemical Reviews,2008,108(9):3443-3480
    [167]Chen P, He C. A general strategy to convert the merr family proteins into highly sensitive and selective fluorescent biosensors for metal ions. Journal of the American Chemical Society,2004,126(3):728-729
    [168]Wegner S V, Okesli A, Chen P, et al. Design of an emission ratiometric biosensor from merr family proteins:A sensitive and selective sensor for Hg2+ Journal of the American Chemical Society,2007,129(12):3474-3475
    [169]Huang C C, Yang Z, Lee K H, et al. Multiplexed analysis of Hg2+and Ag+ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angewandte Chemie International Edition,2007,46(42): 6824-6828
    [170]Darbha G K, Singh A K, Rai U S, et al. One-Step, room temperature, colorimetric detection of mercury (Hg2+) Using DNA/nanoparticle conjugates. Journal of the American Chemical Society,2008,130(11):8038-8043
    [171]Miyake Y, Togashi H, Tashiro M, et al. MercuryⅡ-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes. Journal of the American Chemical Society,2006,128(7):2172-2173
    [172]Tanaka Y, Oda S, Yamaguchi H, et al.15N-15N J-coupling across HgⅡ:direct observation of HgⅡ-mediated T-T base pairs in a DNA duplex. Journal of the American Chemical Society,2007,129(2):244-245
    [173]Liu X, Tang Y, Wang L, et al. Optical detection of mercury(Ⅱ) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Advanced Materials,2007,19(11):1471-1474
    [174]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition,2007,46(22):4093-4096
    [175]Liu C W, Hsieh Y T, Huang C C, et al. Detection ofmercury(Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chemical Communications,2008,19:2242-2244
    [176]Xue X J, Wang F, Liu X G. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society,2008,130(11):3244-3245
    [177]Lee J S, Mirkin C A. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Analytical Chemistry,2008,80(17): 6805-6808
    [178]Wang H, Wang Y X, Jin J Y, et al. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(Ⅱ) ions in aqueous solution. Analytical Chemistry,2008,80(23):9021-9028
    [179]Liu J, Lu Y. Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angewandte Chemie International Edition,2007,46(40):7587-7590
    [180]Wang Z D, Lee J H, Lu Y. Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chemical Communications,2008,45:6005-6007
    [181]Chiang C K, Huang C C, Liu C W, et al. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(Ⅱ) in aqueous solution. Analytical Chemistry,2008,80(10):3716-3721
    [182]Wang J, Liu B. Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green Ⅰ. Chemical Communications,2008,39:4759-4761
    [183]He S, Li D, Zhu C, et al. Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. Chemical Communications,2008,40: 4885-4887
    [184]Ye B C, Yin B C. Highly sensitive detection of mercury(Ⅱ) Ions by fluorescence polarization enhanced by gold nanoparticles. Angewandte Chemie International Edition,2008,47(44):8386-8389
    [185]Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry,2007,79(7):2933-2939
    [186]Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification:A platform for electrochemical detection of protein. Analytical Chemistry,2007, 79(19):7492-7500
    [187]Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society,2007, 129(50):15448-15449
    [188]Huang Y, Zhang Y L, Xu X, et al. Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection. Journal of the American Chemical Society,2009,131(7):2478-2480
    [189]Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International Edition,2005,44(34):5456-5459
    [190]Lai R Y, Lagally E T, Lee S H, et al. Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor. Proceedings of the National Academy of Science of the United States of America,2006, 103(11):4017-4021
    [191]Xiao Y, Qu X, Plaxco K W, et al. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. Journal of the American Chemical Society,2007,129(39): 11896-11897
    [192]Radi A E, Sanchez J L A, Baldrich E, et al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society,2006,128(1):117-124
    [193]Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society,2007,129(5):1042-1043
    [194]Ferapontova E E, Olsen E M and Gothelf K V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society,2008,130(13):4256-4258
    [195]Nam J M, Thaxtonand C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301(5641):1884-1886
    [196]Hill H D, Vega R A, Mirkin C A. Nonenzymatic detection of bacterial genomic DNA using the bio bar code assay. Analytical Chemistry,2007,79(23): 9218-9223
    [197]Tuite E, Norden B. Sequence-specific interactions of methylene blue with polynucleotides and DNA:A spectroscopic study. Journal of the American Chemical Society,1994,116(17):7548-7556
    [198]Rohs R, Sklenar H, Lavery R, et al. Methylene blue binding to DNA with alternating GC Base sequence:A modeling study. Journal of the American Chemical Society,2000,122(12):2860-2866
    [199]Grabar K C, Freeman R G, Hommer M B, et al. Preparation and characterization of Au colloid monolayers. Analytical Chemistry,1995,67(4):735-743
    [200]Lia B, Wang Y, Wei H, et al. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model. Biosensors and Bioelectronics,2008,23(7):965-970
    [201]Wang Z, Lu Y. Functional DNA directed assembly of nanomaterials for biosensing. Journal of Materials Chemistry,2009,19(13):1788-1798
    [202]Xiang Y, Tong A, Lu Y. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. Journal of the American Chemical Society,2009,131(42):15352-15357
    [203]Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journal of the American Chemical Society,2007,129(18):5804-5805
    [204]Chen J W, Jiang J H, Gao X, et al. A New aptameric biosensor for cocaine based on surface-enhanced raman scattering spectroscopy. Chemistry-A European Journal,2008,14(27):8374-8382
    [205]Fabris L, Dante M, Nguyen T Q, et al. SERS aptatags:new responsive metallic nanostructures for heterogeneous protein detection by surface enhanced raman spectroscopy. Advanced Functional Materials,2008,18(17):2518-2525
    [206]Wang Y L, Lee K, Irudayaraj J. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chemical Communications,2010,46(4):613-615
    [207]Ochsenkuhn M A, Campbell C J. Probing biomolecular interactions using surface enhanced Raman spectroscopy:label-free protein detection using a G-quadruplexDNA aptamer. Chemical Communications,2010,46(16): 2799-2801
    [208]Fabris L, Dante M, Braun G, et al. A heterogeneous PNA-based SERS method for DNA detection. Journal of the American Chemical Society,2007,129(19): 6086-6087
    [209]Braun G, Lee S J, Dante M, et al. Surface-enhanced raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. Journal of the American Chemical Society,2007,129(20):6378-6379
    [210]Qian X, Zhou X, Nie S. Surface-enhanced raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. Journal of the American Chemical Society,2008,130(45):14934-14935
    [211]Huh Y S, Lowe A J, Strickland A D, et al. Surface-enhanced raman scattering based ligase detection reaction. Journal of the American Chemical Society,2009, 131(6):2208-2213
    [212]Driskell J D, Kwarta K M, Lipert R J, et al. Low-level detection of viral pathogens by a surface-enhanced raman scattering based immunoassay. Analytical Chemistry,2005,77(19):6147-6254
    [213]S. Zou and G. C. Schatz. Coupled plasmonic plasmon/photonic resonance effects in SERS. Topics in Applied Physics,2006,103:67-85
    [214]Eisler R. Health risks of gold miners:a synoptic review. Environmental Geochemistry and Health,2003,25(3):325-345
    [215]Wang Q, Kim D, Dionysiou D D, et al. Sources and remediation for mercury contamination in aquatic systems--a literature review. Environmental Pollution, 2004,131(2):323-336
    [216]Tchounwou P B, Ayensu W K, Ninashvili N, et al. Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology,2003,18(3):149-175
    [217]Dieguez-Acuna F J, Ellis M E, Kushleika J, et al. Nuclear factor activity determines the sensitivity of kidney epithelial cells to apoptosis:implications for mercury-induced renal failure. Toxicological Sciences,2004,82(1):114-118
    [218]Guallar E, Sanz-Gallardo M L, Van't Veer P, et al. Heavy metals and myocardial infarction study group (2002) mercury, fish oils, and the risk of myocardial infarction. The New England Journal of Medicine,2002,347(22):1747-1754
    [219]Onyido I, Norris A R, Buncel E. Biomolecule-mercury interactions:modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chemical Reviews,2004,104(12):5911-5930
    [220]Lan T, Furuya K, Lu Y. A highly selective lead sensor based on a classic lead DNAzyme. Chemical Communications,2010,46(22):3896-3898
    [221]Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of the American Chemical Society,2003,125(16):4771-4778
    [222]Elbaz J, Moshe M, Shlyahovsky B, et al. Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: a paradigm for DNA sensors and aptasensors. Chemistry-A European Journal, 2009,15(14):3411-3418
    [223]Irizarry K, Kustanovich V, Li C, et al. Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nature Genetics,2000,26(2):233-236
    [224]Sachidanandam R, Weissman D, Schmidt S. C, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature,2001,409(6822):928-933
    [225]Kim S, Misra A. SNP genotyping:technologies and biomedical applications. Annual Review of Biomedical Engineering,2007,9:289-320
    [226]Saiki R K, Gelfand D H, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science,1988, 239(4839):487-491
    [227]Lie Y S, Petropoulos C J. Advances in quantitative PCR technology:5'nuclease assays. Current Opinion in Biotechnology,1998,9(1):43-48
    [228]Kiesling T, Cox K, Davidson E A, et al. Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Research,2007,35(18):e117
    [229]Xu W, Xue X, Li T, et al. Ultrasensitive and Selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angewandte Chemie International Edition,2009,48(37):6849-6852
    [230]Connolly A R, Trau M. Isothermal detection of DNA by beacon-assisted detection amplification. Angewandte Chemie International Edition 2010,49(15): 2720-2723
    [231]Li Y, Tseng Y D, Kwon S Y, et al. Controlled assembly of dendrimer-like DNA. Nature Materials,2004,3(1):38-42
    [232]Li Y, Hong Y T, Luo D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nature Biotechnology,2005,23(7): 885-889
    [233]Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy of Sciences of the United States of America,1999,96(11):6171-6176
    [234]Kostrikis L G, Tyagi S, Mhlanga M M, et al. Spectral genotyping of human alleles. Science,1998,279(5354):1228-1229
    [235]Tan W, Fang X, Li J, et al. Molecular beacons:a novel DNA probe for nucleic acid and protein studies. Chemistry-A European Journal.2000,6(7):1107-1111
    [236]Tan W, Wang K, Drake T J. Molecular beacons. Current Opinion in Chemical Biology,2004,8(5):547-553
    [237]Tyagi S. Imaging intracellular RNA distribution and dynamics in living cells. Nature Methods,2009,6(5):331-338
    [238]Wang K, Tang Z, Yang C J, et al. Molecular engineering of DNA:molecular beacons. Angewandte Chemie International Edition,2009,48(5):856-870
    [239]Wang D Y, Sen D. A Novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate. Journal of Molecular Biology,2001,310(4):723-734
    [240]Wang D Y, Lai B H Y, Sen D. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. Journal of Molecular Biology, 2002,318(1):33-43
    [241]Santoro S W, Joyce, G. F. A general purpose RNA-cleaving DNA□enzyme. Proceedings of the National Academy of Sciences of the United States of America,1997,94(9):4262-4266
    [242]Breaker R R. DNA enzymes. Nature Biotechnology,1997,15(5):427-431
    [243]Breaker R R. DNA aptamers and DNA enzymes. Current Opinion in Chemical Biology 1997,1(1):26-31
    [244]Sen D, Geyer C R. DNA enzymes. Current Opinion in Chemical Biology 1998, 2(6):680-687
    [245]Achenbach J C, Chiuman W, Cruz R P G, et al. DNAzymes:from creation in vitro to application in vivo. Current Pharmaceutical Biotechnology,2004,5(4): 312-336
    [246]Liu J, Brown A K, Meng X, et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proceedings of the National Academy of Sciences of the United States of America,2007,104(7): 2056-2061
    [247]Lu Y. New transition ion-dependent catalytic DNA and their applications as efficient RNA nucleasem and as sensitive metal ion sensors. Chemistry-A European Journal,2002,8(20):4588-4596
    [248]DeRose V J. Metal ion binding to catalytic RNA molecules. Current Opinion in Structural Biology,2003,13(3):317-324
    [249]Freisinger E, Sigel R K O. From nucleotides to ribozymes—A comparison of their metal ion binding properties. Coordination Chemistry Reviews,2007, 251(13-14):1834-1851
    [250]Sigel R K O, Pyle A M. Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chemical Reviews,2007,107(1): 97-113
    [251]Lu Y, Liu, J. Functional DNA nanotechnology:emerging applications of DNAzymes and aptamers. Current Opinion in Biotechnology,2006,17(6): 580-588
    [252]Navani N K, Li Y. Nucleic acid aptamers and enzymes as sensors. Current Opinion in Chemical Biology,2006,10(3):272-281
    [253]Willner I, Shlyahovsky B, Zayats M, et al. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chemical Society Reviews,2008, 37(6):1153-1165
    [254]Lu Y, Liu J. Smart nanomaterials inspired by biology:dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Accounts of Chemical Research,2007,40 (5):315-323
    [255]Li, J, Lu, Y. A Highly Sensitive and Selective Catalytic DNA Biosensor for Lead Ions. Journal of the American Chemical Society 2000,122(42): 10466-1046
    [256]Yim T J, Liu J, Lu Y, et al. Highly active and stable DNAzyme-carbon nanotube hybrids. Journal of the American Chemical Society,2005,127(35): 12200-12201
    [257]Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ Ions in aqueous solution with high sensitivity and selectivity. Journal of the American Chemical Society,2007,129(32):9838-9839
    [258]Liu J, Lu Y. Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods in Molecular Biology,2006,335(Ⅶ):275-288
    [259]Wang H, Kim Y, Liu H, et al. Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. Journal of the American Chemical Society,2009, 131(23):8221-8226
    [260]Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22): 6642-6643
    [261]Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. Journal of the American Chemical Society,2004,126(39):12298-12305
    [262]Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. Journal of the American Chemical Society,2005, 127(36):12677-12683
    [263]Lee J H, Wang Z, Liu J, et al. Highly sensitive and selective colorimetric sensors for uranyl (UO22+):development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. Journal of the American Chemical Society,2008,130(43):14217-14226
    [264]Moshe M, Elbaz J, Willner I. Sensing of UO22+ and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. Nano Letters,2009,9(3):1196-1200
    [265]Elbaz J, Shlyahovsky B, Willner I. A DNAzyme cascade for the amplified detection of Pb2+ ions or L-histidine. Chemical Communications,2008,13: 1569-1571
    [266]Liu Z, Mei S H J, Brennan J D, et al. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. Journal of the American Chemical Society,2003,125(25):7539-7545
    [267]Zuo X, Xia F, Xiao Y, et al. Sensitive and selective amplified fluorescence DNA detection based on exonuclease Ⅲ-aided target recycling. Journal of the American Chemical Society,2010,132(6):1816-1818
    [268]Lu C H, Li J, Lin M H, et al. Amplified aptamer-based assay through catalytic recycling of the analyte. Angewandte Chemie International Edition,2010, 49(45):8454-8457
    [269]Creighton T E. Encyclopedia of Molecular Biology. New York:Wiley,1999,2, 1147
    [270]Roth A, Breaker R R. An amino acid as a cofactor for a catalytic polynucleotide. Proceedings of the National Academy of Sciences of the United States of America,1998,95(11):6027-6031
    [271]Yin B C, Ye B C, Tan W, et al. An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(Ⅱ). Journal of the American Chemical Society 2009,131(41):14624-14625
    [272]Martinez-Manez R, Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews,2003,103(11):4419-4476
    [273]Borisov S M, Wolfbeis O S. Optical Biosensors. Chemical Reviews,2008, 108(2):423-461
    [274]Gale P A. Anion receptor chemistry:highlights from 2008 and 2009. Chemical Society Reviews,2010,39(10):3746-3771
    [275]Lipscomb W N, Strater N. Recent advances in zinc enzymology. Chemical Reviews,1996,96(7):2375-2433
    [276]Abraham E H, Okunieff P, Scala S, et al. Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate. Science,1997,275(5304): 1324-1325
    [277]Gourine A V, Llaudet E, Dale N, et al. ATP is a mediator of chemosensory transduction in the central nervous system. Nature,2005,436(7047):108-111
    [278]Ojida A, Mito-oka Y, Sada K, et al. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors. Journal of the American Chemical Society,2004,126(8):2454-2463
    [279]Yamaguchi S, Yoshimura I, Kohira T, et al. Cooperation between Artificial Receptors and Supramolecular Hydrogels for Sensing and Discriminating Phosphate Derivatives. Journal of the American Chemical Society,2005, 127(33):11835-11841
    [280]Li C, NumataM, Takeuchi M, et al. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angewandte Chemie International Edition,2005,44(39):6371-6374
    [281]Ojida A, Nonaka H, Miyahara Y, et al. Bis(Dpa-ZnⅡ) appended xanthone: excitation ratiometric chemosensor for phosphate anions. Angewandte Chemie International Edition,2006,45(33):5518-5521
    [282]Zyryanov G V, Palacios M A, Anzenbacher P. Rational design of a fluorescence-turn-on sensor array for phosphates in blood serum. Angewandte Chemie International Edition,2007,46(41):7849-7852
    [283]Xu Z, Singh N J, Lim J, et al. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. Journal of the American Chemical Society,2009,131(42): 15528-15533
    [284]Kurishita Y, Kohira T, Ojida A, et al. Rational design of FRET-based ratiometric chemosensors for in vitro and in cell fluorescence analyses of nucleoside polyphosphates. Journal of the American Chemical Society,2010, 132(38):13290-13299
    [285]Wang J, Jiang Y X, Zhou C S, et al. Aptamer-Based ATP Assay Using a Luminescent Light Switching Complex. Analytical Chemistry,2005,77(11): 3542-3546
    [286]Li N, Ho C M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. Journal of the American Chemical Society,2008,130(8):2380-2381
    [287]Li T, Fu R, Park H G. Pyrrolo-dC based fluorescent aptasensors for the molecular recognition of targets. Chemical Communications,2010,46(19): 3271-3273
    [288]Lobo M J, Miranda A J, Tunon P. Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis,1997,9(3): 191-202
    [289]Rutter J, Reick M, Wu L C, et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science,2001,293(5529):510-514
    [290]Zhang Q, Piston D W. Regulation of corepressor function by nuclear NADH. Science,2002,295(5561):1895-1897
    [291]Wilkinson A, Day J, Bowater R. Bacterial DNA ligases. Molecular Microbiology,2001,40(6):1241-1248
    [292]Lin S J, Defossez P A, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in saccharomyces cerevisiae. Science,2000, 289(5487):2126-2128
    [293]Guse A H, Gu X F, Zhang L R, et al. A minimal structural analogue of cyclic ADP-ribose. Biological Chemistry,2005,280:15952-15959
    [294]Bruzzone S, Flora A D, Usai C, et al. Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells. Biochemical Journal,2003,375 (Pt 2):395-403
    [295]Charron M J, Bonner-Weir S. Implicating PARP and NAD+ depletion in type Ⅰ diabetes. Nature Medicine,1999,5(3):269-270
    [296]Putt K S, Hergenrother P J. An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD+:application to the high-throughput screening of small molecules as potential inhibitors. Analytical Biochemistry,2004,326(1):78-86
    [297]Hausler R E, Fischer K L, Flugge U I. Determination of low-abundant metabolites in plant extracts by NAD(P)H fluorescence with a microtiter plate reader. Analytical Biochemistry,2000,281(1):1-8
    [298]Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology,2001,19(4): 365-370
    [299]Yang R, Jin J, Chen Y, et al. Carbon Nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. Journal of the American Chemical Society,2008,130(26):8351-8358
    [300]Wang Y, Li Z, Hu D, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 2010,132(27):9274-9276
    [301]Liu G, Wan Y, Gau V, et al. An enzyme-based E-DNA sensor for Sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society,2008,130(21):6820-6825
    [302]Rodenko B, Toebes M, Celie P H N, et al. Mechanistic studies of para-substituted N, N'-dibenzyl-1,4-diaminobutanes as substrates for a mammalian polyamine oxidase. Journal of the American Chemical Society,2009, 131(51):12305-12313
    [303]Kolpashchikov D M. Split DNA enzyme for visual single nucleotide polymorphism typing. Journal of the American Chemical Society 2008,130(10): 2934-2935
    [304]Deng M, Zhang D, Zhou Y, et al. Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. Journal of the American Chemical Society,2008,130(39):13095-13102
    [305]Nakayama S, Sintim H O J. Colorimetric split G-quadruplex probes for nucleic acid sensing:Improving reconstituted DNAzyme's catalytic efficiency via probe remodeling. Journal of the American Chemical Society,2009,131(29): 10320-10333
    [306]Zhang X B, Wang Z D, Xing H, et al. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Analytical Chemistry,2010,82(12):5005-5011
    [307]Lehman I R. DNA ligation proceeds through a highly conserved three-step reaction. Science,1974,186(4166):790-797
    [308]Sriskanda V, Shuman S. A second NAD+-dependent DNA ligase (LigB) in Escherichia coli. Nucleic Acids Research,2001,29(24):4930-4934
    [309]Kuhn H, Frank-Kamenetskii M D. Template-independent ligation of single-stranded DNA by T4 DNA ligase. FEBS Journal,2005,272(23): 5991-6000
    [310]Staudt L M. Gene expression physiology and pathophysiology of the immune system. Trends in Immunology,2001,22(1):35-40
    [311]Rodriguez-Mozaz S, de Alda M J L, Barcelo D. Biosensors as useful tools for environmental analysis and monitoring. Analytical and Bioanalytical Chemistry, 2006,386(4):1025-1041
    [312]Debouck C, Goodfellow P N. DNA microarrays in drug discovery and development. Nature Genetics,1999,21(1):48-50
    [313]Kim J, Easley C J. Isothermal DNA amplification in bioanalysis:strategies and applications. Bioanalysis,2011,3(2):227-239
    [314]Park S, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes. Science,2002,295(9):1503-1506
    [315]Moller R, Csaki A, Kohler J, et al. Electrical Classification of the Concentration of Bioconjugated Metal Colloids after Surface Adsorption and Silver Enhancement. Langmuir,2001,17(18):5426-5430
    [316]Kawde A, Wang J Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis, 2004,16(1-2):101-107
    [317]Campbell C N, Gal D, Cristler N, et al. Enzyme-amplified amperometric sandwich test for RNA and DNA. Analytical Chemistry,2002,74(1):158-162
    [318]Wang J, Li T, Guo X, et al. Exonuclease Ⅲ protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research 2005,33(2):e23
    [319]Lee H J, Li Y, Wark A W, et al. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease Ⅲ digestion of DNA microarrays. Analytical Chemistry,2005,77(16):5096-5100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700