用户名: 密码: 验证码:
纳米仿生界面的构建及纳米电化学生物传感器在生物分子检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感技术能够捕捉生物体内的各种生物信息,为临床医学诊断、生物医学基础研究等提供人体生理、病理相关信息,因而它的研究已成为迫切需要发展的课题。发展新型功能化的生物医用传感器件将为全面推进人类健康科学的发展提供历史性的契机。纳米技术的出现为该领域的研究发展开辟一个全新的天地,巧夺天工的纳米仿生界面的构建则把生物医用传感的进一步发展推向新的高峰。纳米仿生界面的研究是纳米科技与生命科学的交叉领域,它可以在纳米尺度空间上从分子层次研究生物大分子及其复合体或细胞的结构与功能,解决纳米技术在生物医学领域应用中的基础问题,发展新技术和新方法。各国科研工作者已经在仿生纳米界面上构建了各种生物传感器,用于肝炎,白血病、艾滋病以及SARS等的检测。但是这些研究都还处于起步阶段,寻求方便、快捷的制备和组装纳米材料的方法,构建功能化的仿生纳米界面,发展新的生物传感技术将会成为材料学家、分析化学家以及医学家等共同努力的方向。
     在本论文中,通过电化学沉积、电聚合、共价键合、吸附和表面滴涂等方法对导电聚合物、多壁碳纳米管(MCNTs)、金纳米粒子(AuNPs)、合金纳米粒子、纳米氧化物等材料进行组合组装,在玻碳电极(GCE)表面构建了用于研究DNA、酶的固定和药物小分子检测的新型纳米仿生界面。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉体衍射仪(XRD)及紫外可见分光光度法(UV-vis)、循环伏安法(CV)、电化学交流阻抗谱技术(EIS)、微分脉冲伏安法(DPV)、计时电流法、计时库伦分析法等对仿生界面的性质以及DNA、酶和药物小分子在生物界面上的电化学行为进行了探讨,具体内容如下:
     (1)制备了Fe@Fe_2O_3核壳纳米项链、Fe@Fe_2O_3核壳纳米线及立方纳米Cu2O三种氧化物纳米材料,并通过SEM、TEM及XRD技术对合成的纳米材料进行了表征。利用合成的纳米材料、聚二烯丙基二甲基氯化铵(PDDA)、AuNPs和MCNTs在GCE电极表面构建了PDDA/Fe@Fe_2O_3-AuNPs/PDDA/GCE、PDDA/Fe@Fe_2O_3-MCNTs/PDDA/GCE和PDDA/nanoCu_2O-AuNPs/PDDA/GCE三个用于DNA损伤的纳米仿生界面。用UV-vis法研究了三种界面的性能。以Ru(NH_3)_6~(3+)和Co(phen)_3~(3+)为电化学探针,通过CV、DPV法研究了DNA在三种界面内的电化学损伤。试验发现DNA的损伤主要发生在阴极处理过程。在阴极处理过程中,界面内发生了Fenton或类Fenton反应,反应生成的活性氧粒子(ROS)进攻并损伤DNA,此反应历程与生物体内重金属损伤DNA的历程十分相像,可用于模拟重金属损伤DNA的活体路线。三个DNA电化学传感器均具有较高的灵敏度和良好的稳定性,有望成为快速检测现存及新化学物质基因毒性的工具。
     (2)通过电化学聚合反应、共价键合、吸附和滴涂等方式将聚硫堇(PTn)、聚酪氨酸(PTyr)、AuNPs和纳米二氧化锆-聚苯胺复合材料(nanoZrO_2-PAN)修饰于GCE电极表面,分别构建了AuNPs/PTn/GCE和nanoZrO_2-PAN/PTyr/GCE两种用于DNA固定和杂交的仿生界面。利用CV、DPV和EIS法对生物界面的性能及DNA在界面上的固定和杂交进行了研究。通过EIS技术对转基因植物外源基因草丁膦乙酰转移酶基因(PAT基因)片段进行了免试剂检测。PAT基因片段在ss-DNA/AuNPs/PTn/GCE和ss-DNA/nanoZrO_2-PAN/PTyr/GCE电极上的检测范围依次分别为1.0×10~(-10) ~ 1.0×10~(-6) mol/L和1.0×10~(-13) ~ 1.0×10~(-6) mol/L,检测限依次分别为3.2×10~(-11) mol/L和2.68×10~(-14) mol/L (S/N = 3)。将ss-DNA/AuNPs/PTn/GCE电极用于转基因大豆中提取的外源基因胭脂碱合成酶基因终止子(NOS)的聚合酶链式反应(PCR)扩增产物的检测,结果满意。用nanoZrO_2-PAN制得的传感器与用其它ZrO_2材料制得的传感器相比,具有更宽的线性范围和更低的检测限。两种传感器均具有长期的稳定性、良好的选择性和再生性。
     (3)利用恒电位电化学沉积技术,在聚苯胺纳米管(nanoPAN)和壳聚糖(CS)复合膜修饰的GCE电极表面电化学合成了金-铂合金纳米粒子(Au-PtNPs),构建了用于辣根过氧化物酶(HRP)固定的纳米生物界面。在该生物界面上获得了HRP的直接电子转移并据此构建了一种新型的H_2O_2生物传感器。通过CV和EIS法对界面的性能进行了研究。在最佳试验条件下,采用计时电流法,通过往连续搅拌的PBS缓冲溶液中加入等量的H_2O_2研究了传感器对H_2O_2的安培响应。将该传感器用于H_2O_2的测定,响应速度快(< 2 s),线性范围宽(1.0 ~ 2200μmol/L)且检测限低(0.5μmol/L) (S/N = 3)。将该生物传感器应具有较高的灵敏度、良好的重现性和长期稳定性,可用于实际样品中H_2O_2含量的测定。
     (4)通过CV、线性扫描伏安法、计时库伦分析法,分别研究了林可霉素在Au-PtNPs/nanoPAN/CS/GCE界面上和阿米卡星在nanoPAN/CS/GCE界面上的电化学行为。建立了快速测定两种抗生素的电化学方法。林可霉素在Au-PtNPs/nanoPAN/CS/GCE上和阿米卡星在nanoPAN/CS/GCE上的检测范围依次分别为3.0 ~ 100.0 mg/L和10.0 ~ 80.0 mg/L,检测限依次分别为1.0 mg/L和8.0 mg/L (S/N = 3)。试验研究计算了林可霉素在电极界面上的电子转移数(n)、动力学参数(nα)及标准速率常数(ks)以及参与电极反应的H~+数目等。将两种方法分别用于实际样品中抗生素含量的检测均得到了较为理想的结果。
Bio-sensing technology can capture a variety of biological information in vivo and provide basic human physiology, pathology-related information for the clinical diagnosis and the basic biomedical research. Therefore, the research related to this subject has become very urgent. The development of the new functional bio-medical sensors will provide a historic opportunity for comprehensively promoting the science progress of the human health. The emergence of nanotechnology opened a new heaven and earth for the development of the research in this field and the construction of the wonderful nano-bionic interface had promoted the development of the biomedical biosensor to a new height. The research of nano-bionic interface is an interdisciplinary field of nanotechnology and life science, which can be used to study the structure and function of biological macromolecules, macromolecule complexes and cell at the molecular level in the nanometer scale space, to resolve the basic problem about nanotechnology applications in the biomedical field and develop new technologies and new methods. A variety of bio-sensors have been constructed on the nano-bionic interface by many countries’scientists, and used for the detection of hepatitis, leukemia, AIDS, SARS and so on. However, these studies are still in the initial stage. Exploring for convenient and fast methods of preparing and assembling nano-materials, building functional bionic nano-interfaces and developing new bio-sensing technology will become a co-endeavor direction of material scientist, analytical chemists, medical scientists and so on.
     In this paper, the new nano-bionic interfaces were constructed on the surface of glassy carbon electrode (GCE) by assembly or combination of some materials, such as electric polymer, carbon nanotubes, alloy nano-particles and nano-oxides, using the methods of electrodeposition, electro-polymerization, covalent combination, adsorption or casting the sample solution on the surface. The properties of the bio-interface and the electrochemical behaviors of DNA, enzymes and little medicine molecules were characterized by many methods and technologies, such as scanning electronic microscopy (SEM), transition electronic microscopy (TEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-vis) spectrophotometry, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), chronoamperometry and chronocoulometry. The main content is as follows:
     (1) The Fe@Fe_2O_3 core-shell nanonecklaces, Fe@Fe_2O_3 core-shell wires and Cu2O nanocubes were synthesized, and their morphologies were characterized by SEM、TEM and XRD patterns. By assembly of the synthesized nanomaterials, poly(dimethyldiallylammonium chloride) (PDDA), Au nanoparticles (AuNPs) and multi-wall carbon nanotubes (MCNTs) on the surface of GCE electrode, three kinds of nano-bionic interfaces, PDDA/Fe@Fe_2O_3-AuNPs/PDDA/GCE, PDDA/Fe@Fe_2O_3-MCNTs/PDDA /GCE and PDDA/nanoCu_2O-AuNPs/PDDA/GCE, were constructed and the properties of them were studied by UV-vis spectroscopy. The DNA damage on these interfaces during the course of the cathodic treatment were studied by CV and DPV methods using Ru(NH_3)_6~(3+) and Co(phen)_3~(3+) as electrochemical probes. The results showed that the DNA damage mainly happened during the course of the cathodic treatment. When these interfaces were treated by a cathodic process, the Fenton or like-Fenton reaction happened in interfaces and the reactive oxygen species (ROS) were produced. The ROS attacked and caused DNA damage in situ. The DNA damage courses in interface were just like the pathways of the heavy metal induced-DNA damage in vivo. Therefore, these biosensors can be used to mimic heavy metal gene toxicity pathways in vivo and can be used as powerful tools for screening the gene toxicity of chemicals.
     (2) By electrochemical polymerization, covalent combination, adsorption and casting methods, the polythionine (PTn), polytyrosine (PTyr), AuNPs and nanozirconia-polyaniline composite(nanoZrO_2-PAN) were modified on the surface of GCE electrode and two biointerfaces, AuNPs/PTn/GCE and nanoZrO_2-PAN/PTyr/GCE, were constructed. The properties of these two biointerfaces and the immobilization and hybridization of DNA on these surfaces were studied by CV, DPV and EIS. These two biointerfaces can be applied to detect the phosphinothricin acetyltransferase (PAT) gene sequences by a label-free EIS method. On the ss-DNA/AuNPs/PTn/GCE and ss-DNA/nanoZrO_2-PAN/PTyr/GCE, the dynamic detection range of the PAT gene sequences were 1.0×10~(-10) ~ 1.0×10~(-6) mol/L and 1.0×10~(-13) ~ 1.0×10~(-6) mol/L, respectively, and the detection limit were 3.2×10~(-11) mol/L and 2.68×10~(-14) mol/L (S/N = 3), respectively. The ss-DNA/AuNPs/PTn/GCE was further used to detect the PCR amplification sample of terminator of nopaline synthase (NOS) from a kind of transgenic modified bean with satisfactory results. Compared with the biosensors constructed by ZrO_2 normal materials, the biosensor composed by nanoZrO2-PAN has wider linear range and lower detection limit.
     (3) The Au-Pt alloy nanoparticles (Au-PtNPs) were synthesized by electrochemical deposition on the surface of the GCE electrode modified with the composite of polyaniline nanotubes (nanoPAN) and chitosan (CS). Then horseradish peroxidase (HRP) was immobilized on the surface of Au-PtNPs/nanoPAN/CS and the direct chemistry of HRP was obtained on this surface, based on which a novel H_2O_2 biosensor was constructed. The membrane properties of Au-PtNPs/nanoPAN/CS were studied with CV and EIS. Under the optimal conditions, the amperometric response of H_2O_2 on this biosensor was investigated by adding aliquots of H_2O_2 to a continuous stirring phosphate buffer solution. The biosensor displayed a fast response time (< 2 s) and broad linear response to H_2O_2 in the range from 1.0 to 2200μmol/L with a relatively low detection limit of 0.5μmol/L at 3 times the background noise. Moreover, the biosensor can be applied in practical analysis and exhibited high sensitivity, good reproducibility, and long-term stability.
     (4) The electrochemical behaviors of lincomycin on Au-PtNPs/nanoPAN/CS/GCE and amikacin on nanoPAN/CS/GCE were studied, respectively, and the electrochemical methods for detection of these two antibiotics were set up. The dynamic detection ranges of lincomycin and amikacin were 3.0 mg/L ~ 100.0 mg/L and 10.0 mg/L ~ 80.0 mg/L, and the detection limits were 8.0 mg/L and 1.0 mg/L (S/N = 3), respectively. Some electrochemical parameters involved in the redox reaction of lincomycin, such as parameter of kinetic nα, standard rate constant ks and the number of H~+, were also calculated. Both of the methods can be used in practice.
引文
[1] Gilardi G., Fantuzzi A., Sadeghi S. J., Engineering and design in the bioelectrochemistry of metalloproteins, Curr. Opin. Struct. Biol., 2001, 11: 491–499.
    [2] Wink T., VanZuilen S. J., Bult A., Bennkom W. P., Self–assembled monolayers for biosensors, Analyst, 1997, 122: 43R–50R.
    [3] Chaki N. K., Vijayamohanan K., Self–assembled monolayers as a tunable platform for biosensor applications, Biosens. Bioelectron., 2002, 17: 1–12.
    [4] Katz E., Willner I., Wang J., Electroanalytical and bioelectroanalytical bystems based on metal and semiconductor nanoparticles, Electroanalysis, 2004, 16: 19–44.
    [5] Li J. H., Li D., Hu J. Q., Nanostructured materials in biosensors, in handbook of electrochemical nanotechnology, American Scientific Publishers: California, 2006. p16.
    [6] Bauer L. A., Birenbaum N. S., Meyer G. J., Biological aplications of high aspect ratio nanoparticles, J. Mater. Chem., 2004, 14: 517–526.
    [7] Davis J. J., Hill H. A. O., Bond A. M., The application of electrochemical scanning probe microscopy to the interpretation of metalloprotein voltammetry, Coord. Chem. ReV., 2000, 202: 411–442.
    [8] Zheng L. Z., Yao X., Li J. H., Layer–by–layer assembly films and their applications in electroanalytical chemistry, Curr. Anal. Chem., 2006, 2: 279–296.
    [9] Davis F., Higson S. P. J., Structured thin films as functional components within biosensors,Biosens. Bioelectron., 2005, 21: 1–20.
    [10] Cosnier S., Affinity biosensors based on electropolymerized films, Electroanalysis, 2005, 17: 1701–1715.
    [11] Chen D., Wang G., Li J. H., Interfacial bioelectrochemistry: fabrication, properties and applications of functional nanostructured biointerfaces, J. Phys. Chem. C, 2007, 111: 2351–2367
    [12] Wang J., Nanowire–based electrochemical biosensors,Electroanalysis, 2005, 17: 7–14.
    [13] Kohli P., Wirtz M., Martin C. R., Nanotube membrane based biosensors, Electroanalysis, 2004, 16: 9–18.
    [14] Wang J., Nanomaterial–based electrochemical biosensors, Analyst, 2005, 130: 421–426.
    [15] Verma A., Rotello V. M., Surface recognition of biomacromolecules using nanoparticle receptors, Chem. Commun., 2005, 303–312.
    [16] Parak W. J., Gerion D., Pellegrino T., Zanchat D., Micheel C., Williams S. C., Boudreau R.,Gros M. A. L., Larabell C. A., Alivisatos A. P., Biological applications of colloidal nanocrystals, Nanotechnology, 2003, 14: R15–R27.
    [17] Luo X. L., Morrin A., Killard A. J., Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis, 2006, 4: 319–326
    [18] Castaneda M. T., Alegret S., Merkoci A., Electrochemical sensing of DNA using gold nanoparticles, Electroanalysis, 2007, 19: 743–753.
    [19] Delvaux M., Champagne S. D., Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors, Biosens. Bioelectron., 2003, 18: 943–951.
    [20] Delvaux M., Champagne S. D., Walcarius A., Flow injection amperometric detection at enzyme–modified gold nanoelectrodes, Electroanalysis, 2004, 16: 190–198.
    [21] Mbindyo J. K., Reiss B. D., Martin B. R., Keating C. D., Natan M. J., Mallouk T. E., DNA–directed assembly of gold nanowires on complementary surfaces,Adv. Mater., 2002, 13: 249–254.
    [22] Liao H. W., Hafner J. H., Gold nanorod bioconjugates, Chem. Mater., 2005, 17: 4636–4641.
    [23] Chen C. C., Lin Y. P., Wang C. W., Tzeng H. C., Wu C. H., Chen, Y. C., Chen C. P., Chen L. C., Wu Y. C., DNA–gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation, J. Am. Chem. Soc., 2006, 128: 3709–3715.
    [24] Chang J. Y., Wu H. M., Chen H., Ling Y. C., Tan W., Oriented assembly of Au nanorods using biorecognition system,Chem. Commun., 2005, 1092–1094
    [25] Ren X. L., Meng X. W., Chen D., et al., Using silver nanoparticle to enhance current response of biosensor, Biosens.Bioelectron., 2005, 21: 433–437.
    [26] Wang J., Rincon O., Polsky R., Dominguez E., Electrochemical detection of DNA hybridization based on DNA–templated assembly of silver cluster, Electrochem.Commun., 2003, 5: 83–86.
    [27] Wang L., Li Z., Tao Y., Wei G., Liu Z., Song Y., SunL., DNA network templated self assembly of silver nanoparticles and their application in surface enhanced raman scattering, J. Phys. Chem. B, 2005, 109: 23941–23947.
    [28] Zheng J., Li X., Gu R., Lu T., Comparison of the surface properties of the assembled silver nanoparticle electrode and roughened silver electrode, J. Phys. Chem. B, 2002, 106: 1019–1023.
    [29] Fu Y. Z., Yuan R., Xu L., Chai Y., Liu Y., Tang D., Zhang Y., Electrochemical impedance behavior of DNA biosensor based on colloidal Ag and bilayer two–dimensional sol–gel as matrices, J. Biochem. Biophys. Methods, 2005, 62: 163–174.
    [30] You T. Y., Niwa O., Tomita M., Hirono S., Characterization of platinumnanoparticle–embedded carbon film electrode and its detection of hydrogen peroxide,Anal. Chem., 2003, 75: 2080–2085.
    [31] Zhou S., Mcllwrath K., Jackson G., Eichhorn B., Enhanced CO tolerance for hydrogen activation in Au–Pt dendritic heteroaggregate nanostructures, J. Am. Chem. Soc., 2006, 128: 1780–1781.
    [32] Luo J. N., Njoki Y., Lin L., Mott D., Wang L., Zhong C. J., Characterization of carbon–supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction, Langmuir, 2006, 22: 2892–2898.
    [33] Yogeswaran U., Thiagarajan S., Chen S. M., Nanocomposite of functionalized multiwall carbon nanotubes with nafion, nano–platinum, and nano–gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid, Anal. Biochem., 2007, 365: 122–131.
    [34] Zhai J. F., Huang M. H., Dong S. J., Electrochemical designing of Au/Pt core shell nanoparticles as nanostructured catalyst with tunable activity for oxygen reduction, Electronanlysis,19, 2007, 4: 506–509
    [35] Kang X. H., Mai Z. B., Zou X. Y., Cai P. X., Mo J. Y., A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/ multiwall carbon nanotubes, Anal. Biochem., 2007, 369: 71–79.
    [36] Cai H., Zhu N. N., Jiang Y., He P. G., Fang Y. Z., Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization, Biosens. Bioelectron., 2003, 18: 1311–1319.
    [37] Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 2005, 4: 435–446.
    [38] Yoffe A. D., Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys., 2001, 50: 1–208.
    [39] Murray C. B., Kagan C. R., Bawendi M. G., Synthesis and characterization of monodisperse nanocrystals and close–packed nanoc– rystal assemblies, Annu. Rev. Mater. Sci., 2000, 30: 545–610.
    [40] Clapp A. R., Medintz I. L., Mattoussi H., F?rster resonance energy transfer investigations using quantum–dot fluorophores, Chemphyschem., 2006, 7: 47–57.
    [41] Obata K., Tajima H., Yohda M., Matsunaga T., Recent developments in laboratory automation using magnetic particles for genome analysis, Pharmacogenomics, 2002, 3: 697–708
    [42] Safarik I., Safarikova M., Magnetic techniques for the isolation and purification of proteinsand peptides, Biomag. Res. Tech., 2004, 2: 7–15.
    [43] Hsing I. M., Xu Y., Zhao W. T., Micro– and Nano–magnetic particles for applications in biosensing,Electroanalysis, 2007, 19: 755–768.
    [44] Sapra S., Nanda J., Sarma D. D., Abedelal F., Hodes G., Blue emission from cysteine ester passivated cadmium sulfide nanoclusters, Chem. Commun., 2001, 2188–2189.
    [45] Mahtab R., Harden H., Murphy C. J., Temperature– and salt–dependent binding of long DNA to protein–sized quantum dots: thermodynamics of“inorganic protein”–DNA interactions, J. Am. Chem. Soc., 2000, 122: 14–17.
    [46] Liu G., Lee, T. M. H., Wang J., Nanocrystal–based bioelectronic coding of single nucleotide polymorphisms, J. Am. Chem. Soc., 2005, 127 (1): 38–39.
    [47] Pumera M., Castaneda T. C., Pividori M. I. Abedelal F., Hodes G., Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer, Langmuir, 2005, 21: 9625–9629
    [48] Treachy M. M., Ebbesen T. W., Gibson J. M., Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 1996, 381: 678–680.
    [49] Heer W. A., Chatelaine A., Ugarte D., A carbon nanotube field– emission electron source,Science, 1995, 270: 1179–1180.
    [50] Martel R. Schmidt T., Shea H. R. Avouris P., Single– and multi–wall carbon nanotube field–effect transistors, Appl. Phys. Lett., 1998, 73: 2447–2449.
    [51] Dai H., Hafner J. H., Rinzler A. G., Colbert D. T., Smalley R. E., Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996, 384: 147–150.
    [52] Shaffer M. S. P., Fan X., Windle A. H., Dispersion and packing of carbon nanotubes, Carbon., 1998, 36: 1603–1612.
    [53] Merkoci A., Carbon nanotubes in analytical sciences, Microchim. Acta., 2006, 152: 157–160.
    [54] Merkoci A., Pumera M., Llopis X., Briza P., Mannel D. V., Salvador A., New materials for electrochemical sensing VI: carbon nanotubes, Trends Anal. Chem., 2005, 24: 826–838.
    [55] Katz E., Willner I., Integrated nanoparticles–biomolecule hybrid systems: synthesis, properties, and applications, Angew. Chem., Int. Ed., 2004, 43: 6042–6108.
    [56] Wanekaya A. K., Chen W., Myung N. V., Mulchandani A., Nanowire–based electrochemical biosensors, Electroanalysis, 2006, 18: 533–550.
    [57] Fukushima A., Kosaka A., Ishimura Y., Yamamoto T., Takigawa T., Ishii N., Aida T., Molecular ordering of organic molten salts triggered by single–walled carbon nametapes,Science, 2003, 300: 2072–2074.
    [58] Zhang Y. J., Shen Y. F., Li J. H., Niu L., Dong s. J., Ari I., Electrochemical functionalizationof single–walled carbon nanotubes in large quantities at a room–temperature ionic liquid supported three–dimensional network electrode, Langmuir, 2005, 21: 4797–4800.
    [59] Gavalas V. G., Chaniotakis N. A., Fullerene–mediated amperometric biosensors,Anal. Chim. Acta., 2000, 409: 131–135.
    [60] Zhu N. N., Chang Z., He P. G., Fang Y. Z., Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes, Anal. Chim. Acta, 2005, 545: 21–26.
    [61] Yang Y. H.; Wang Z. J.; Yang M. H.; Li J., Zheng F., Shen G. L., Yu R. Q., Electrical detection of deoxyribonucleic acid hybridization based on carbon–nanotubes/nanozirconium dioxide/chitosan–modified electrodes, Anal. Chim. Acta, 2007, 584: 268–274.
    [62] Munsch S.; Hartmann M.; Ernst S., Adsorption and separation of amino acids from aqueous solutions on zeolites,Chem. Commun., 2001, 1978–1979.
    [63] Deere J.; Magner E.; Wall J. G.; Hodnett B. K., Adsorption and activity of cytochrome c on mesoporous silicates, Chem. Commun., 2001, 465–465.
    [64] Takahashi H., Li B., Sasaki T., Miyazaki C., Kajino T., Inagaki S., Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica, Chem. Mater., 2000, 12: 3301–3305.
    [65] Tope A. M., Srivinas N., Kulkarni S. J., Jamil K., Mesoporous molecular sieve (MCM–41) as support material for microbial cell immobilization and transformation of 2,4,6–trinitrotoluene (TNT): a novel system for whole cell immobilization, J. Mol. Catal. B, 2001, 16: 17–26.
    [66] Hartmann M., Ordered mesoporous materials for bioadsorption and biocatalysis, Chem. Mater., 2005, 17: 4577–4593.
    [67] Dai Z. H., Liu S. Q., Ju H. X., Chen H.Y., Direct electron transfer reactivity and enzymatic activity of hemoglobin in a hexagonal mesoporous silica membrane, Biosens. Bioelectron., 2004, 19: 861–867.
    [68] Liu M. C., Shi G. Y., Zhang L., Cheng Y. X., Jin L. T., Quantum dots modified electrode and its application in electroanalysis of hemoglobin, Electrochem. Commun., 2006, 8: 305–310.
    [69] Lei C. X., Hu S. Q., Shen G. L., Yu R. Q., Immobilization of horseradish peroxidase to a nano–Au monolayer modified chitosan–entrapped carbon paste electrode for the detection of hydrogen peroxide, Talanta, 2003, 59: 981–988.
    [70] Li W. J., Wang Z., Sun C. Q., Xian M., Zhao M. Y., Fabrication of multilayer films containing horseradish peroxidase and polycation–bearing Os complex by means of electrostatic layer–by–layer adsorption and its application as a hydrogen peroxide sensor, Anal. Chim. Acta, 2000, 418: 225–232.
    [71] Eremenko A., Kurochin I., Chernov S., Barmin A., Yaroslavov A., Moskvitin T.,Monomolecular enzyme films stabilized by amphiphilic polyelectrolytes for biosensor devices, Thin Solid Films, 1995, 260, 212–216.
    [72] Singhal R., Gambir A., Pandey M. K., Annapoorni S. Malhotra B. D., Immobilization of urease on poly(N–vinyl carbazole)/stearic acid Langmuir–Blodgett films for application to urea biosensor, Biosens. Bioelectron., 2002, 17: 697–703.
    [73] Zhang J., Song S., Zhang L., Wang L., Wang L., Wu H., Pan D., Fan C., Sequence–specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle–mediated amplification and nanoscale control of DNA assembly at electrodes, J. Am. Chem. Soc., 2006, 128: 8575–8580.
    [74] Avnir D., Coradin T., Lev O., Livage J., Recent bio–applications of sol–gel materials, J. Mater. Chem., 2006, 16:1013–1030.
    [75] Gill I., Pastor, E., Ballesteros A., Lipase–silicone biocomposites: efficient and versatile immobilized biocatalysts, J. Am. Chem. Soc., 1999, 121: 9487–9496.
    [76] Jia J. B., Wang B. Q., Wu A. G., Cheng G., Li Z., Dong S., A method to construct a third–generation horseradish peroxidase biosensor: self–assembling gold nanoparticles to three–dimentionl Sol–Gel network, Anal. Chem., 2002, 74: 2217–2223.
    [77] Shi Q. C., Peng T. Z., Zhu Y. N., Yang C. F., An electrochemical biosensor with cholesterol oxidase/ sol–gel film on a nanoplatinum/carbon nanotube electrode, Electroanalysis, 2005, 17: 857–861.
    [78] Shen Y. F., Wu T., Zhang Y., Li J. H., Alternative self–assembled networks of (3–mercaptopropyl)trimethoxysilane on Au substrates, Talanta, 2005, 65: 481–488.
    [79] Sampath S., Lev O., 3D organized self–assembled monolayer electrodes: A novel biosensor configuration, Adv. Mater., 1997, 9: 410–413.
    [80] Liu Y., Wang M. J., Li J., Li Z. Y., He P., Liu H., Li J. H., Highly active horseradish peroxidase immobilized in rome–temperature ionic liquid based sol–gel host materials, Chem. Commun., 2005, 1778–1780.
    [81] Liu Y., Shi L. H., Wang M. J., Li Z. Y., Liu H., Li J. H., A novel amperometric horseradish peroxidasebiosensor based on room temperature ionic liquids sol–gel matrix, Green Chem., 2005, 7: 655–658.
    [82] Bharathi S., Nogami M. A., Glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme, Analyst, 2001, 126: 1919–1922.
    [83] Wang S. Q., Lu L. P., Lin X. Q., Selective voltammetric method for uric acid detection at a glassy carbon electrode modified with electrodeposited film containing DNA and Pt–Fe2O3 nanocomposites, Electroanalysis, 2004, 16: 1734–1738.
    [84] Zhu N. N., Zhang A. P., Wang Q. J., He P. G., Fang Y. Z., Electrochemical detection of DNA hybridization using methylene blue and electro–deposited zirconia thin films on gold electrodes, Anal. Chim. Acta, 2004, 510: 163–168.
    [85] You T. Y., Niwa O., Tomita M., Hirono S., Characterization of platinum nanoparticle–embedded carbon film electrode and its detection of hydrogen peroxide, Anal. Chem., 2003, 75: 2080–2085.
    [86] Cosnier S., Affinity biosensors based on electropolymerized films, Electroanalysis, 2005, 17: 1701–1715.
    [87] Cosnier S. Biomolecule immobilization on electrode surface by entrapment or attachment to electrochemically polymerized films, Biosens. Bioelectron., 1999, 14: 443–456.
    [88] Liu J., Cheng L., Song Y., Liu B. Dong S., Simple preparation method of multilayer polymer films containing Pd nanoparticles, Langmuir, 2001, 17: 6747–6750.
    [89] Lei C. X., Hu S. Q., Gao N., Shen G. L., Yu R. Q., An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano–Au monolayer supported by sol–gel derived carbon ceramic electrode, Bioelectrochemistry, 2004, 65: 33–39.
    [90] Wang J., Kawde A. N., Pencil–based renewable biosensor for label–free electrochemical detection of DNA hybridization, Anal. Chim. Acta, 2001, 431: 219–224.
    [91] Wang J., Rivas G., Fernandes J. R., Jose L. L. P., Jiang M., Waymire R., Indicator–free electrochemical DNA hybridization biosensor, Anal. Chim. Acta, 1998, 375, 197–203.
    [92] Wang J., Kawde A. N., Erdem A., Salazar M., Magnetic bead–based label–free electrochemical detection of DNA hybridization, Analyst, 2001, 126: 2020–2024.
    [93] Daniels J. S., Pourmand N., Label–free impedance biosensors: Opportunities and Challenges, Electroanalysis, 2007, 19: 1239–1257.
    [94] Bardea A., Patolsky F., Dagan A., Willner I., Sensing and amplification of oligonucleotide–DNA interactions by means of impedance spectroscopy: a route to a tay–sachs sensor, Chem. Commun., 1999, 21–22.
    [95] Li X. H., Song H. F., Nakatani K., Kraatz H. B., Exploiting small molecule binding to DNA for the detection of single–nucleotide mismatches and their base environment, Anal. Chem., 2007, 79: 2552–2555
    [96] Jiao K., Yang T., Yang J., Feng Y. Y., Immobilization and hybridization of DNA based on magnesium ion modified 2,6–pyridinedicarboxylic acid polymer and its application for label–free PAT gene fragment detection by electrochemical impedance spectroscopy, Science in China (Ser. B), 2007, 36: 538–546.
    [97] Yang J., Yang T., Feng Y. Y., Jiao K., A DNA electrochemical sensor based on nanogoldmodified poly–2,6–pyridinedicarboxylic acid film and detection of PAT gene fragment, Anal. Biochem. 2007, 36: 524–530.
    [98] Yang J., Jiao K., Yang T., A DNA Electrochemical Sensor Prepared by Electrodepositing Zirconia on Single–Walled Carbon Nanotubes/Poly (2,6–pyridinedicarboxylic Acid) Composite Films and Its Application to the Detection of PAT Gene Fragment, Anal. Bioanal. Chem., 2007, 389, 913–921
    [99] Yang T., Zhou N., Zhang Y. C., Zhang W., Jiao K., Li G. C., Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi–walled carbon nanotubes composites, Biosens. Bioelectron., 2008,24: 2165–2170.
    [100] Zhou N., Yang T., Jiang C. Du M., Jiao K., Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Aunano–CNT/PANnano films, Talanta, 20097, 7, 1021–1026.
    [101] Patolsky F., Katz E., Bardea A., Willner I., Enzyme–linked amplified electrochemical sensing of oligonucleotide–DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy, Langmuir, 1999, 15: 3703–3706.
    [102] Millan K. M., Saraullo A., Mikkelsen S. R., Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode, Anal. Chem., 1994, 66: 2943–2948.
    [103] Millan K. M., Mikkelsen S. R., Sequence–selective biosensor for DNA based on electroactive hybridization indicators, Anal. Chem., 1993, 65: 2317–2323.
    [104] Millan K. M., Spurmanis A. J., Mikkelsen S. R. Covalent immobilization of DNA onto glassy carbon electrodes, Electroanalysis, 1992, 4: 929–932.
    [105] Mikkelsen S. R., Electrochemical biosensors for DNA sequence detection, Electroanalysis, 1996, 8: 15–19.
    [106] Yang W. R., Ozsoz M., Hibbert D. B., Gooding J. J., Evidence for the direct interaction between methylene blue and guanine bases using DNA–modified carbon paste electrodes, Electroanalysis, 2002, 14: 1299–1302.
    [107] Lai R. Y., Lagally E. T., Lee S. H. H., Soh H. T., Plaxco K. W., Heeger A. J., Rapid, sequence–specific detection of unpurified PCR amplificons via a reusable, electrochemical sensor, Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 4017–4021.
    [108] Yi X., Arica A. L., Brian R. B., Kevin W. P., Plaxco K. W., Heeger A. J., Single–step electronic detection of femtomolar DNA by target–induced strand displacement in an electrode–bound duplex,Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 16677–16680.
    [109] Fan C. H., Plaxco K. W., Heeger A. J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence–specific detection of DNA, Proc. Natl. Acad.Sci. U. S. A., 2003, 100: 9134–9137.
    [110] Boon E. M., Ceres D. M., Drummond T. G., Hill, M.G., Barton, Mutation detection by electrocatalysis at DNA–modified electrodes, Nat. Biotechnol., 2000, 18: 1096–1100.
    [111] Kelley S. O., Barton J. K., Jackson N. M., Hill M. G., Electrochemistry of methylene blue bound to a DNA–modified electrode, Bioconjugate Chem., 1997, 8: 31–37.
    [112] Kelley S. O., Boon E. M., Barton J. K., Jackson N. M., Hill M. G., Single–base mismatch detection based on charge transduction through DNA, Nucleic Acids Res., 1999, 27: 4830–4837.
    [113] Wong E. L. S., Gooding J. J., Charge transfer through DNA: a selective electrochemical DNA biosensor, Anal. Chem., 2006, 78: 2138–2144.
    [114] Liu G. D., Lin Y. H., Electrochemical quantification of single–nucleotide polymorphisms using nanoparticle probes, J. Am. Chem. Soc., 2007, 129, 10394–10401.
    [115] Wang J., Carbon–nanotube based electrochemical biosensors: a review,Electroanalysis, 2005, 17(1): 7–14.
    [116] Ronan B., Bilha W., Itamar W., Biomolecule–nanoparticle hybrids as functional units for nanobiotechnology, Chem. Commun., 2007, 323–332.
    [117] Castaneda M. T., Alegret S., Merkoci A., Electrochemical sensing of DNA using gold nanoparticles, Electroanalysis, 2007, 19 (7–8): 743– 753.
    [118] Merkoci, A., Nanobiomaterials in electroanalysis, Electroanalysis, 2007, 19 (7–8): 739–741.
    [119] Hsing I. M., Xu Y., Zhao W. T., Micro– and nano–magnetic particles for applications in biosensing, Electroanalysis, 2007, 19 (7–8): 755–768.
    [120] Odenthal J. K., Gooding J. J., An introduction to electrochemical DNA biosensors, Analyst, 2007, 132: 603–610.
    [121] Herne T. M., Tarlov M. J., Characterization of DNA probes immobilized on gold surfaces, J. Am. Chem. Soc., 1997, 119: 8916–8920.
    [122] Steel A. B., Herne T. M., Tarlov M. J., Electrochemical quantitation of DNA immobilization on gold, Anal. Chem., 1998, 70: 4670–4677.
    [123] Wong E. L. S., Chow E., Gooding J. J., DNA recognition interfaces: the influence of interfacial design on the efficiency and kinetics of hybridization, Langmuir, 2005, 21: 6957–6965.
    [124] Peterlinz K. A., Georgiadis R. M., Observation of hybridization and dehybridization of thiol DNA using two–color surface plasmon resonance spectroscopy,J. Am. Chem. Soc., 1997, 119, 3401–3402.
    [125] Levicky R., Herne T. M., Tarlov M. J., Satija S. K., Using self–assembly to control thestructure of DNA monolayers on gold: a neutron reflectivity study, J. Am. Chem. Soc., 1998, 120: 9787–9792.
    [126] Erdem A., Meric B., Kerman K., Dalbasti T., Ozsoz M., Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor, Electroanalysis, 1999, 11: 1372–1376.
    [127] Erdem A., Kosmider B., Osiecka R., Zyner E., Ochocki J., Ozsoz M., Electrochemical genosensing of the interaction between the potential chemotherapeutic agent, cis–bis (3–aminoflavone) dichloroplatinum (II) and DNA in comparison with cis–DDP, J. Pharmaceut. Biomed. Anal., 2005, 38: 645–652.
    [128] Giusto D. A. D., Wlassoff W. A., Giesebrecht S., Gooding J. J., King G. C., Multipotential electrochemical detection of primer extension reactions on DNA self–assembled monolayers, J. Am. Chem. Soc., 2004, 126: 4120–4121.
    [129] Giusto D. A. D., Wlassoff W. A., Giesebrecht S., Gooding. J. J., King G. C., Enzymatic synthesis of redox–labeled RNA and dual–potential detection at DNA–modified electrodes, Angew. Chem., Int. Ed., 2004, 43: 2809–2812.
    [130] Brazill S. A., Kim P. H., Kuhr W. G., Capillary gel electrophoresis with sinusoidal voltammetric detection: a strategy to allow four–color DNA sequencing, Anal. Chem., 2001, 73: 4882–4890.
    [131] Brazill S., Hebert N. E., Kuhr W. G., Use of an electrochemically labeled nucleotide terminator for known point mutation analysis, Electrophoresis, 2003, 24:2749–2757.
    [132] Pfeifer G. P., Technologies for detection of DNA damage and mutations; Plenum: New York, 1996.
    [133] Fojta M., Electrochemical sensors for DNA interactions and damage, Electroanalysis, 2002, 14: 1449–1463.
    [134] Liang M. M., Jia S. P., Zhu S. C., Guo L. H., Photoelectrochemical sensor for the rapid detection of in situ DNA damage induced by enzyme–catalyzed Fenton reaction, Environ. Sci. Technol., 2008, 42: 635–639.
    [135] Liang M. M., Guo L. H., Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the fenton reaction, Environ. Sci. Technol., 2007, 41, 658–664.
    [136] Mugweru A., Yang J., Rusling J. F., Comparison of hemoglobin and myoglobin for in situ metabolite generation in chemical toxicity sensors using a metallopolymer catalyst for DNA damage detection, Electroanalysis, 2004, 16: 1132–1138.
    [137] Zhou L. P., Yang J., Estavillo C., Stuart J. D., Schenkman J. B., Rusling J. F., Toxicityscreening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA–enzyme films, J. Am. Chem. Soc., 2003, 125: 1431–1436.
    [138]彭图治,杨丽菊,编,生命中的电分析化学,杭州大学出版社,1997年版,p50
    [139]卢宪波,导师:李景虹,室温离子液体和纳米材料在酶和蛋白质的直接电化学和生物传感器中的应用研究,博士学位论文,安徽,中国科技大学,2007.
    [140] Hurdis E., Romeyn H. J., Accuracy of determination of hydrogen peroxide by cerate oxidimetry, Anal. Chem., 1954, 26: 320–325.
    [141] Matsubara C., Kawamoto N., Takamura, K., Probing traces of hydrogen peroxide by use of a biosensor based on mediator–free DNA and horseradish peroxidase immobilized on silver nanoparticles, Analyst, 1992, 117: 781–786.
    [142] Hanaoka S., Lin J., Yamada M., Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)–ethanolamine complex immobilized on resin., Anal. Chim. Acta., 2001, 426: 57–64.
    [143] Jia J., Wang B., Wu A., Cheng G., Li Z., Dong S., A method to construct a third generation horseradish peroxidase biosensor self assembling gold nanoparticles to three dimensional sol–gel network, Anal. Chem., 2002, 74: 2217–2223.
    [144] Mathebe N., Morrin A., Iwuoha E., Electrochemistry and scanning electron microscopy of polyanilineand peroxidase–based biosensor, Talanta, 2004, 64: 115–120.
    [145] Wang B., Li B., Wang Z., Xu G. B., Wang Q., Dong S. J., Sol?gel thin–film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium, Anal. Chem., 1999, 71: 1935–1939.
    [146] Yang W., Li Y., Bai Y., Sun C. Q., Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film, Sens. Actua. B: Chem., 2006, 115: 42–48.
    [147] Dunford H. B., Everse K. E., Everse M. B., Peroxidases in chemistry and biology, CRC Press, Boca Raton, FL, 1991, 1: 24–29.
    [148] Chen H. J., Dong S. J., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel–derived ceramic–carbon nanotube nanocomposite film, Biosens. Bioelectron., 2007, 22: 1811–1815.
    [149] Tang J. L., Wang B.Q., Wu Z. Y., Han X. J., Dong S. J., Wang E. K., Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide, Biosens. Bioelectron., 2003, 18, 867–872.
    [150] Xu S. Y., Han X. Z., A novel method to construct a third–generation biosensor: self–assembling gold nanoparticles on thiol–functionalized poly(styrene–co–acrylic acid)nanospheres, Biosens. Bioelectron., 2004, 19: 1117–1120.
    [151] Pandey P., Singh S. P., Arya S. K., Gupta V., Datta M., Singh S., Malhotra B. D., Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity, Langmuir, 2007, 23: 3333–3337.
    [152] Xu S. Y., Peng B., Han X. Z., A third–generation H2O2 biosensor based on horseradish peroxidase–labeled Au nanoparticles self–assembled to hollow porous polymeric nanopheres, Biosens. Bioelectron., 2007, 22: 1807–1810.
    [153] Song Y. H., Wang L., Ren C. B., Zhu G. Y., Li Z., A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode, Sens. Actua. B: Chem., 2006, 114: 1001–1006.
    [154] Lei C. X., Hu S. Q., Gao N., Shen G. L., Yu R. Q., An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano–Au monolayer supported by sol–gel derived carbon ceramic electrode, Bioelectrochemsitry, 2004, 65: 33–39.
    [155] Tang D., Yuan R., Chai Y., Electrochemical behaviors of neutral red on single and double stranded DNA modified electrode, Electroanalysis, 2006, 259:11–18.
    [156] Willner I., Katz E., Study on a hydrogen peroxide sensor based on horseradish peroxidase/nano–Au/horseradish peroxidase/multi–walled carbon nanotubes, Angew. Chem. Int. Ed., 2000, 39: 1180–1187.
    [157] Wang J., Liu G., Jan M. R., Ultrasensitive electrical biosensing of proteins and DNA: carbon–nanotube derived amplification of the recognition and transduction Events, J. Am. Chem. Soc., 2004, 126: 3010–3011.
    [158]中华人民共和国药典委员会,中华人民共和国药典.北京:化学工业出版社,2000, 312.
    [159] United States Pharmacopeial Convention.Ine.The United Pharmacopeia.XXⅡ,Easton:Mack Printing Company, 1989, 1281.
    [160] British Pharmacopeia Commission.,British Pharmacopeia.London:Her Majesty’s Stationery Office, 1998, l299.
    [161] Preu N., Guyot D., Petz M., Development of a gas chromatography–mass spectrometry method for the analysis of amino glycoside antibiotics using experimental design for the optimization of the defivatisation reaction, J. Chromatogr. A., 1998, 818: 95–108.
    [162] Clifton K. F., Alan R. L., Steven J. L., Confirmatory and quantitative analysis ofβ–lactan antibiotics in bovine kidney tissue by dispersive solid phase extraction and liquid chromatography tandem mass spectrometry, Ana1. Chem., 2005, 77: 1473–1482.
    [163]江虹,胡小莉,湛海粼,秦宗会,镧–曲利本红光度法测定新霉素及庆大霉素,分析科学学报,2004,20(1): 51–53.
    [164]江虹,湛海粼,吴兴发,亚甲基蓝光度法测定西地那非的含量,分析科学学报,2004, 20(3): 287–293.
    [165] Rizk M., Ei–Shabrawy Y., Zakhari N. A., Toubar S. S., Carreira L. A., Fluorimetric determination of aminoglycoside antibiotics using/lanthanlde probe ion spectroscopy, Talanta, 1995, 42 (12): 1849–1856.
    [166] Alwaxthan A. A., A1–Tamrah S. A., Akel A. A., Determination of prometha zine by its inhibition of the chemiluminescence of the luminol–H202–Cr(III)system, Ana1. Chim. Acta, 1994, 292: 201–212.
    [167] Pyder D., Wasin H., Assay of SM trough concentration by FPIA, J. Antimicrob. Chemother., 1994, 33 (5): 1067–1074.
    [168]邓安平,杨红,杨秀岑,青霉素酶及其在酶免疫分析中的应用,华西医学杂志,1996,11(4): 241–242.
    [169] Liu S. P., Hu X. L., Luo H. Q., Resonance rayleigh–scattering measurement of aminoglyeoside antibiotics with evans blue, Ana1. Sci., 2003, 19 (6): 927–936.
    [170] Liu S. P., Hu X. L., Luo H. Q., Resonance rayleigh–scattering Spectra of interaction of aminoglycoside antibiotics with trypan red and their analytical applications, Acta Chimica Sinica,2003, 61 (8): 1287–1293.
    [171] Fang X. M., Feng L. X., Ye J. N. , Fang Y. Z., Determination of lincomycin and lincomycin B in bulk drug and pharmaceutical formulations by capillary zone electrophoresis with amperometric detection, Anal. Lett., 1996, 29: 1975–1984.
    [172] Yang W. C., Yu A. M., Chen H. Y., Applications of a copper microparticle–modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis, J. Chromatogr. A, 2001, 905: 309–318.
    [173] Wang X. L., Yu Z. Y., Jiao K., Voltammetric studies on the interaction of amikacin with methyl blue and its analytical application, Chin. Chem. Lett., 2007, 18: 94–96.
    [174] Lv S. F., Fei J. J., Electrochemical behaviors of cefotaxime at a multi–wall carbon nanotubes modified glassy carbon electrode and its analysis application,Wuhan Univers. J. (Natur. Scien. Edit.), 2003, 2: 157–161.
    [175] Wu Y. H., Ye S. H., Hu S. S., Electrochemical study of lincomycin on a multi–wall carbon nanotubes modified glassy carbon electrode and its determination in tablets, J. Pharm. & Biomed. Anal., 2006, 41: 820–824.
    [176] Xu J. Z., Zhu J. J., Wang H., Chen H. Y., Nano–sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin, Anal. Lett., 2003, 36: 2723–2733.
    [177] Cai Y. J., Zhang Y. Z., Su Sh., Li S., Ni Y., Electrochmical studies oxidation of ciprofloxacinat nano–SnO2/PVS modified electrode and its ineraction with calf thymus DNA, Front. Biosci., 2007, 12: 1946–1955.
    [178] Xiao Y., Patolsky F., Katz E., Hainfeld J. F., Willner I., Plugging into enzymes nanowiring of redox enzymes by a gold nanoparticle, Science, 2003, 299:1877–1881.
    [179] Eliott S. J., McElhancy A. E., Feng C., Enemark J. H., Armstrong F. A., A voltammetric study of interdomain electron transfer within sulfite oxidase, J. Am. Chem. Soc., 2002, 124: 11612–11613.
    [180] Aguey–Zinsou K. F., Bernhardt P. V., Kappler U., Mcewan A. G., Direct electrochemistry of a bacterial sulfite dehydrogenase, J. Am. Chem. Soc., 2003, 125: 530–535.
    [181] Grancharov S. G., Zeng H., Sun S., Wang S. X., Brien S. O., Murray C. B., Kirtley J. R., Held G. A., Bio–functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B, 2005, 109: 13030–13035.
    [182] Taton T. A., Mirkin C. A., Letsinger R. L., Scanometric DNA array detection with nanoparticle probes, Science, 2000, 289: 1757–1760.
    [183] Wang Q. X., Jiao K., Liu F. Q., Yuan X. L., Sun .w., Spectroscopic, viscositic and electrochemical studies of DNA interaction with a novel mixed–ligand complex of nickel (Ⅱ) that incorporates 1–methulimidazole and thiocyanate groups, J. Biochem. Biophy. Methods, 2007, 70: 427–433.
    [184] Zhang X. Z., Liu S. F., Jiao K., Gao H. W., Shi Y. J., Rapid and cost–effective detection of sequence–specific DNA by monitoring the electrochemical response of 20–deoxyguanosine 50–triphosphate in a PCR sample, Analyst, 2008, 133, 1729–1735
    [1] Shosuke K., Yusuke H., Mariko M., Shinji O., The role of metals in site–specific DNA damage with reference to carcinogenesis, Free Radical Biol. Med., 2002, 32: 822–832.
    [2] Xue W. L., Warshawsky D., Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review, Toxicol. Appl. Pharmacol., 2005, 206: 73–93.
    [3] Cooke M. S., Evans M. D., Dizdaroglu M., Joseph L., Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J., 2003, 17, 1195–1214.
    [4] Jia S. P., Liang M. M., Guo L. H., Photoelectrochemical detection of oxidative DNA damage induced by fenton reaction with low concentration and DNA–associated Fe2+, J. Phys. Chem. B, 2008, 112: 4461–4464.
    [5] Tarun M., Bajrami B., Rusling J. F., Genotoxicity screening using biocatalyst/DNA films and capillary LC–MS/MS, Anal. Chem. 2006, 78: 624–627.
    [6] Tarun M., Rusling J. F., Measuring DNA nucleobase adducts using neutral hydrolysis and liquid chromatography–mass spectrometry, Crit. Rev. Eukaryotic Gene. Expression, 2005, 15: 295–315.
    [7] Zhou L. P., Estavillo C., Stuart J. D., Stuart J. D., Schenkman J. B., Rusling J. F., Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA?enzyme films, J. Am. Chem. Soc., 2003, 125: 1431–1436.
    [8] Mugweru A., Yang J., Rusling J. F., Gomparison of hemoglobin and myoglobin for in situ metabolite generation in chemical toxicity sensors using a metallopolymer catalyst for DNA damage detection, Electroanalysis. 2004, 16: 1132–1138.
    [9] So M., Hvastkovs E. G., Bajrami B., Schenkman J. B., Rusling J. F., Electrochemical genotoxicity screening for arylamines bioactivated by N–acetyltransferase, Anal. Chem., 2008, 80: 1192–1200.
    [10] Palecék E., Fojta M., Tomschik M., Wang J., Electrochemical biosensors for DNA hybridization and DNA damage, Biosens. Bioelectron., 1998, 13: 621–628.
    [11] Liang M. M., Guo L. H., Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the Fenton reaction, Environ. Sci. Technol., 2007, 41: 658–664.
    [12] Liang M. M., Jia S. P., Zhu S. C., Guo L. H., Photoelectrochemical sensor for the rapid detection of in situ DNA damage induced by enzyme–catalyzed Fenton reaction, Environ. Sci. Technol., 2008, 42: 635–639.
    [13] Lu L. R., Ai Z. H., Li J. P., Zheng Z., Li Q., Zhang L. Z., Synthesis and characterization of Fe–Fe2O3 core–shell nanowires and nanonecklaces, Crystal Growth & Design., 2007, 7: 459–464.
    [14] Frens G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phy. Sci., 1973, 241: 20–22.
    [15] Dollimore L. S., Gillard R. D., Optically active co–ordination compounds. Part XXXII. Potassium (+) tris–[L–cysteinesulphinato(2–)–SN]cobaltate (III): a versatile agent for resolution of 3+ species, J. Chem. Soc. Dalton Trans, 1973, 9: 933–940.
    [16] Feng Y. Y., Yang T., Zhang, W., Jiang C., Jiao K., Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes, Anal. Chim. Acta, 2008, 616: 144–151.
    [17] Konnann C., Bahnemann D., Hofmann M. R., Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand, Environ. Sci, Technol., 1988, 22: 798–806.
    [18] Villers, D., Sun, S. H., Serventi, A. M., Dodelet J. P., Desilets S., Characterization of Pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen, J. Phys. Chem. B, 2006, 110, 25916–25925.
    [19] Ai Z. H., Lv L. R., Li J. P. Zhang L. Z., Qiu J. R., Wu M. H., Fe@Fe2O3 Core–Shell nanowires as iron reagent. 1. efficient degradation of rhodamine B by a novel sono–fenton process, J. Phys. Chem. C, 2007, 111: 4087–4093.
    [20] Ai Z. H., Mei T., Liu J., Li J. P., Jia F. L., Zhang L. Z., Qin J. R., Fe@Fe2O3 core–shell nanowires as an iron reagent. 3. their combination with CNTs as an effective oxygen–fed gas diffusion electrode in a neutral electro–Fenton system, J. Phys. Chem. C, 2007, 111: 14799–14803.
    [21] Zhou L., Rusling J. F., Detection of Chemically induced DNA damage in layered films by catalytic square wave voltammetry using Ru(bpy)32+, Anal. Chem., 2001, 73: 4780–4786.
    [22] Mugweru A., Rusling J. F., Square wave voltammetric detection of chemical DNA damage with catalytic poly(4–vinylpyridine)?Ru(bpy)2 2+ films, Anal. Chem., 2002, 74: 4044–4049.
    [1] Brillas E., Casado J., Aniline degradation by electro–Fenton and peroxi–coagulation processes using a flow reactor for wastewater treatment, Chemosphere, 2002, 47: 241.
    [2] Ai Z. H., Xiao H. Y., Mei T., Liu J., Zhang L. Z., Deng K. J., Qiu J. R., Electro–Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes, J. Phys. Chem. C, 2008, 112: 11929–11935.
    [3] Li J. P., Ai Z. H., Jia F. L., Zhang L. Z., Lin J., Efficient visible light degradation of rhodamine B by a photo–electrochemical process based on a Bi2WO6 nanoplate film electrode, J. Phys. Chem. C, 2007, 111: 6832–6836.
    [4] Lu L. R., Ai Z. H., Li J. P., Zheng Z., Li Q., Zhang L. Z., Synthesis and characterization of Fe–Fe2O3 core–shell nanowires and nanonecklaces, Crystal Growth & Design, 2007, 7: 459–464.
    [5] Jiang C., Yang T., Jiao K., Gao H. W., A DNA electrochemical sensor with poly–l–lysine/single–walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene, Electrochim. Acta, 2008, 53: 2917–2924.
    [6] Yang, T., Zhang, W., Du, M., Jiao K., A PDDA/poly(2,6–pyridinedicarboxylic acid)–CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene, Talanta, 2008, 74: 987–994.
    [7] Yang J., Jiao K., Yang T., A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single–walled carbon nanotubes and poly (2,6–pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment, Anal. Bioanal. Chem., 2007, 389: 913–921.
    [8] Yang T., Zhou N., Zhang Y. C., Zhang W., Jiao K., Li G. C., Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi–walled carbon nanotubes composites, Biosens. Bioelectron., 2008,24: 2165–2170.
    [9] Zhang X. Z., Liu S. F., Jiao K., Gao H. W., Shi Y. J., Rapid and cost–effective detection of sequence–specific DNA by monitoring the electrochemical response of 20–deoxyguanosine 50–triphosphate in a PCR sample, Analyst, 2008, 133, 1729–1735
    [10] Monographs on the evaluation of carcinogenic risks to humans, International Agency for Research on Cancer: Lyon, France, 1980, Vol. 23.
    [11] Cooke M. S., Evans M. D., Dizdaroglu M., Lunec J., Oxidative DNA damage: mechanisms,mutation, and disease. FASEB J. 2003, 17, 1195–1214.
    [12] Pfeifer G. P., Technologies for detection of DNA damage and mutations, Plenum: New York, 1996.
    [13] Zhou L. P., Estavillo C., Stuart J. D., Schenkman J. B., Rusling J. F., Toxicity Screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA?enzyme Films, J. Am. Chem. Soc., 2003, 125: 1431–1436.
    [14] Mugweru A., Yang J., Rusling J. F., Gomparison of hemoglobin and myoglobin for in situ metabolite generation in chemical toxicity sensors using a metallopolymer catalyst for DNA damage detection, Electroanalysis, 2004, 16: 1132–1138.
    [15] So M., Hvastkovs E. G., Bajrami B., Schenkman J. B., Rusling J. F., Electrochemical genotoxicity screening for arylamines bioactivated by N–acetyltransferase, Anal. Chem., 2008, 80: 1192–1200.
    [16] Liang M. M., Guo L. H., Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the fenton reaction, Environ. Sci. Technol., 2007, 41: 658–664.
    [17] Liang M. M., Jia S. P., Zhu S. C., Guo L. H., Photoelectrochemical sensor for the rapid detection of in ditu DNA damage induced by enzyme–catalyzed Fenton reaction, Environ. Sci. Technol., 2008, 42: 635–639.
    [18] Dollimore L. S., Gillard R. D., Optically active co–ordination compounds. Part XXXII. Potassium (+) tris–[L–cysteinesulphinato(2–)–SN]cobaltate (III): a versatile agent for resolution of 3+ species, J. Chem. Soc. Dalton Trans, 1973, 9: 933–940.
    [19] Konnann C., Bahnemann D., Hofmann M. R., Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand, Environ. Sci, Technol., 1988, 22: 798–806.
    [20] Zhou L., Rusling J. F., Detection of chemically induced DNA damage in layered films by catalytic square wave voltammetry using Ru(bpy)32+, Anal. Chem., 2001, 73:4780–4786.
    [21] Mugweru A., Rusling J. F., Square wave voltammetric detection of chemical DNA damage with catalytic poly (4–Vinylpyridine)?Ru(bpy)2 2+ films, Anal. Chem., 2002, 74: 4044–4049.
    [22] Ai Z. H., Lv L. R., Li J. P. Zhang L. Z., Qiu J. R., Wu M. H., Fe@Fe2O3 core?shell nanowires as iron reagent. 1. efficient degradation of rhodamine B by a novel Sono–Fenton process, J. Phys. Chem. C, 2007, 111: 4087–4093.
    [23] Ai Z. H., Mei T., Liu J., Li J. P. Jia F. L., Zhang L. Z., Fe@Fe2O3 core–shell nanowires as an iron reagent 3 their combination with CNTs as an effective oxygen–fed gas diffusion electrode in a neutral electro–Fenton system, J. Phys. Chem. C 2007, 111: 14799–14803.
    [1] Vinu A., Sawant D. P., Ariga K., Hartmann M., Halligudi S. B., Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA–15 catalysts, Micropor. Mesopor. Mater., 2005, 80: 195–203.
    [2] Ai Z. H., Xiao H. Y., Mei T., Liu J., Zhang L. Z., Deng K. J., Qiu J. R., Electro–Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes, J. Phys. Chem. C, 2008, 112: 11929–11935.
    [3] Frens G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phy. Sci., 1973, 241: 20–22.
    [4] Dollimore L. S., Gillard R. D., Optically active coordination compounds. part XXXII. potassium (+) tris–[lcysteinesulphinato(2–)–SN] cobaltate (III): a versatile agent for resolution of 3+ species, J. Chem. Soc. Dalton. Trans., 1973, 9: 933–940.
    [5] Zhou L., Rusling J. F., Detection of chemically induced DNA damage in layered films by catalytic square wave voltammetry using Ru(bpy)32+, Anal. Chem., 2001, 73: 4780–4786.
    [6] Mugweru A., Rusling J. F., Square wave voltammetric detection of chemical DNA damage with catalytic poly (4–vinylpyridine)?Ru(bpy)2 2+ Films, Anal. Chem., 2002, 74: 4044–4049.
    [1] Castaneda M. T., Alegret S., Merkoci A., Electrochemical sensing of DNA using gold nanoparticles, Electroanalysis, 2007, 19: 743–753.
    [2] Hsing I. M., Xu Y., Zhao W. T., Micro– and nano–magnetic particles for applications in biosensing, Electroanalysis, 2007, 19: 755–768.
    [3] Liu M. C., Shi G. Y., Zhang L., Cheng Y. X., Jin L. T., Quantum dots modified electrode and its application in electroanalysis of hemoglobin, Electrochem. Commun., 2006, 8: 305–310.
    [4] Chen D., Wang G., Li J. H., Interfacial bioelectrochemistry: fabrication, properties and applications of functional nanostructured biointerfaces, J. Phys. Chem. C, 2007, 111: 2351–2367.
    [5] Wang G. X., Pan Q. X., Wang H. S., Preparation of a novel DNA application to detection electrochemical sensor and its of DNA oxidative damage, Chem. Res. Chinese University, 2005, 26: 1812–1816.
    [6]李金花,胡劲波,丁小琴,李启隆,功能化纳米金放大的DNA电化学传感器研究,高等学校化学学报,2005, 26: 1432–1436.
    [7] Yang J., Jiao K., Yang T., A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single–walled carbon nanotubes and poly (2,6–pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment, Anal. Bioanal. Chem., 2007, 389: 913–921.
    [8] Yang J., Yang T., Feng Y. Y., Jiao K., A DNA electrochemical sensor based on nanogold–modified poly–2,6–pyridinedicarboxylic acid film and detection of PAT gene fragment, Anal. Biochem., 2007, 365: 24–30.
    [9] Jiang C., Yang T., Jiao K., Gao H. W., A DNA electrochemical sensor with poly–L–lysine/single–walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim. Acta, 2008, 53: 2917–2924.
    [10] Ma Y., Yang T., Jiao K., Sensitive PAT gene sequence detection by nano–SiO2/p–aminothiophenol self–assembled films DNA electrochemical biosensor based on impedance measurement, Sens. Actua. B: Chem., 2008, 131: 565–571.
    [11] Yang R., Ruan C. M., Dai W. L., Deng J. Q., Kong J. L., Electropolymerization of thionone in neutral aqueous media and H2O2 biosensor based on poly (thionine), Electrochim. Acta, 1999, 44: 1585–1596.
    [12] Xu Y., Yang, L., Ye X., He P., Fang Y., Impedance–based DNA biosensor employing molecular beacon DNA as probe and thionine as charge neutralizer, Electroanalysis, 2006, 18, 873–881.
    [13]陈贤光,钱莹,张素娟,邹小勇,基于纳米金和硫堇固定酶的过氧化氢生物传感器,化学学报,2007,65: 337–343.
    [14] Zhuo Y., Yuan R., Chai Y. Q., Tang D. P., Zhang L. Y., Wang N., Li X. L., Zhu Q., A reagentless amperometric immunosensor based on gold nanoparticles/thionine/Nafion–membrane–modified gold electrode for determination ofα–1–fetoprotein, Electrochem. Commun., 2005, 7: 355–360.
    [15] Zhuo Y., Yuan R., Chai Y. Q., Zhang Y., Li X. L., Wang N., Zhu Q., Amperometric enzyme immunosensors based on layer–by–layer assembly of gold nanoparticles and thionine on Nafion modified electrode surface forα–1–fetoprotein determinations, Sens. Actua. B: Chem., 2006, 114: 631–639.
    [16] Frens G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature Phy. Sci., 1973, 241: 20–22.
    [17] Kong Y., Mu X. L., Chemical exchange and self diffusion dynamics of quercetin in solutions, Acta. Phys. Chim. Sin., 2001, 17: 295–299.
    [1] Flechsig G., Reske T., Electrochemical detection of DNA hybridization by means of osmium tetroxide complexes and protective oligonucleotides, Anal. Chem., 2007, 79: 2125–2130.
    [2] Lee J. G., Yun K., Lim G. S., Lee S. E., Kim S., Park J. K., DNA biosensor based on the electrochemiluminescence of Ru(bpy)32+ with DNA–binding intercalators, Bioelectrochem., 2007, 70: 228–234.
    [3] Ma Y. F., Ali S. R., Dodoo A. S., He H. X., Enhanced sensitivity for biosensors: Multiple functions of DNA–wrapped single–walled carbon nanotubes in self–doped polyaniline nanocomposites, J. Phys. Chem. B, 2006, 110: 16359–16365.
    [4] Rauf S., Nawaz H., Akhtar K., Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor, Biosens. Bioelectron., 2007, 22: 2471–2477.
    [5] Stempkowska I., Ligaj M., Jasnowska J., Langer J., Filipiak M., Electrochemical response of oligonucleotides on carbon paste electrode, Bioelectrochem., 2007, 70: 488–494.
    [6] Panke O., Kirbs A., Lisdat F., Voltammetric detection of single base–pair mismatches and quantification of label–free target ssDNA using a competitive binding assay, Biosens. Bioelectron., 2007, 22: 2656–2662.
    [7] Peng H., Soeller C., Travas J. S., Novel conducting polymers for DNA sensing, Macromolecules, 2007, 40: 909–914.
    [8] Kim Y. S., Jung H. S., Matsuura T., Lee H. Y., Kawai T., Gu M. B., Electrochemical detection of 17β–estradiol using DNA aptamer immobilized gold electrode chip, Biosens. Bioelectron., 2007, 22: 2525–2531.
    [9] Granot E., Basnar B., Cheglakov Z., Eugenii K., Willner I., Enhanced bioelectrocatalysis using single–walled carbon nanotubes (SWCNTs)/polyaniline hybrid systems in thin–film and microrod structures associated with electrodes, Electroanalysis. 2006, 18 (1): 26–34.
    [10] Zou Y. J., Sun L. X., Xu F., Biosensor based on polyaniline–prussian blue/multi–walled carbon nanotubes hybrid composites. Biosens. Bioelectron., 2007, 22 (11): 2669–2674.
    [11] Shan D., Wang S., He Y. Y., Amperometric glucose biosensor based on in situ electropolymerized polyaniline/poly (acrylonitrile–co–acrylic acid) composite film, Mater. Sci. Eng. : C, 2008, 28: 213–217.
    [12] Fang M. M., David M. K., Anthony C. S., A“Mix and Match”ionic–covalent strategy for self–assembly of inorganic multilayer Films, J. Am. Chem. Soc., 1997,119: 12184–12191
    [13] Zhang W., Yang T., Jiang C., Jiao K., DNA hybridization and phosphinothricinacetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode, Appl. Surf. Sci., 2008, 254 (15): 4750–4756.
    [14] Yang J., Jiao K., Yang T., A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single–walled carbon nanotubes and poly (2,6–pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment, Anal. Bioanal. Chem., 2007, 389 (3): 913–921.
    [15]孙登明,张振新,马伟,王磊,聚L–酪氨酸修饰电极的制备及对多巴胺的测定,分析试验室,2005,24(7): 82–85.
    [1] Hurdis E., Romeyn H. J., Accuracy of determination of hydrogen peroxide by cerate oxidimetry, Anal. Chem., 1954, 26: 320–325.
    [2] Matsubara C., Kawamoto N., Takamura K., Ultra–hish sensitivity spectrophotometric reagent for hydrogen per–oxide, Analyst, 1992, 117: 1781–1786.
    [3] Hanaoka S., Lin J., Yamada M., Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 Catalyzed by cobalt(II)–ethanolamine complex immobilized on resin., Anal. Chim. Acta., 2001, 426: 57–64.
    [4] Jia J., Wang B., Wu A., Cheng G. J., Li Z., Dong S. J., A method to construct a third–generation horseradish peroxidase biosensor: self–Assembling gold nanoparticles to three–dimensional sol?gel network, Anal. Chem., 2002, 74: 2217–2223.
    [5] Mathebe N., Morrin A., Iwuoha E., Electrochemistry and scanning electron microscopy of polyaniline/peroxidase–based biosensor, Talanta, 2004, 64: 115–120.
    [6] Wang B. Q., Li B., Wang Z. X., Xu Q. B., Wang Q., Dong S. J., Sol–gel thin–film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium, Anal. Chem., 1999, 71: 1935–1939.
    [7] Yang W. W., Li Y. C., Bai Y., Sun C. Q., Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a nafion film, Sens. Actua. B: Chem., 2006, 115: 42–48.
    [8] Dunford H. B., in: J. Everse, K. E. Everse, M. B., Grisham (Eds.), Peroxidases in chemistry and biology, CRC Press, Boca Raton, FL 1991, 1,24.
    [9] Chen H. J., Dong S. J., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel–derived ceramic–carbon nanotube nanocomposite film, Biosens. Bioelectron., 2007, 22: 1811–1815.
    [10] Tang J. L., Wang B. Q., Wu Z. Y., Han X. J., Dong S. J., Wang E. K., Lipid membrane immobilized horseradish peroxidase biosensor for amperometric determination of hydrogen peroxide, Biosens. Bioelectron., 2003, 18: 867–872.
    [11] Xu S. Y., Han X. Z., A novel method to construct a third–generation biosensor: self–assembling gold nanoparticles on thiol–functionalized poly(styrene–co–acrylic acid) nanospheres, Biosens. Bioelectron., 2004, 19: 1117–1120.
    [12] Pandey P., Singh S., Arya P. S. K., Gupta V., Datta M., Singh S., Malhotra B. D., Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity, Langmuir,2007, 23: 3333–3337.
    [13] Xu S. Y., Peng B., Han X. Z., A third–generation H2O2 biosensor based on horseradish peroxidase–labeled Au nanoparticles self–assembled to hollow porous polymeric nanopheres, Biosens. Bioelectron., 2007, 22: 1807–1810.
    [14] Song Y. H., Wang L., Ren C. B., Zhu G. Y., Li Z., A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode, Sens. Actua. B: Chem., 2006, 114: 1001–1006.
    [15] Lei C. X., Hu S. Q., Gao N., Shen G. L., Yu R. Q., An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano–Au monolayer supported by sol–gel derived carbon ceramic electrode, Bioelectrochem., 2004, 65: 33–39.
    [16] Tang D., Yuan R., Chai Y., Electro–transfer mediator microbiosensor fabrication based on immobilizing HRP–labeled Au colloide on gold electrode surface by 11–mercaptoundecanoic noic acid monolayer, Electroanalysis, 2006, 18: 259–266.
    [17] Willner I., Katz E., Integration of layered redox proteins and conductive supports for bioelectronic applications, Angew. Chem. Int. Ed., 2000, 39: 1180–1218.
    [18] Tang Z. C., Geng D. S., Lu G. X., Electrocatalytic oxidation of carbon monoxide on platinum–modified polyaniline film electrod, Thin Solid Films, 2006, 497: 309–314.
    [19] Luo X. L., Killard A. J., Smyth M. R., Nanocomposite and nanoporous polyaniline conducting polymers exhibit enhanced catalysis of nitrite reduction, Chem. Eur. J., 2007, 13: 2138–2146.
    [20] Feng Y. Y., Yang T., Zhang W., Jiang C., Jiao K., Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes, Anal. Chim. Acta, 2008, 616: 144–151.
    [21] Morrin A., Ngamna O., Killard A. J., Moulton S. E., Smyth M. R., Wallace G. G., An amperometric enzyme biosensor fabricated from polyaniline nanoparticles, Electroanalysis, 2005, 17: 423–430.
    [22] Zhou H. H., Chen H., Luo S. L., Chen J. H., Wei W. Z., Kuang Y. F., Glucose biosensor based on platinum microparticles dispersed in nano–fibrous polyaniline, Biosens. Bioelectron., 2005, 20: 1305–1311.
    [23] Leroux Y., Eang E., Fave C., Trippe G., Lacroix J. C., Conducting polymer/gold nanoparticle hybrid materials: A step toward electroactive plasmonic devices, Electrochem. Commun., 2007, 9: 1258–1262.
    [24] Zou Y. J., Sun L. X., Xu F., Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan–SiO2 sol–gel, Biosens. Bioelectron, 2007, 22: 2669–2674.
    [25] Leroux Y., Eang E., Fave C., Trippe G., Lacroix J.C., Conducting polymer/gold nanoparticle hybrid materials: a step toward electroactive plasmonic devices, Electrochem. Commun., 2007, 9, 1258–1262.
    [26] Salgado J. R. C., Antolini E., Gonzalez E. R., Carbon supported Pt70Co30 electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells, J. Power. Sources,2005, 141: 13–18.
    [27] Salgado J. R. C., Antolini E., Gonzalez E. R., Structure and activity of carbon–supported Pt–Co electrocatalysts for oxygen reduction, J. Phys. Chem. B, 2004, 108:17767–17774.
    [28] Park K. W., Choi J. H., Kwon B. K., Lee S. A., Sung Y. E., Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation, J. Phys. Chem. B, 2002, 106: 1869–1877.
    [29] Zhai J. F., Huang M. H., Dong S. J., Electrochemical designing of Au/Pt core shell nanoparticles as nanostructured catalyst with tunable activity for oxygen reduction, Electroanalysis, 2007, 19: 506–509.
    [30] Kang X. H., Mai Z. B., Zou X. Y., A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes, Anal. Biochem., 2007, 369: 71–79.
    [31] Zhou S., Mcllwrath K., Jackson G., Eichhorn B., Enhanced CO tolerance for hydrogen activation in Au?Pt dendritic heteroaggregate nanostructures, J. Am. Chem. Soc., 2006, 128: 1780–1781.
    [32] Luo J., Njoki, N., Lin Y., Mott D., Wang L. Y., Zhong C. J., Characterization of carbon–supported Au/Pt Nanoparticles for electrocatalytic methanol oxidation reaction, Langmuir, 2006, 22: 2892–2898.
    [33] Yogeswaran, U., Thiagarajan, S., Chen S. M., Nanocomposite of unctionalized multiwall carbon nanotubes with nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid, Anal. Biochem, 2007, 365: 122–131.
    [34] Chang H. X., Yuan Y.;Shi N. L., Guan Y. F., Electrochemical DNA biosensor based on conducting polyaniline nanotube array, Anal. Chem., 2007, 79: 5111–5115.
    [35] Huang R., Hu N. F., Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films, Bioelectrochemistry, 2001, 54: 75–81.
    [36] Wang F. C., Yuan R., Chai Y. Q., Tang D. P., Probing traces of hydrogen peroxide by use of a biosensor based on mediator–free DNA and horseradish peroxidase immobilized on silver nanoparticles, Anal. Bioanal. Chem., 2007, 387: 709–717.
    [37] Song Y. H., Wang L., Ren C. B., Zhu G. Y., Li Z., A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode, Sens. Actuators B, 2006, 114: 1001–1006.
    [38] Kafi A. K. M., Fan Y., Shin H. K., Kwon Y. S., Hydrogen peroxide biosensor based on DNA–Hb modified gold electrode, Thin Solid Films, 2006, 499: 420–424.
    [39] Zhang Q., Zhang L., Li J. H., DNA?hemoglobin?multiwalls carbon nanotube hybrid material with sandwich structure: preparation, characterization, and application in bioelectrochemistry,J. Phys. Chem. C, 2007, 111: 8655–8660.
    [42] Wu S., Zhao H., Ju H., Shi C., Zhao J., Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose, Electrochem. Commun., 2006, 8: 1197–1203.
    [41] Shang L., Sun, Z., Wang X., Li G., Enhanced peroxidase activity of hemoglobin in a DNA membrane and its application to an unmediated hydrogen peroxide biosensor, Anal. Sci., 2003, 19: 1537–1539
    [1] Fujita Y., Mori I., Fujita K., Nakahashi Y., Tanaka T., Determination of chlorpromazine, thiamine, lincomycin, ofloxacin and theophylline by ternary complex formation with eosin and palladium (II), Chem. Pharm. Bull, 1987, 35: 5004–5009.
    [2] Asmus P. A., Landis J. B., Vila C. L., Liquid chromatographic determination of incomycin in fermentationbeers, J Chromatogr. A, 1983, 264: 241–248.
    [3] Orwa J. A., Bosmans F., Depuydt S., Roets E., Hoogmartens J., Liquid chromatographic method for separation of lincomycin from its related substances, J. Chromatogr. A, 1998, 829: 161–166.
    [4] Szunyog J., Adams E., Liekens K., Roets E., Hoogmartens J., Analysis of a formulation containing lincomycin and spectinomycin by liquid chromatography with pulsed electrochemical detection, J. Pharm. and Biomed. Anal., 2001, 29: 213–220.
    [5] Fang X. M., Feng L. X., Ye J. N., Fang Y. Z., Determination of lincomycin and lincomycin B in bulk drug and pharmaceutical formulations by capillary zone electrophoresis with amperometric detection, Anal. Lett., 1996, 29: 1975–1984.
    [6] Yang W. C., Yu A. M., Chen H. Y., Applications of a copper microparticle–modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis, J. Chromatogr. A, 2001, 905: 309–318.
    [7] Wu Y. H., Ye S. H., Hu S. S., Electrochemical study of lincomycin on a multi–wall carbon nanotubes modified glassy carbon electrode and its determination in tablets, J. Pharm. and Biomed. Anal., 2006, 41: 820–824.
    [8] Wang X. L., Yu Z. Y., Jiao K., Voltammetric studies on the interaction of amikacin with methyl blue and its analytical application, Chin. Chem. Lett., 2007, 18:1894–1896.
    [9] Lv S. F., Fei J. J., Electrochemical behaviors of cefotaxime at a multi–wall carbon nanotubes modified glassy carbon electrode and its analysis application, Wuhan University J (Natur. Scien. Edit.), 2003, 2: 157–161.
    [10] Xu J. Z., Zhu J. J., Wang H., Chen H. Y., Nano–sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin, Anal. Lett., 2003, 36: 2723–2733.
    [11] Tang Z. C., Geng D. S., Lu G. X., Electrocatalytic oxidation of carbon monoxide on platinum–modified polyaniline film electrod, Thin Solid Films, 2006, 497: 309–314.
    [12] Luo X. L., Killard A. J., Smyth M. R., Nanocomposite and nanoporous polyaniline conducting polymers exhibit enhanced catalysis of nitrite reduction, Chem. Eur. J., 2007, 13: 2138–2145.
    [13] Feng Y. Y., Yang T., Zhang W., Jiang C. Jiao K., Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes, Anal. Chim. Acta, 2008, 616: 144–151.
    [14] Salgado J. R. C., Antolini E., Gonzalez E. R., Analysis of the interface between lithium and organic electrolyte solution, J. Power Sources, 2005, 141: 13–23.
    [15] Salgado J. R. C., Antolini E., Gonzalez E. R., Structure and activity of carbon–supported Pt–Co electrocatalysts for oxygen reduction, J. Phys. Chem. B, 2004, 108: 17767–17774.
    [16] Park K. W., Choi J. H., Kwon B. K., Lee S. A., Sung Y. E., Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation, J. Phys. Chem. B, 2002, 106: 1869–1877.
    [17] Kang X. H., Mai Z. B., Zou X. Y., A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes, Anal. Biochem., 2007, 369: 71–79.
    [18] Bard A. J., Faulkner L. R., Electrochemical Methods: Fundamentals and Applications, John Wiley and Sons Inc., New York, 2001, 97.
    [19] Laviron E., General exp ression of the linear potential sweep voltammogram in the case of diffusionless electro–chemical systems, J. Electroanal. Chem., 1979, 101: 19–28.
    [20] Bond A. M., Modern Polarographic Methods in Analytical Chemistry, Marcel Dekker, New York, 1980, 27.
    [21] Anson F. C., Application of potentiostatic current integration to the study of the adsorption of cobalt (III)–ethylenedinitrilo (tetraacetate) on mercury electrodes,Anal. Chem., 1964, 36: 932–934.
    [1] Adams E., Vaerenbergh G. V., Roet E., Hoogmartens J., Analysis of amikacin by liquid chromatography with pulsed electrochemical detection, J. Chromatogr. A, 1998, 819: 93–97.
    [2] European Pharmacopoeia Secrerarist . European pharmacopoa, 3rd. Srrasbcurg, European Department for the Quality of Medicines with in the Council of Europe, 2000 (Suppl) : 26.
    [3]湛海粼,胡小莉,江虹,伊文思蓝光度法测定硫酸阿米卡星的含量,分析科学学报,2004,20 (2) : 169–171.
    [4]江虹,湛海粼,吴兴发,方卢秋,秦宗会,刚果红褪色光度法测定硫酸阿米卡星,中国抗生素杂志,39 (3): 144–145,162.
    [5]江虹,湛海粼,吴兴发,方卢秋,双波长光度法测定阿米卡星的研究,理化检验–化学分册,2004,40 (6): 338–340.
    [6] Xu J. Z., Zhu J. J., Wang H., Chen H. Y., Nano–sized copper oxide modified carbon paste electrodes as an amperometric sensor for amikacin, analytical letters, 2003, 36 (13): 2723–2733.
    [7] Galus Z., Fundamental of electrochemical analysis, Chichester: Ellis Horwood. 1976, 237.
    [8] Bond A. M., Modern polarographic methods in analytical chemistry, Marcel Dekker, New York, 1980, 27.
    [9] Wang X. L., Yu Z. Y., Jiao K., Voltammetric studies on the interaction of amikacin with methyl blue and its analytical application, Chin. Chem. Lett., 2007, 18: 1894–1896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700