新型传感界面构建及其在农药分子检测和生物活性研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药在为农业生产提供保障的同时其残留物也对环境和人类健康造成危害,这就对当前农药研究提出了两方面的研究课题:一方面,发展快速、可靠的农药分析检测方法保障食品安全和品质:另一方面,开发高效、低毒、低残留的农药新品种,从源头上降低农药残留带来的副作用。将靶标蛋白与底物结合的高选择性和分子识别能力与电化学检测的灵敏、快速等特点结合,成为研究高效、便捷的农药分析检测新方法的发展趋势。利用靶标蛋白与底物的分子识别能力建立抑制剂离体生物活性分析方法,同样对实现新型农药候选化合物的初期筛选和先导结构化合物验证具有重要意义。无论是农残检测还是药物筛选,界面构建和生物大分子的固定是影响传感分析信号灵敏度和稳定性的关键因素。本文利用电化学和表面等离子体共振技术,以乙酰胆碱酯酶(AChE)和D1蛋白酶(CtpA)为靶标蛋白构建了几种生物兼容的界面,围绕发展基于靶标蛋白分子识别的农药分子检测和生物活性研究新方法这一中心,开展了以下几个方面的工作:
     1.多壁碳纳米管-壳聚糖-乙酰胆碱酯酶复合界面的构建及其与底物的分子识别
     利用戊二醛作为交联剂将AChE固定在壳聚糖与多壁碳纳米管组成的复合界面上。壳聚糖作为载体固定酶,为AChE提供一个理想的微观环境以保持酶的活性,碳纳米管的引入能有效降低酶催化产物硫代胆碱在电极上的氧化电位。固载的AChE能快速灵敏的催化溶液中的底物氯化乙酰硫代胆碱(ATCl),定量检测ATCl在2.0-20.0μM和20.0-400.0μM两个浓度区间内与电流响应有良好线性关系,AChE的表观米氏常数为132μM。该方法重现性好、灵敏度高、响应迅速、稳定可靠,有望为酶抑制剂的检测提供一个经济、便利的检测方法。
     2.构建多壁碳纳米管-交联壳聚糖-乙酰胆碱酯酶复合界面用于杀虫剂检测及生物活性分析
     以多壁碳纳米管交联壳聚糖复合膜固定AChE,采用竞争结合方法,分析溶液中的杀虫剂与ATCl竞争结合表面固定的酶。电化学信号的降低与杀虫剂三唑磷的浓度在0.03-7.8μM和7.8-32.0μM浓度范围内呈现良好线性,并定性分析比较了西维因、马拉硫磷、乐果对AChE的抑制效果,建立了基于AChE抑制的农药药效快速分析电化学方法。改变表面固载的靶标酶蛋白,可用于其它酶底物或模拟底物水解产物具有电化学活性的酶抑制剂的活性比较。
     3.银纳米粒子-生物素复合界面固定乙酰胆碱酯酶检测有机磷农药
     将自主合成的biotin-聚醚链-硫辛酸与11-巯基-1-十一醇混合组装于金电极表面,以avidin作为桥接将biotin衍生化的乙酰胆碱酯酶(ACHE)固定于表面,银纳米通过与avidin之间的静电引力结合,进而形成银纳米粒子-avidin-AChE复合界面。以ATCl为底物,根据氧化峰电流的减少,检测到乐果在0.05-10.0μM浓度范围内与酶抑制率呈线性关系,线性拟合的相关系数分别0.9983,检测限为0.01μM。
     4.金纳米粒子标记的氨基甲酸酯与乙酰胆碱酯酶相互作用的表面等离子体共振研究
     AChE通过共价键固定在11-巯基-1-十一酸的自组装膜上,将本课题组设计合成的两种抑制剂先导化合物(HY1和HY2)通过硫金键固定于金纳米粒子表面实现标记(记作ALC1和ALC2)。AChE与抑制剂之间的相互作用会引起表面等离子体(SPR)信号的变化,金纳米特殊的光学性质放大SPR检测信号,提高检测灵敏度,得到AChE与HY1、HY2的结合动力学数据:结合速率常数(K_a)分别为1.46×10~5(Ms)~(-1)和7.73×104(Ms)~(-1),解离速率常数(K_d)分别为4.66×10~(-2)s~(-1)和1.21×10~(-1)s~(-1),计算得到亲合常数(K_A)分别为3.13×10~6和6.39×10~5 M~(-1)。此体系结合竞争模式可以实现其它小分子农药类似物的免标记活性比较分析。
     5.芯片表面原位形成金纳米粒子放大表面等离子体共振信号检测酶抑制剂
     固定反应时间,SPR信号与AChE的活性有对应关系,根据酶活性的抑制程度建立了有机磷农药三唑磷的高灵敏检测方法,在0.5-14.0μM浓度范围内,三唑磷浓度与SPR信号呈线性关系,检测限为0.05μM。在这个体系中,无论是酶、底物还是分析物都无需标记和固定,反应在溶液中进行,为农药检测提供了一种简单、无标记、实时、灵敏的检测方法。
     6.D1蛋白酶与二茂铁标记24肽相互作用的电化学检测及抑制剂活性分析
     利用一步沉积法将氯金酸还原成金纳米原位沉积于电极表面构成金纳米-壳聚糖的复合界面固定CtpA。二茂铁(Fc)标记的24肽作为底物,通过与界面固定的CtpA相互作用结合到电极表面。结果表明,溶液中的Fc-24P在2.0-65.0μM的浓度范围内与电流响应呈现良好线性,通过测量小分子抑制剂与Fc-24P对D1蛋白酶的竞争反应,对三种CtpA抑制剂先导化合物HY1、HY2和NA1进行了生物活性分析。
     7.D1蛋白酶与金纳米粒子标记24肽相互作用动力学的表面等离子体共振研究及其应用
     金片表面修饰生成羧基化葡聚糖界面后将羧基活化,利用酰胺键将CtpA固定在芯片上。利用SPR技术研究金纳米标记的24肽与表面固定的CtpA相互作用,得到动力学数据K_a=3.08×10~2(Ms)~(-1),K_d=6.24×10~(-3)s~(-1)。当溶液中有酶的抑制剂存在时,抑制剂与底物竞争性结合界面固定的CtpA。选取竞争性拟合模型拟合了抑制剂存在条件下的SPR数据,获得了抑制剂与酶的结合速率常数、解离速率常数及亲合常数等动力学数据,为实现D1蛋白酶抑制剂的生物活性筛选提供了新方法。
Use of pesticides contributes positively to agricultural development.However,excessive use is associated with serious risks to environment and human health.Hence,scientific researchers are facing by these two challenges:Firstly,development of rapid,effective and credible pesticide-residual analytical methods to monitor food quality process.Secondly,to discover high potent pesticides of low toxicity and residue to control the environmental and health risks.
     Combining high selectivity and molecular recognization ability of interaction between target protein and its substrate with sensitivity and convenience of electrochemical detection techniques,biosensor is considered to be hot topics of current research in pesticide residue detection.It is significant to develope in-vitro sensitive analyical methods for pesticides screening and discovery.For both pesticide-residual detection and drug screening,a construction of interface for immobilization of biomolecules is a key factor to influence sensitivity and stability of sensing signal.Several bionic interfaces were constructed in this paper,using acetylcholinesterase(ACHE) and D1 protease(CtpA) as target proteins.Focusing on development of new methods for pesticide residue detection and drug sensitivity comparison based on target protein molecular recognization by the technology of surface plasmon resonance(SPR) and electrochemistry,we carried out some researches as follow.
     1.Molecular recognization of acetylthiocholine to immobilized AChE on multiwall carbon nanotube-cross linker chitosan composite
     Chitosan provided a satisfied microenvironment to retain the biological activity of AChE with glutaraldehyde as cross-linker.Because of the introduction of multiwall carbon nanotube,the oxidation potential of thiocholine was much reduced.The immobilized AChE had greater affinity for acetylthiocholine(ATCI) and excellent catalytic effect in the hydrolysis of ATCI,with a K_m~(app) value of 132μM.Under optimum conditions the amperometric current increased linearly with increasing concentration of ATC1 in the range 2.0-400.0μM.This method showed very good reproducibility, sensitivity and acceptable stability.It is a promising new tool for characterization of enzyme inhibitors and for pesticide analysis.
     2.An composite interface based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linked chitosan for pesticide detection and sensitivity comparison
     Presence of pesticides in solution will reduce the interaction between ATCI and immobilized AChE on a multiwall carbon nanotube-cross-linked chitosan composite,which resulted in an electrochemical signal reduction caused by thiocholine.Based on competition strategy,the inhibition of triazophos was proportional to its concentration in two ranges,from 0.03 to 7.8μM and 7.8 to 32 μM.Pesticides of carbaryl,malathion and dimethoate were selected to study their inhibition efficiencies to ACHE,which is illuminated the establishment of a speedy comparison for pesticide sensitivity by electrochemical technique.The constructed biosensor processing prominent characteristics and performance such as simple fabrication,fast response,acceptable stability and accuracy has potential application in the characterization of enzyme inhibitors and detection of toxic compounds to enzyme.
     3.Composite assembly of silver nanoparticles with biotinylated AChE for pesticidal sensing
     Using avidin as a linker,a biosensor has been devised by immobilization of biotinylated AChE on a biotin-terminated and 11-mercapto-l-undecanolmixed self-ssembly monolayer.silver nanoparticles was introduced by the electrostatic interaction between silver nanoparticles and avidin.Under the optimum conditions a quantitative measurement of organophosphate pesticide dimethoate was achieved with the linear range of 0.05μM to10.0μM and the correlation coefficients of 0.9983.The detection limit was 0.01μM,which corresponds to a 10%decrease in signal.
     4.Interaction research between gold nanoparticles labeled carbamate and AChE by SPR
     Two carbamate inhibitors with different ether linkages and the terminal lipoate were synthesized and labeled with gold nanoparticles.With the signal amplification of AuNPs,the specific interactions between the AuNPs labeled carbamate inhibitors and the immobilized ACHE on sensor chip surface were readily examined by SPR.Using 1:1 fitting model,the association/dissociation rate constants were first obtained for the binding interaction between carbamate inhibitors and ACHE.This AuNPs labeling strategy is versatile and may be applicable for the competitive SPR kinetic assay of the interaction between small molecule inhibitors and their target proteins with a high sensitivity.
     5.Signal enhancement by AChE stimulated in situ growth of gold nanoparticles for SPR technology-based sensing of inhibitor.
     The hydrolysis of acetylthiocholine chloride(ATC1) catalyzed by AChE can yeild a reducing agent thiocholine that stimulates the formation of AuNPs in the presence of HAuCI4,which caused a SPR signal.The formation of the AuNPs was inhibited by triazophos,thus enabling a sensitive determination for AChE inhibitor by SPR technology.The inhibition of methomyl on AChE was proportional to its concentration in the range of 0.5-14.0μM,with detection limit of 0.05μM. Inhibitor determination was achieved without labelling or modification for target protein ACHE,which is appropriate for enzyme-based detection.Such a simple and convenient strategy may find wide potential applications in biosensors,biocatalysis and durg screen.
     6.Interaction research between D1 protease and ferrocene labeled 24 peptide and application in inhibitor sensitivity comparison by electrochemical technique.
     A novel interface embedded in situ gold nanoparticles in chitosan hydrogel was constructed for CtpA immobilization by one-step electrochemical deposition.Ferrocene labeled 24 peptide was acted as electrochemical probe because of its redox activity.The current response that arose by ferrocen displayed interaction between immobilized CtpA and 24 peptide.The current response was proportional to concentration of ferrocene labeled 24 peptide in the range of 2.0-65.0μM.Inhibitor sensitivity comparison was achieved by comparing inhibition rate of three kinds of CtpA inhibitors at the same concentration.
     7.Interaction research between D1 protease and gold nanopartivcle labeled 24 peptide by SPR: Kinetic analysis
     CtpA was immobilized on a carboxyl methyl dextran interface by acylamide bond to study the interaction between CtpA and gold nanoparticle labeled 24 peptide by SPR.The kinetic data was obtained with K_a= 3.08×10~2(Ms)~(-1),K_d=6.24×10~(-3) s~(-1).Presence of inhibitor in solution will reduce the interaction between CtpA and 24 peptide on a multiwall carbon nanotube-cross-linked chitosan. composite,resulting in SPR signal reduction.Based on competition fitting model,the kinetic data including association rate constant,dissociation rate constant were obtained,which provided a new method for inhibitor sensitivity comparison and screening.
引文
[1]Lin,J.H.;Perryman,A.L.;Schames,J.R.;McCammon,J.A.Computational drug design accommodating receptor flexibility:The relaxed complex scheme.J.Am.Chem.Soc.2002,124,5632-5633.
    [2]Ariga,K.;Hill,J.P.;Endo,H.Developments in molecular recognition and sensing at interfaces.Int.J.Mol.Sci.2007,8,864-883.
    [3]Onda,M.;Yoshihara,K.;Koyano,H.;Ariga,K.;Kunitake,T.Molecular recognition nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers.A comparison of microscopic and macroscopic interfaces.J.Am.Chem.Soc.1996,118,8524-8530.
    [4]Springs,B.;Haake,P.Equilibrium-constants for association of guanidinium and ammonium with oxyanions:effect of changing basicity of oxyanion.Bioorg.Chem.1977,6,181-190.
    [5]Sasaki,D.Y.;Kurihara,K.;Kunitake,T.Specific,multiple point binding of ATP and AMP to a guanidinium-functionalized monolayer.J.Am.Chem.Soc.1991,113,9685-9686.
    [6]Sakurai,M.;Tamagawa,H.;Furuki,T.;Inoue,Y.;Ariga,K.;Kunitake,T.A theoretical interpretation of remarkable enhancement of intermolecular binding at the lipid-water interface.Chem.Lett.1995,1001-1002.
    [7]Sakurai,M.;Tamagawa,H.;Inoue,Y.;Ariga,K.;Kunitake,T.Theoretical study of intermolecular interaction at the lipid-water Interface.1.Quantum chemical analysis using a reaction field theory.J.Phys.Chem.B 1997,101,4810-4816.
    [8]Tamagawa,H.;Sakurai,M.;Inoue,Y.;Ariga,K.;Kunitake,T.Theoretical study of intermolecular interaction at the lipid-water interface.2.Analysis based on the Poisson-Boltzmann equation.J.Phys,Chem.B 1997,101,4817-4825.
    [9]Ariga,K.;Kunitake,T.Molecular recognition at air-water and related interfaces:complementary hydrogen bonding and multisite interaction.Acc.Chem.Res.1998,31,371-378.
    [10]Ebara,Y.;Ebato,H.;Ariga,K.;Okahata,Y.Interactions of calcium ions with phospholipid membranes.Studies on.pi.-A isotherms and electrochemical and quartz-crystal microbalance measurements.Langmuir 1994,10,2267-2271.
    [11]Yang,R.;Zhang,Y.;Li,K.;Liu,F.;Chan,W.Fluorescent ratioable recognition of Cu2+ in water using a pyrene-attached macrocycle/γ-cyclodextrin complex.Analy.Chim.Acta 2004,525,97-103.
    [12]Valeur,B.;Leray,I.Design principles of fluorescent molecular sensors for cation recognition.Coordin.Chem.Rev.2000,205,3-40.
    [13]Chenthamarakshan,C.R.;Ajayaghosh,A.Enhanced sensitivity and selectivity in lithium ion recognition property of an oligomeric squaraine dye based fluorescent sensor.Tetrahedron Lett.1998,39,1795-1798.
    [14]Cho,M.;Chung,S.;Heo,S.D.;Ku,J.;Ban,C.A simple fluorescent method for detecting mismatched DNAs using a MutS-fluorophore conjugate.Biosens.Bioelectron.2007,22,1376-1381.
    [15]Lu,E.;Peng,X.;Song,F.;Fan,J.A novel fluorescent sensor for triplex DNA.Bioorg.Med.Chem.Lett.2005,15,255-257.
    [16]Bartolome,A.;Mandap,K.;David,K.J.;Sevilla Ⅲ,F.;Villanueva,J.SOS-red fluorescent protein(RFP) bioassay system for monitoring of antigenotoxic activity in plant extracts.Biosens.Bioelectron.2006,21,2114-2120.
    [17]Katz,E.;Willner,I.Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:routes to impedimetric immunosensors,DNA-sensors,and enzyme biosensors.Electroanalysis 2003,15,913-947.
    [18]Shumaker-Parry,J.S.;Aebersold,R.Campbell,C.T.;Parallel,quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance Microscopy,Anal Chem.2004,76,2071-2082.
    [9]Bard,A.J.;Faulkner,L.R.Electrochemical methods:fundamentals and applications,Wiley,New York,1980.
    [20]Stoynov,Z.B.;Grafov,B.M.;Savova-Stoynova,B.S.;Elkin,V.V.Electrochemical impedance,Nauka,Moscow,1991.
    [2]Savitri,D.;Mitra,C.K.Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements.Bioelectrochem.Bioenerg.1999,48,163-169.
    [22]A.Bardea,E.Katz,I.Willner,Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product.Electroanalysis 2000,12,1097-1106.
    [23]赵晓君,陈焕文,宋大干,牟颖,张寒琦,金钦汉.分析仪器.2000,4,1-8.
    [24]Stern,E.A.;Farrell,R.A.Surface plasma oscillations of a degenerate electron gas.Phys.Rev.1960,120,130-136.
    [25]宋大干,赵晓君,陈焕文,牟颖,张寒琦,金钦汉.分析仪器.2001,1,1-6.
    [26]Glaser,R.W.Antigen-antibody binding and mass transport by convection and diffusion to a surface:A two-dimensional computer model of binding and dissociation kinetics.Anal Biochem.1993,213,152-161.
    [27]Karlsson,R.;Roos,H.;Fagerstam,L.;Persson,B.Kinetic and concentration analysis using BIA technology.Methods 1994,6,99-110.
    [28]Fisher,R.J.;Fivash,M.;Casas-Finet,J.;Bladen,S.;McNitt,K.L.Real-time BIAcore measurements of Escherichia coli single-stranded DNA binding(SSB) protein to polydeoxythymidylic acid reveal single-state kinetics with steric cooperativity.Methods 1994,6,121-133.
    [29]Myszka,D.G.;Morton,T.A.;Doyle,M.L.;Chaiken,I.M.Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor.Biophys.Chem.1996,64,127-137.
    [30]Biskup,C.;Bohmer,A.;Pusch,R.;Kelbauskas,L.;Gorshokov,A.;Majoul,I.;Lindenau,J.;Benndorf,K.;Bohmer,F.D.Visualization of SHP-1-target interaction.J.Cell.Sci.2004,117,5165-5178.
    [3]Fischer,M.J.;Kuipers,C.;Hofkes,R.P.;Hofmeyer,L.J.;Moret,E.E.;de Mol,N.J.Exploring computational lead optimisation with affinity constants obtained by surface plasmon resonance for the interaction of PorA epitope peptides with antibody against.Neisseria meningitidis.Biochim.Biophys.Acta 2001,1568,205-215.
    [32]de Mol,N.J.;Catalina,M.I.;Dekker,F.J.;Fischer,M.J.;Heck.A.J.;Liskamp,R.M.Protein flexibility and ligand rigidity:A thermodynamic and kinetic study of ITAM-based ligand binding to syk tandem SH2.Chembiochem.2005,6,2261-2270.
    [33]de Mol,N.J.;Dekker,F.J.;Broutin,I.;Fischer,M.J.;Liskamp,R.M.Surface plasmon resonance thermodynamic and kinetic analysis as a strategic tool in drug design:Distinct ways for phosphopeptides to plug into Src-and Grb2 SH2 domains.J.Med.Chem.2005,48,753-763.
    [34]Gregory,L.A.;Thielens,N.M.;Matsushita,M.;Sorensen,R.;Arlaud,G.J.;Fontecilla-Camps,J.C.;Gaboriaud,C.The X-ray structure of human mannan-binding lectin-associated protein 19(MAP 19) and its interaction site with mannan-binding lectin and L-ficolin.J.Biol.Chem.2004,279,29391-29397.
    [35]Danelian,E.;Karl(?)n,A.;Karlsson,R.;Winiwarter,S.;Hansson,A.;L(o|¨)f(?)s,S.;Lennern(a|¨)s,H.;H(a|¨)m(a|¨)l(a|¨)inen,M.D.SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface:correlation with fraction absorbed in humans.J.Med.Chem.2000,43,2083-2086.
    [36]戴宗.自组装单层电化学及新型免疫传感研究.南京大学博士学位论文.2004.
    [37]Brito,R.;Rodr(?)guez,V.A.;Figueroa,J.;Cabrera,C.R.Adsorption of 3-mercaptopropyltrimethoxysilane and 3-aminopropyltrimethoxysilane at platinum electrodes.J. Electroanal.Chem.2002,520,47-52.
    [38]Abbott,N.L.;Rolison,D.R.;Whitesides,G.M.Combining micromachining and molecular self-assembly to fabricate microelectrodes.Langmuir 1994,10,2672-2682.
    [39]Abbott,N.L.;G orman,C.B.;Whitesides,G.M.Active control of wetting using applied electrical potentials and self-assembled monolayers.Lamgmuir 1995,11,16-18.
    [40]Abbott,N.L.;Folkers,J.P.;Whitesides,G.M.Manipulation of the wettability of surfaces on the 0.1-to 1-micrometer scale through micromachining and molecular self-Assembly.Science 1992,257,1380-1382.
    [4]Tao,Y.T.Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver,copper,and aluminum.J.Am.Chem.Sbc.1993,115,4350-4358.
    [42]Buonomo,R.M.;Font,I.;Maguire,M.J.;Reibenspies,J.H.;Tuntulani,T.;Darensbourg,M.Y.Study of sulfinate and sulfenate complexes derived from the oxygenation of thiolate sulfur in[l,5-bis(2-mercapto-2-methylpropyl)-l,5-diazacyclooctanato(2-)]nickel(Ⅱ).J.Am.Chem.Soc.1995,117,963-973.
    [43]Katz,E.;Itzhak,N.;Willner,I.Effects of monolayer packing on the electrochemical activity of chemisorbed thioderivatized N,N′-dialkyl-4,4′-bipyridinium.J.Electroanal.Chem.1992,336,357-362.
    [44]Nuzzo,R.G.;Allaru,D.L.Adsorption of bifunctional organic disulfides on gold surfaces.J.Am.Chem.Soc.1983,105,4481-4483.
    [45]Sabatani,E.;Cohen-Boulakia,J.;Bruening,M.Thioaromatic monolayers on gold:a new family of self-assembling monolayers.Langmuir 1993,9,2974-2981.
    [46]Hill,W.;Wehling,B.Potential-and pH-dependent surface-enhanced Raman scattering of p-mercapto aniline on silver and gold substrates.J.Phys.Chem.1993,97,9451-9455.
    [47]Li,T.T.T.;Liu,H.Y.;Weaver,M.J.Intramolecular electron transfer at metal surfaces.Ⅲ.Influence of bond conjugation on reduction kinetics of cobalt(Ⅲ)anchored to metal surfaces via thiophenecarboxylate ligands.J.Am.Chem.Soc.1984,106,1233-1239.
    [48]Cooper,J.M.;Greenough,K.R;McNeil,C.J.Direct electron transfer reactions between immobilized cytochrome c and modified gold electrodes.J.Electroanal.Chem.1993,347,267-275.
    [49]Gani,D.;Cunnane,V.;Edwards,T.R.G.;Parsons,R.Construction of a Stable Flavin-gold Electrode Displaying very fast Electron Transfer Kinetics.J.Chem.Soc.Chem.Commun.1989,1041-1043.
    [50]Sellers,H.;Ulman,A.;Shnidman,Y.;Eilers,J.E.Structure and binding of alkanethiolates on gold and silver surfaces:implications for self-assembled monolayers.J.Am.Chem.Soc.1993,115,9389-9401.
    [51]Houseman,B.T.;Gawalt,E.S.;Mrksich,M.Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips.Langmiur 2003,19,1522-1531.
    [52]Gooding,J.J.;Praig,V.G.;Hall,E.A.H.Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers.Anal Chem.1998,70,2396-2402.
    [53]Guiomar,A.J.;Guthrie,J.T.;Evans,S.D.Use of mixed self-assembled monolayers in a study of the effect of the microenvironment on immobilized glucose oxidase.Langmuir 1999,15,1198-1207.
    [54]Mendes,R.K.;Carvalhal,R.F.;Kubota,L.T.Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development.J.Electroanal.Chem.2008,612,164-172.
    [55]Ulman,A.Formation and structure of self-assembled monolayers.Chem.Rev.1996,96,1533-1554.
    [56]Bain,C.D.;Troughton,E.B.;Tao,Y.T.;Joseph Evall,J.;Whitesides,G.M.;Nuzzo,R.G.Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold.J.Am.Chem.Soc.1989,111,321-335.
    [57]李清文,王义明,罗国安.化学通报.2000,5,14-19.
    [58]韦春兰,崔丽凤.化学传感器.2003,23,1-7.
    [59]王炳全,程广金,董绍俊.分析化学.1999,27,982-988.
    [60]高慧丽,康天放,王小庆,鲁理平.环境化学.2005,24,707-710.
    [61]Du,D.;Chen,S.;Cai,J.;Song,D.Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol-gel composite.J.Electroanal.Chem.2007,611,60-66.
    [62]Li,W.;Yuan,R.;Chai,Y.;Zhou,L.;Chen,S.;Li,N.;Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor.J.Biochem.Bioph.Meth.2008,70,830-837.
    [63]Kuswandi,B.;Fikriyah,C.I.;Gani.A.A.An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue.Talanta 2008,74,613-618.
    [64]向建南,张伟强,颜永红.等离子体聚合法制备聚乙二胺.湖南大学学报.1997,24,34-40.
    [65]曹伟民,周坤瞵,张勇.间接等离子体聚合制备聚吡咯薄膜.合成化学.1996,4,198-201.
    [66]Wang,X.;Shao,M.;Shao,G.;Wu,Z.;Wang.S.A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch.J.Colloid Interf Sci.2009,332,74-77.
    [67]Carquigny,S.;Sanchez,J.B.;Berger,F.;Lakard,B.;Lallemand,F.;Ammonia gas sensor based on electrosynthesized polypyrrole films.Talanta 2009,78,199-206.
    [68]Debiemme-Chouvy,C.Template-free one-step electrochemical formation of polypyrrole nanowire array.Electrochem.Commun.2009,11,298-301.
    [69]Biggs,S.;Grieser,F.Preparation of polystyrene latex with ultrasonic initiation.Macromolecules.1995,28,4877-4882.
    [70]Ooi,S K.;Biggs,S.Ultrasonic initiation of polystyrene latex synthesis.Ultrason.Sonochem.2000,7,125-133.
    [71]邓家祺,张占恩.分析科学.1995,11,71-76.
    [72]Brahim,S.;Narinesingh,D.;Guiseppi-Elie,A.Polypyrrole-hydrogel composites for the construction of clinically important biosensors.Biosens.Bioelectron.2002,17,53-59.
    [73]Guiseppi-Elie A.;Brahim S.;Narinesingh D.Composite hydrogels containing polypyrrole as support membranes for amperometric enzyme biosensors.J.Macromol.Sci.Pure 2001,38,1575-1591.
    [74]Kumar A.;Rajesh;Chaubey,A.;Grover,S.K.;Malhotra,B.D.Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion-doped polypyrrole film.J.Appl.Polym.Sci.2001,82,3486-3491.
    [75]Adeloju,S.B.;Shaw,S.J.;Wallace,G.G.Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor.Anal,Chim.Acta 1997,341,155-160.
    [76]Kim,H.J.;Choi,S.H.;Lee,K.P.;Gopalan,A.I.;Oh,S.H.;Woo,J.C.Fabrication of functional poly(thiophene) electrode for biosensors.Ultramicroscopy 2008,108,1360-1364.
    [77]Dhand,C.;Arya,S.K.;Datta,M.;Malhotra,B.D.Polyaniline-carbon nanotube composite film for cholesterol biosensor.Anal Biochem.2008,383,194-199.
    [78]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,第一版,1995,pp1-296.
    [79]Lobo-Casta(?)(?)n,M.J.;Miranda-Ordieres,A.J.;Tu(?)(?)n-Blancon,P.A bienzyme-poly-(o-phenylenediamine)-modified carbon paste electrode for the amperometric detection of L-lactate.Anal Chim.Acta 1997,346,165-174.
    [80]Reyes De Corcuera,J.I.;Cavalieri,R.P.;Powers,J.R.Improved platinization conditions produce a 60-fold increase in sensitivity of amperometric biosensors using glucose oxidase immobilized in poly-o-phenylenediamine.J.Electroanal.Chem.2005,575,229-241.
    [81]Jia,J.;Wang,B.;Wu,A.;Cheng,G.;Li,Z.;Dong,S.A method to construct a third-generation horseradish peroxidase biosensor:self-assembling.Anal.Chem.2002,74,2217-2223.
    [82]Jena,B.K.;Raj,C.R.Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles.Anal.Chem.2006,78,6332-6339.
    [83]Wang,J.;Wang,L.;Di,J.;Tu,Y.Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles electrodeposited on indium tin oxide electrode.Sensor.Actuat.B:Chem.2008,135,283-288.
    [84]Zayats,M.;Baron,R.;Popov,I.;Willner,I.Biocatalytic growth of Au nanoparticles:from mechanistic aspects to biosensors design.Nano.Lett.2005,5,21-25.
    [85]Basnar,B.;Weizmann,Y.;Cheglakov,Z.;Willner,I.Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks.Adv.Mater.2006,18,713-718.
    [86]Angeletti,C.;Khomitch,V.;Halaban,R.;Rimm,D.L.Novel tyramide-based tyrosinase assay for the detection of melanoma cells in cytological preparations.Diagn.Cytopathol.2004,31,33-37.
    [87]Pavlov,V.;Xiao,Y.;Willner,I.;Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles:Nanotechnology-based sensing of nerve gases.Nano Lett.2005,5,649-653.
    [88]Willner,I.;Baron,R.;Willner.B.Growing metal nanoparticles by enzymes.Adv.Mater.2006,18,1109-1120.
    [89]Guo,S.;Wang,E.Synthesis and electrochemical applications of gold nanoparticles.Anal.Chim.Acta 2007,598,181-192.
    [90]Wang,J.;Polsky,R.;Xu,D.Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization.Langmuir 2001,17,5739-5741.
    [91]Wang J.;Wang,Xu,D.;Polsky,R.;Magnetically-induced solid-state electrochemical detection of DNA hybridization.J.Am.Chem.Soc.2002,124,4208-4209.
    [92]Rochelet-Dequaire,M.;Limoges,B.;Brossier,P.Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels.Analyst 2006,131,923-929.
    [93]He,L.;Musick,M.D;Nicewarner,S.R.;Salinas F.G.;Benkovic,S.J.;Natan,M.J.;Keating,C.D.Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization.J.Am.Chem.Soc.2000,122,9071-9077.
    [94]Dequaire,M.;Degrand,C.;Limoges,B.An electrochemical metalloimmunoassay based on a colloidal gold label.Anal Chem.2000,72,5521-5528.
    [95]李建平,高会玲,熊志刚.高等学校化学学报.2008,29,2149-2154.
    [96]Iijima,S.Helical microtubes of graphite carbon.Nature 1991,354,56-58.
    [97]王宗花,罗国安.分析化学,2003,31,1004-1009.
    [98]Davis,J.J.;Green,M.L.H.;Hill,H.A.O.;Leung,Y.C.;Sadler,P.J.;Sloan,J.;Xavier,A.V.;Tsang,S.C.The immobilisation proteins in carbon nanotubes.Inorg.Chim.Acta 1998,272,261-266.
    [99]Azamian]Azamian,B.R.;Davis,J.J.;Coleman,K.S.;Bagshaw,C.B.;Green,M.L.H.Bioelectrochemical single-walled carbon nanotubes.J.Am.Chem.Soc.2002,124,12664-12665.
    [100]黄加栋,宋昭,杨钰,吴宝艳,史海滨,长哲郎,陈强.高技术通讯,2006,16,492-496.
    [101]王存嫦,阳明辉,鲁亚霜,吾国强,沈国励,俞汝勤.化学学报,2006,64,1355-136.
    [102]Cai,C.;Chen,J.Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode.Anal Biochem.2004,325,285-292.
    [103]Zhao,Y.D.;Bi,Y.H.;Zhang,W.D.;Luo,Q.M.The interface behavior of hemoglobin at carbon nanotube and the detection for H202.Talanta 2005,65,489-494.
    [104]Zhao,G.C.;Zhang,L.;Wei,X.W.;Yang,Z.S.Myoglobin on multi-walled carbon nanotubes modified electrode:Direct electrochemistry and electrocatalysis.Electrochem.Commun.2003,5,825-829.
    [105]Zhang,L.;Zhao,G.C.;Wei,X.W.;Yang,Z.S.A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes.Electroanalysis 2005,17,630-634.
    [106]Li,G.;Liao,J.M.;Hu,G.Q.;Ma,N.Z.;Wu,P.J.Study of Carbon Nanotube Modified Biosensor for Monitoring Total Cholesterol in Blood.Biosens.Bioelectron.2005,20,2140-2144.
    [107]Zhao,Y.D.;Zhang,W.D.;Chen,H.;Luo,Q.M.;Li,S.F.Y.Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode.Sensor.Actuat.B:Chem.2002,87,168-172.
    [108]王丽江,陈松月,刘清君,王平.传感技术学报,2006,19,581-587.
    [109]Wu,X.Y.;Liu,H.J.;Liu,J.Q.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nat.Biotechnol.2003,21,41-46.
    [110]Kaul,Z.;Yaguchi,T.;Kaul,S.C.;Hirano,T.;Wadhwa,R.;Taira,K.Mortalin imaging in normal and cancer cells with quantum dot immunoo-conjugates.Cell Res.2003,13,503-507.
    [111]Watson,A.;Wu,X.;Bruchez,M.Lighting up cells with quantum dots.Biotechniques 2003,34,296-300.
    [112]Nisman,R.;Dellaire,G.;Ren,Y.;Li,R.;Bazett-Jones,D.P.Application of quantum dots as probes for correlative fluorescence,conventional,and energy-filtered transmission electron microscopy.J.Histochem.Cytochem.2004,52,13-18.
    [113]Agrawal,A.;Zhang,C.Y;Byassee,T.Tripp,R.A.;Nie,S.Counting single native biomolecules and intact viruses with color-coded nanoparticles.Anal.Chem.2006,78,1061-1070.
    [114]Zhang,B.;Liang,X.;Hao,L.;Cheng,J.;Gong,X.;Liu,X.;Ma,G.;Chang,J.Quantum dots/particle-based immunofluorescence assay:Synthesis,characterization and application.J.Photoch.Photobio.B:Biology.2009,94,45-50.
    [115]Yuan,J.;Guo,W.;Yin,J.;Wang,E.;Glutathione-capped CdTe quantum dots for the sensitive detection of glucose.Talanta 2009,77,1858-1863.
    [116]Dai,Z.;Zhang,J.;Dong,Q.;Guo,N.;Xu,S.;Sun,B.;Bu,Y.;Adaption of Au nanoparticles and CdTe quantum dots in DNA detection.Chin.J.Chem.Eng.2007,15,791-794.
    [117]Liu,Q.;Lu,X.;Li,J.;Yao,X.;Li,J.Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes.Biosens.Bioelectron.2007,22,3203-3209.
    [118]Du,D.;Chen,S.;Song,D.;Li,H.;Chen,X.Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface.Biosens.Bioelectron.2008,24,475-479.
    [119]Patolsky,F.;Lichtenstein,A.;Willner,I.Electronic transduction of DNA sensing processes on surfaces:amplification of DNA detection and analysis of single-base mismatches by tagged liposomes.J.Am.Chem.Soc.2001,123,5194-5205.
    [120]Pei,R.;Cheng,Z.;Wang,E.;Yang,X.Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy.Biosens.Bioelectron.2001,16,355-361.
    [121]Mitchell,J.S.;Wu,Y.;Cook,C.J.;Main,L.Estrogen conjugation and antibody binding interactions in surface plasmon resonance biosensing.Steroids 2006,71,618-631.
    [122][Teramura]Teramura,Y.;Iwata,H.Label-free immunosensing for a-fetoprotein in human plasma using surface plasmon resonance.Anal.Biochem.2007,365,201-207.
    [123]Alfonta,L.;Singh,A.K.;Willner,I.Liposomes labeled with biotin and horseradish peroxidase:A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes.Anal.Chem.2001,73,91-102.
    [124]Su,X.;O'Shea,S.J.Determination of monoenzyme-and bienzyme-stimulated precipitation by a cuvette-based surface plasmon resonance instrument.Anal.Biochem.2001,299,241-246.
    [125]Cao,C.;Sim,S.J.Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitation-functionalized gold nanoparticles:A femto molar level measurement of anti-glutamic acid decarboxylase antibody.Biosens.Bioelectron.2007,22,1874-1880.
    [126]Tang,H.;Wang,Q.;Xie,Q.;Zhang,Y.;Tan,L.;Yao,S.Enzymatically biocatalytic precipitates amplified antibody-antigen interaction for super low level immunoassay:An investigation combined surface plasmon resonance with electrochemistry.Biosens.Bioelectron.2007,23,668-674.
    [127]唐除痴,李煜昶,陈彬,杨华铮,金桂玉.农药化学.天津:南开大学出版社,第一版,1998,pp88-91.
    [128]Bowyer,J.R.;Packer,J.C.L.;McCormack,B.A.;Whitelegge,J.P.;Robinson,C.;Taylor,M.A.Carboxyl-terminal processing of the D1 protein and photoactivation of water-splitting in photosystem Ⅱ:partial purification and characterization of the processing enzyme from scenedesmus obliquus and pisum sativum.J.Biol.Chem.1992,267:5424-5433
    [129]Fujita,S.;Inagaki,N.;Yamamoto,Y.;Taguchi,F.;Matsumoto,A.;Satoh,K.Identification of the carboxyl-terminal processing protease for the D1 precursor protein of the photosystem Ⅱreaction center of spinach.Plant Cell Physiol.1995,36,1169-1177.
    [130]Kuswandi,B.;Fikriyah,C.I.;Gani,A.An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue.Talanta 2008,74,613-618.
    [131]Doong,R.;Tsai,H.C.Immobilization and characterization of sol-gel-encapsulated acetylcholinesterase fiber-optic biosensor.Anal Chim.Acta 2001,434,239-246.
    [132]Choi,J.;Kim,Y.;Song,S.;Lee,I.;Lee,W.Optical biosensor consisting of glutathione-S-transferase for detection of captan.Biosens.Bioelectron.2003,18,1461-1466.
    [133]Choi,J.;Kim,Y.;Oh,B.;Song,S.;Lee,W.Optical biosensor for simultaneous detection of captan and organophosphorus compounds.Biosens.Bioelectron.2003,18,591-597.
    [134]Rajan,Chand,S.;Gupta,B.D.Surface plasmon resonance based fiber-optic sensor for the detection of pesticide.Sensor.Actuat.B:Chem.2007,123,661-666.
    [135]袁永海,李建平.分析测试学报.2006,25,121-127.
    [136]孟范平,唐学玺,李桂芳,曹立民,李永祺.海洋环境科学.2003,11,63-67.
    [137]Stein,K.;Schwedt,G.Comparison of immobilization methods for the development of an acetylcholinesterase biosensor.Anal Chim Acta 1993,272,73-81.
    [138]Gyurcs(?)nyi,R.E.;V(?)gf(o|¨)ldi,Z.;T(?)th,K.;Nagy,G.Fast response potentiometric acetylcholine biosensor.Electroanal.1999,11,712-718.
    [139]Ivanov,A.N.;Evtugyn,G.A.;Gyurcs(?)nyi,R.E.;T(?)th,K.;Budnikov,H.C.Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination.Anal Chim.Acta 2000,404,55-65.
    [140]Guilbault,G.G.;Sadar,M.H.;Kuan,S.S.;Casey,D.Enzymatic methods of analysis:Trace analysis of various pesticides with insect cholinesterases.Anal Chim.Acta 1970,52,75-82.
    [141]张淑平,单联刚,经媛元.化学传感器.2006,26,8-12.
    [142]Mulchandani,A.;Chen,W.;Mulchandani,P.;Wang,J.;Rogers,K.R.Biosensors for direct determination of organophosphate pesticides.Biosens.Bioelectron.2001,16,225-230.
    [143]罗启枚,王辉宪,刘登友,彭鑫林,刘邦大,周华.化学传感器,2007,27,17-23.
    [144]李其翔,张红.新药发现开发技术平台.北京:高等教育出版社,第一版,2007,pp13-15.
    [145]洪韫嘉,肖晓峰,陈波,姚守拙.天然产物研究与开发.2008,20,728-730.
    [146]Hu,F.;Deng,C.;Zhang.X.Development of high performance liquid chromatography with immobilized enzyme onto magnetic nanospheres for screening enzyme inhibitor.J.Chromatogr.B 2008,871,67-71.
    [147]杜志云,潘文龙,毛学圃,黄宝华,黄仲立,方岩雄,张坤,马林.分析测试学报.2007,26,455-458.
    [148]Tani,H.;Akimitsu,N.;Fujita,O.;Matsuda,Y.;Miyata,R.;Tsuneda,S.;Igarashi,M.;Sekiguchi,Y.;Noda,N.High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon.Biochem.Biophys.Res.Commun.2009,379,1054-1059.
    [149]Parniak,M.A.;Min,K.L.;Budihas,S.R.;Beutler,J.A.A fluorescence-based high-throughput screening assay for inhibitors of human immunodeficiency virus-1 reverse transcriptase-associated ribonuclease H activity.Anal Biochem.2003,322,33-39.
    [150]Valanne,A.;Malmi,P.;Appelblom,H.;Niemela,P.;Soukka.T.A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors.Anal Biochem.2008,375,71-81.
    [151]Lepre,C.A.;Moore,J.M.;Peng.J.W.Theory and applications of NMR-based screening in pharmaceutical research.Chem.Rev.2004,104,3641-3675.
    [152]Bretonnet,A.S.;Jochum,A.;Walker,O.;Krimm,I.;Goekjian,P.;Marcillat,O.;Lancelin,J.M.NMR screening applied to the fragment-based generation of inhibitors of creatine kinase exploiting a new interaction proximate to the ATP binding site.J.Med.Chem.2007,50,1865-1875.
    [153]Hajduk,P.J.;Gomtsyan,A.;Didomenico,S.;Cowart,M.;Bayburt,E.K.;Solomon,L.;Severin,J.;Smith,R.;Walter,K.;Holzman,T.F.;Stewart,A.;McGaraughty,S.;Jarvis,M.F.; Kowaluk,E.A.;Fesik,S.W.Design of adenosine kinase inhibitors from the NMR-based screening of fragments.J.Med.Chem.2000,43,4781-4786.
    [154]Hajduk,P.J.;Boyd,S.;Nettesheim,D.;Nienaber,V.;Severin,J.;Smith,R.;Davidson,D.;Rockway,T.;Fesik,S.W.Identification of novel inhibitors of urokinase via NMR-based screening.J.Med.Chem.2000,43,3862-3866.
    [155]Wyss,D.F.;Arasappan,A.;Senior,M.M.;Wang,Y.;Beyer,B.Mo;Njoroge,F.G.;McCoy,M.A.Non-peptidic small-molecule inhibitors of the single-chain hepatitis C virus NS3protease/NS4A cofactor complex discovered by structure-based NMR screening.J.Med.Chem.2004,47,2486-2498.
    [156]Zhou,Q.;Li,L.;Xiang,J.;Tang,Y.;Zhang,H.;Yang,S.;Li,Q.;Yang,Q.;Xu.G.;Screening potential antitumor agents from natural plant extracts by G-quadruplex recognition and NMR methods.Angew.Chem.Int.Ed.2008,47,5590-5592.
    [157]Markgren,P.O.et al.Screening of compounds interacting with HIV-1 proteinase using optical biosensor technology.Anal Biochem.1998,265,340-350.
    [158]Karlsson,R.Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors.Anal Biochem.,1994,221,142-151.
    [159]Karlsson,R.;Kullman-Magnusson,M.;H(a|¨)m(a|¨)l(a|¨)inen,M.D.;Remaeus,A.;Andersson,K.;Borg,P.;Gyzander,E.;Deinum,J.Biosensor analysis of drug-target interactions:direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors.Anal.Biochem.,2000,278,1-13.
    [1]Kandimalla,V.B.;Ju,H.X.Binding of acetylcholinesterase to multiwall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of organophosphorous insecticide.Chem.Eur.J.2006,12,1074-1080.
    [2]Schulze,H.;Vorlov(?),S.;Villatte,F.;Bachmann,T.T.;Schmid,R.D.Design of acetylcholinesterases for biosensor applications.Biosens.Bioelectron.2003,18,201-209.
    [3]Suprun,E.;Evtugyn,G.;Budnikov,H.;Ricci,F.;Moscone,D.;Palleschi,G.Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue.Anal,Bioanal.Chem.2005,383,597-604.
    [4]Poga(?)nik,L.;Franko,M.Detection of organophosphate and carbamate pesticides in vegetable samples by a photothermal biosensor.Biosens.Bioelectron.2003,18,1-9.
    [5]Dietz,A.A.;Rubinstein,H.M.;Lubrano,T.Colorimetric determination of serum cholinesterase and its genetic variants by the propionylthiocholine- dithiobis(nitrobenzoic acid) procedure.Clin.Chem.1973,19,1309-1313.
    [6]Dietz,A.A.;Rubinstein,H.M.Standardization of the Ellman reaction.Clin.Biochem.1972,5,136-138.
    [7]Ellman,G.L.A coiorimetric method for determining low.concentrations of mercaptans.Biochem. Biophys.1958,74,443-450.
    [8]Ellman,G.L.;Tissue sulfhydryl groups.Arch.Biochem.Biophys.1959,82,70-77.
    [9]Sotiropoulou,S.;Chaniotakis,N.A.Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix.Anal.Chim.Acta.2005,530,199-204.
    [10]Yadavaili,V.K.;Koh,W.G;Lazur,G J.;Pishko,M.V.Microfabricated protein-containing poly(ethylene glycol)hydrogel arrays for biosensing.Sensor.Actual.B-Chem.2004,97,290-297.
    [11]Soln(?),R.;Dock,E.;Christenson,A.;Winther-Nielsen,M.;Carlsson,C.;Emn(?)us,J.;Ruzgas,T.;Skladal,P.Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases.Anal.Chim.Acta.2005,528,9-19.
    [12]Lin,Y.H.;Lu,F.;Wang,J.Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents.Electroanal.2004,16,145-149.
    [13]Stein,K.;Schwedt,G.Comparison of immobilization methods for the development of an acetylcholinesterase biosensor.Anal.Chim.Acta.1993,272,73-81.
    [14]Palleschi,G.;Bernabei,M.;Cremisini,C.;Mascini,;M.Determination of organophosphorus insecticides with a choline electrochemical biosensor.Sens.Actual.B-Chem.1992,7,513-517.
    [15]Nyamsi-Hendji,A.M.;Jaffrezic-Renault,N.;Martelet,C.;Clechet,P.;Shulga,A.A.;Strikah,V.I.Sensitive detection of pesticides using a differential ISFET-based system with immobilized cholinesterases.Anal.Chim.Acta.1993,281,3-11.
    [16]Bachmann,T.T.;Schmid,R.D.A disposable multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution.Anal.Chim.Acta.1999,401,95-103.
    [17]Bernabei,M.;Cremisini,C.;Mascini,M.;Paiieschi,G Determination of organophosphorus and carbamic pesticides with a choline and acetylcholine electrochemical biosensor.Anal.Lett.1991,24,1317-1331.
    [18]Ivanov,A.N.;Evtugyn,G.A.;Gyurcsanyi,R.E.;Toth,K..;Budnikov,H.C.Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination.Anal.Chim.Acta.2000,404,55-65.
    [19]Pariente,F.;Rosa,C.L.;Galan,F.;Hernandez,L.;Lorenzo,E.Enzyme support systems for biosensor applications based on gold-coated nylon meshes.Biosens.Bioelectron.1996,11,1115-1128.
    [20]Kindervater.R.;Kunnecke,W.;Schmid,R.D.Exchangeable immobilized enzyme reactor for enzyme inhibition tests in flow-injection analysis using a magnetic device.Determination of pesticides in drinking water.Anal.Chim.Acta.1990,234,113-117.
    [21]Tasis,D.;Tagmatarchis,N.;Bianco,A.;Prato,M.Chemistry of Carbon Nanotubes.Chem.Rev.2006,106,1105-1136.
    [22]Sotiropoulou,S.;Chaniotakis,N.A.Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix.Anal.Chim.Acta.2005,530,199-204.
    [23]Joshi,K.A.;Tang,J.;Haddon,R.;Wang,J.;Chen,W.;Mulchandani,A.A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode.Electroanal.2005,17,54-58.
    [24]Qian,L.;Yang,X.R.Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor.Talanta.2006,68,721-727.
    [25]Zhang,M.G.;Smith,A.;Gorski,W.Carbon nanotube-chitosan system for electrochemical sensing based on dehyreogenase enzymes.Anal.Chem.2004,76,5045-5050.
    [26]Ye,J.S.;Wen,Y.;Zhang,W.D.;Gan,L.M.;Xu,G.Q.;Sheu,F.S.Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes.Electrochem.Commun.2004,6,66-70.
    [27]Wang,J.X.;Li,M.X.;Shi,Z.J.;Li,N.Q.;Gu,Z.N.Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes.Anal.Chem.2002,74,1993-1997.
    [28]Wang,Z.H.;Wang,Y.M.;Luo,G.A.The electrocatalytic oxidation of thymine at α-cyclodextrin incorporated carbon nanotube-coated electrode.Electroanal.2003,15,1129-1133.
    [29]Luo,H.X.;Shi,Z.J.;Li,N.Q.;Gu,Z.N.;Zhuang,Q.K.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode.Anal.Chem.2001,73,915-920.
    [30]Wu,F.H.;Zhao,G.C.;Wei,X.W.Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode.Electrochem.Commun.2002,4,690-694.
    [31]Chen,J.;Du,D.;Yan,F.;Ju,H.X.;Lian,H.Z.Electrochemical antitumor drug sensitivity test for leukemia K562 cells at a carbon-nanotube-modified electrode.Chem-Eur.J.2005,11,1467-1472.
    [32]Luo,X.L.;Xu,J.J.;Zhang,Q.;Yang,G.J.;Chen,H.Y.Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly.Biosens.Bioelectron.2005,21,190-196.
    [33]Du,D.;Ju,H.X.;Zhang,X.J.;Chen,J.;Cai,J.;Chen,H.Y.Electrochemical immunoassay of membrane P-glycoprotein by immobilization of cells on gold nanoparticles modified on a methoxysilyl-terminated butyrylchitosan matrix.Biochemistry.2005,44,11539-11545.
    [34]Wang,H.S.;Ju,H.X.;Chen,H.Y.Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode.Anal.Chim.Acta.2002,461,243-250.
    [35]Kepley,L.J.;Bard,A.J.Ellipsometric,electrochemical,and elemental characterization of the surface phase produced on glassy carbon electrodes by electrochemical activation.Anal.Chem.1988,60,1459-1467.
    [36]Dai,Z.;Yan,F.;Chen,J.;Ju,H.X.Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125.Anal.Chem.2003,75,5429-5434.
    [37]Jackson,M?;Choo,L.P.;Watson,P.H.Beware of connective tissue proteins:Assignment and implications of collagen absorptions in infrared spectra of human tissues.BBA-Mol.Basis.Dis.1995,270,1-6.
    [38]Dong,S.;Luo,G.A.;Feng,J.;Li,Q.W.;Gao,H.Immunoassay of staphylococcal enterotoxin CI by FTIR spectroscopy and electrochemical gold electrode.Electroanal.2001,13,30-33.
    [39]Liu,G.D.;Lin,Y.H.Electrochemical stripping analysis of organophosphate pesticides and nerve agents.Electrochem.Commun.2005,7,339-343.
    [40]Maehly,A.C.in plant peroxidase:methods in enzymology.colowick,S.P.;Kaplan,N.O.(Ed.)Academic press,New York,1955,Vol.11,p807.
    [41]Kamin,R.A.;Willson,G.S.Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer.Anal.Chem.1980,52,1198-1205.
    [42]Vakurov,A.;Simpson,C.E.;Daly,C.L.;Gibson,T.D.;Millner,P.A.Acetylcholinesterasebased biosensor electrodes for organophosphate pesticide detection:I.Modification of carbon surface for immobilization of acetylcholinesterase.Biosens.Bioelectron.2004,20,1118-1125.
    [1]Solfia,R.;Sapelnikova,S.;Sk(?)adal,P.;Winther-Nielsen,M.;Carlsson,C.;Em(?)eus,J.;Ruzgas,T.Multienzyme electrochemical array sensor for determination of phenols and pesticides.Talanta 2005,65,349-357.
    [2]Massoulie,J.;Pezzementi,L.;Bon,S.;Krejci,E.;Vallette,F.M.Molecular and cellular biology of cholinesterases.Prog.Neurobiol.1993,41,31-91.
    [3]Puig,D.;Barc(?)lo,D.Determination of LSD in blood by capillary electrophoresis with laser-induced fluorescence detection.J.Chromatogr.A 1997,778,313-319.
    [4]Wissiack,R.;Rosenberg,E.;Grasserbauer,M.Comparison of different sorbent materials for on-line solid-phase extraction with liquid chromatography-atmospheric pressure chemical ionization mass spectrometry of phenols.J.Chromatogr.A 2000,896,159-170.
    [5]Corcia,A.D.;Marchetti,M.Multiresidue method for pesticides in drinking water using a graphitized carbon black cartridge extraction and liquid chromatographic analysis.Anal Chem.1991,63,580-585.
    [6]Fytianos,K.;Raikos,N.;Theodoridis,G.et.al.Solid phase microextraction applied to the analysis of organophosphorus insecticides in fruits.Chemosphere.2006,65,2090-2095.
    [7]Soares,S.S.;Martins,H.;Duarte,R.O.;Moura,J.J.G.;Coucelo,J.;Gutierrez-Merino,C.;Aureliano,M.Vanadium distribution,lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration.J.Inorg.Biochem.2007,101,80-88.
    [8]Kielan,W.;Suzanowicz,J.;Siewinski,M.;Saleh,Y.;Janocha,A.;Skalski,A.;Tarnawa,R.Evaluation of changes in the activity of proteolytic enzymes and their inhibitors in the processes that accompany the growth of gastric cancer.Gastric Cancer 2004,7,17-23.
    [9]Amine,A.;Mohammadi,H.;Bourais,I.;Palleschi,G.Biosensors for food safety and environmental monitoring.Biosens.Bioelectron.2006,21,1405-1423.
    [10]Gill,I.;Ballesteros,A.Bioencapsulation within synthetic polymers(Part 1):Sol-gel encapsulated biologicals.Trends Biotechnol.2000,15,282-296.
    [11]Smart,S.K.;Cassady,A.I.;Lu,G.Q.;Martin,D.J.The biocompatibility of carbon nanotubes.Carbon 2006,44,1034-1047.
    [12]Krajewska,B.Application of chitin and chitosan-bead materials for enzyme immobilizations:a review.Enzyme Microb.Technol.2004,35,126-139.
    [13]Wei,X.;Cruz,J.;Gorski,W.Integration of enzymes and electrodes:spectroscopic and electrochemical studies of chitosan-enzyme films.Anal.Chem.2002,74,5039-5046.
    [1]Wu,B.;Hou,S.;Yin,F.;Li,J.;Zhao,Z.;Huang,J.;Chen,Q.Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan,gold nanoparticles and glucose oxidase modified Pt electrode.Biosens.Bioelectron.2007,22,838-844.
    [2]Cui,X.;Pei,R.;Wang,Z.;Yang,F.;Ying,M.;Dong,S.;Yang,X.Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing.Biosens.Bioelectron.2003,18,59-67.
    [3]Munge,B.;Liu,G.;Collins,G.;Wang,J.Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies.Anal.Chem.2005,77,4662-4666.
    [4]Shi,L.;Lu,Y.;Sun,J.;Zhang,J.;Sun,C.;Liu,J.;Shen,J.Site-selective lateral multilayer assembly of bienzyme with polyelectrolyte on ITO electrode based on electric field-induced directly layer-by-layer deposition.Biomacromolecules 2003,4,1161-1167.
    [5]Caruso,F.;Trau,D.;Mohwald,H.;Renneberg,R.Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules.Langmuir 2000,16,1485-1488.
    [6]Yang,X.;Wang,Q.;Wang,K.;Tan,W.;Yao,J.;Li,H.Electrical switching of DNA monolayers investigated by surface plasmon resonance.Langmuir 2006,22,5654-5659.
    [7]Y.Lin,F.Lu,Y.Tu,Z.Ren,Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles-Mano Lett.2004,4,191-195.
    [8]Endo,T.;Kerman,K.;Nagatani,N.;Takamura,Y.;Tamiya,E.Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor.Anal.Chem.2005,77,6976-6984.
    [9]Wilson,M.S.;Nie,W.Electrochemical multianalyte immunoassays using an array-based sensor.Anal.Chem.2006,78,2507-2513.
    [10]Fowler,J.M.;Stuart,M.C.;Wong,D.K.Y.Self-assembled layer of thiolated protein G as an immunosensor scaffold.Anal.Chem.2007,79,350-354.
    [11]Andrieux,C.P.;Limoges,B.;Saveant,J.;Yazidi,D.Cyclic voltammetric responses of horseradish peroxidase multilayers on electrodes.Langmuir 2006,22,10807-10815.
    [12]Sato,K.;Imoto,Y.;Sugama,J.;Seki,S.;Inoue,H.;Odagiri,T.;Hoshi,T.;Anzai,J.Sugar-induced disintegration of layer-by-layer assemblies composed of concanavalin A and glycogen.Langmuir 2005,21,797-799.
    [13]Dontha,N.;Nowall,W.B.;Kuhr,W.G.Generation of biotin/avidin/enzyme nanostructures with maskless photolithography.Anal.Chem.1997,69,2619-2625.
    [14]Ghafouri,S.;Thompson,M.Interfacial properties of biotin conjugate-avidin complexes studied by acoustic wave sensor.Langmuir 1999,15,564-572.
    [15]Hoshi,T.;Anzai,J-i.;Osa,T.Controlled deposition of glucose oxidase on platinum electrode based on an avidin/biotin system for the regulation of output current of glucose sensors.Anal.Chem.1995,67,770-774.
    [16]Aroca,R.F.;Clavijo,R.E.;Halls,M.D.;Schlegel,H.B.Surface-enhanced raman spectra of phthalimide,interpretation of the SERS spectra of the surface complex formed on silver islands and colloids.J.Phys.Chem.A 2000,104,9500-9505.
    [17]Brennan,M.E.;Whelan,A.M.;Kelly,J.M.;Blau,W.J.Silver nanoparticle self-organization into dendritic fractals.Synth.Met.2005,154,205-208.
    [18]Heinrichs,B.;Delhez,P.;Schoebrechts,J.P.;Pirard,J.P.;Palladium-silver sol-gel catalysts for selective hydrodechlorination of 1,2-dichloroethane into ethylene.Catal.J.1997,172,322-335.
    [19]Hayakawa,T.;Selvan,S.T.;Nogami,M.;Enhanced fluorescence from Eu~(3+) owing to surface plasma oscillation of silver particles in glass.J.Non-Cryst.Solids 1999,259,16-22.
    [20]Lee,P.C.;Meisel,D.Adsorption and surface-enhanced raman of dyes on silver and gold sols.J.Phys.Chem.1982,86,3391-3395.
    [21]Zhao,Y.;Jiang,Y.;Fang,Y.Spectroscopy property of Ag nanoparticles.Spectrochim.Acta A 2006,65,1003-1006.
    [22]Lim,I.;Ip,W.;Crew,E.;Njoki,P.;Mott,D.;Zhong,C.;Pan,Y.;Zhou,S.Homocysteine-mediated reactivity and assembly of gold nanoparticles.Langmuir 2007,23,826-833.
    [23]Katz,E.;Willner,I.Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:routes to impedimetric immunosensors,DNA-sensors,and enzyme biosensors.Electroanalysis 2003,15,913-947.
    [24]Pradier,C.M.;Salmain,M.;Liu,Z.;Jaouen,G.Specific binding of avidin to biotin immobilised on modified gold surfaces:Fourier transform infrared reflection absorption spectroscopy analysis.Surf Sci.2002,502,193-202.
    [25]Clegg,R.S.;Hutchinson,J.E.Hydrogen-bonding,self-assembled monolayers:ordered molecular films for study of through-peptide electron transfer.Langmuir 1996,12,5239-5243.
    [26]Valiokas,R.;Svedhem,S.;Svensson,S.C.T.;Liedberg,B.Self-assembled monolayers of oligo(ethylene glycol)-terminated and amide group containing alkanethiolates on gold.Langmuir 1999,15,3390-3394.
    [27]Harder,P.;Grunze,M.;Dahint,R.;Whitesides,G.M.;Laibinis,P.E.Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption.J.Phys.Chem.B 1998,102,426-436.
    [28]Laibinis,P.E.;Bain,C.D.;Nuzzo,R.G.;Whitesides,G.M.The structure and wetting properties of omega-Alkoxy-n-alkanethiolate Monolayers on Gold and Silver.J.Phys.Chem.1995,99,7663-7676.
    [29]Porter,M.D.;Bright,T.B.;Allara,D.L.;Chidsey,C.E.D.Spontaneously organized molecular assemblies.4.Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry,infrared spectroscopy,and electrochemistry.J.Am.Chem.Soc.1987,109,3559-3568.
    [30]Lu,L.;Wang,S.;Lin,X.Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor.Anal.Chim.Acta 2004,519,161-166.
    [31]Riskin,M.;Basnar,B.;Chegel,V.I.;Katz,E.;Willner,I.;Shi,F.;Zhang,X.Switchable surface properties through the electrochemical or biocatalytic generation of Ag~0 nanoclusters on monolayer-functionalized electrodes.J.Am.Chem.Soc.2006,128,1253-1260.
    [32]Kandimalla,V.B.;Ju,H.X.Binding of acetylcholinesterase to multiwali carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of organophosphorous insecticide.Chem.Eur.J.2006,12,1074-1080.
    [1]Wark,A.W.;Lee,H.J.;Qavi,A.J.;Corn,R.M.Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing.Anal Chem.2007,79,6697-6701.
    [2]Wang,F.;Wang,J.;Liu,X.;Dong,S.Nanoparticle-amplified surface plasmon resonance study of protein conformational change at interface.Talanta,2008,77,628-634.
    [3]Arnell,R.;Ferraz,N.;Fornstedt,T.Analytical characterization of chirai drug-protein interactions:comparison between the optical biosensor(surface plasmon resonance) assay and the HPLC perturbation method.Anal Chem.,2006,78,1682-1689.
    [4]Karlsson,R.SPR for molecular interaction analysis:a review of emerging application areas.J.Mol.Recognit,2004,17,151-161.
    [5]Homola,J.Surface plasmon resonance sensors for detection of chemical and biological species.Chem.Rev,2008,108,462-493.
    [6]Primo,C.D.;Lebars,I.Determination of refractive index increment ratios for protein-nucleic acid complexes by surface plasmon resonance.Anal.Biochem.,2007,368,148-155.
    [7]Myszka,D.G.Analysis of small-molecule interactions using Biacore S51 technology.Anal.Biochem.,2004,329,316-323.
    [8]Rich,R.L.;Myszka,D.G.Why you should be using more SPR biosensor technology.Drug Disc Today:Technol.,2004,1,301-308.
    [9]Walter,M.W.Structure-based design of agrochemicals.Nat.Prod.Rep.,2002,19,278-291.
    [10]Tietjen,K.;Drewes,M.;Stenze,K.High throughput screening in agrochemical research.Comb.Chem.High Throughput Screen.2005,8,589-594.
    [11]Ridley,S.M.;Elliott,A.C.;Yeung,M.;Youle,D.High-throughput screening as a tool for agrochemical discovery:automated synthesis,compound input,assay design and process management.Pestic Sci.,1998,54,327-337.
    [12]Taylor,P.The cholinesterases.J.Biol.Chem.,1991,266,4025-4028.
    [13]Nordin,H.;Jungnelius,M.;Karlsson,R.;Karlsson,O.P.Kinetic studies of small molecule interactions with protein kinases using biosensor technology.Anal.Biochem.,2005,340,359-368.
    [14]Karlsson,R.;Kullman-Magnusson,M.;Hamalainen,M.D.;Remaeus,A.;Andersson,K.;Borg,P.;Gyzander,E.;Deinum,J.Biosensor analysis of drug-target interactions:direct and competitive binding assays for investigation of interactions between thrombin and thrombin inhibitors.Anal.Biochem.,2000,278,1-13.
    [15]Karlsson,R.Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors.Anal.Biochem.,1994,221,142-151.
    [16]Fu,E.;Ramsey,S.A.;Yager,P.Dependence of the signal amplification potential of colloidal gold nanoparticles on resonance wavelength in surface plasmon resonance-based detection.Anal.Chim.Acta,2007,599,118-123.
    [17]Liu,X.;Sun,Y.;Song,D.;Zhang,Q.;Tian,Y.;Zhang,H.Enhanced optical immuosensor based on surface plasmon resonance for determination of transferrin.Talanta,2006,68,1026-1031.
    [18]Takae,S.;Akiyama,Y;Yamasaki,Y;Nagasaki,Y;Kataoka,K.Colloidal Au replacement assay for highly sensitive quantification of low molecular weight analytes by surface plasmon resonance.Bioconjugate Chem.,2007,18,1241-1245.
    [19]Lyon,L.A.;Musick,M.D.;Smith,P.C.;Reiss,B.D.;Pena,D.J.;Natan,M.J.Surface plasmon resonance of colloidal Au-modified gold films.Sens.Actuat.B Chem.,1999,54,118-124.
    [20]Fukuto,T.R.;Mechanism of action of organophosphorus and carbamate insecticides.Environ.Health Perspect.,1990,87,245-254.
    [21]Colletier,J.P.;Sanson,B.;Nachon,F.;Gabellieri,E.;Fattorusso,C.;Campiani,G.;Weik,M.Conformational flexibility in the peripheral site of torpedo californica acetylcholinesterase revealed by the complex structure with a bifunctional inhibitor.J.Am.Chem.Soc.,2006,128,4526-4527.
    [22]祝丹华.具有自组装功能氨基甲酸酯的合成及其与乙酰胆碱酯酶相互作用,华中师范大学硕士论文,2008
    [23]Hutter,E.;Pileni,M.P.Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy.J.Phys.Chem.B,2003,107,6497-6499.
    [24]Link,S.;El-Sayed,M.A.Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods.J.Phys.Chem.B,1999,103,8410-8426.
    [25]Dungchai,W.;Siangproh,W.;Chaicumpa,W.;Tongtawe,P.;Chailapakul,O.Salmonella typhi determination using voltammetric amplification of nanoparticles:A highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label.Talanta,2008,77,727-732.
    [26]Mangeney,C.;Ferrage,E;Aujard,I.;Marchi-Artzner,V.;Jullien,L.;Ouari,O.;R(?)ka(?),E.D.;Laschewsky,A.;Vikholm,I.;Sadowski,J.W.Synthesis and properties of water-soluble gold colloids Ccovalently derivatized with neutral polymer monolayers.J.Am.Chem.Soc.,2002,124,5811-5821.
    [27]Katz,E.;Willner,I.Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:routes to impedimetric immunosensors,DNA-sensors,and enzyme biosensors.Electroanal.,2003,15,913-947.
    [28]Liu,S.;Wang,K.;Du,D.;Sun,Y.;He,L.Recognition of glycoprotein peroxidase via con A-carrying self-assembly layer on gold.Biomacromolecules,2007,8,2142-2148.
    [29]Su,L.;Mao,L.Gold nanoparticle/alkanedithiol conductive films self-assembled onto gold electrode:Electrochemistry and electroanalytical application for voltammetric determination of trace amount of catechol.Talanta,2006,70,68-74.
    [30]Brewer,S.H.;Glomm,W.R.;Johnson,M.C.;Knag,M.K.;Franzen,S.Probing BSA binding to citrate-coated gold nanoparticles and surfaces.Langrnuir,2005,21,9303-9307.
    [31]Forsberg,A.;Puu,G.Kinetics for the inhibition of acetylcholinesterase from the electric eel by some organophosphates and carbamates.Eur.J.Biochem,1984,140,153-156.
    [32]Gray,P.J.;Dawson,R.M.Kinetic constants for the inhibition of eel and rabbit brain acetyicholinesterase by some organophosphates and carbamates of military significance.Toxicol.Appl.Pharmacol.,1987,91,140-144.
    [33]Deo,R.P.;Wang,J.;Block,I.;Mulchandani,A.;Joshi,K.;Trojanowicz,M.;Scholz,F.;Chen,W.;Lin,Y.Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor.Anal Chim.Acta,2005,530,185-189.
    [34]Arduini,F..;Ricci,F.;Tuta,C.S.;Moscone,D.;Amineb,A.;Palleschi,G.Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode.Anal Chim.Acta,2006,580,155-162.
    [35]Bergen,J.M.;Recum,H.A.;Goodman,T.T.;Massey,A.P.;Pun,S.H.Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery.Macromol.Biosci.,2006,6,506-516.
    [1]Eldefrawi,A.T.Acetyicholinesterase and anticholinesterases;in comprehensive insect physiology.Biochem.Pharmacol.1985,12,115-130.
    [2]Massouli(?),J.;Pezzementi,L.;Bon,S.;Krejci,E.;Vallette,F.M.Molecular and cellular biology of chlinesterases.Prog.Neurobiol.1993,41,31-91.
    [3]Fuhrmann,M.;Hausherr,A.;Ferbitz,L.et.al.Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic lu-ciferase reporter gene.Plant.Mol.Biol.2004,55,869-881.
    [4]Dziri,L.;Boussaad,S.;Tao,N.;Leblanc,R.M.Acetylcholinesterase complexation with acetylthiocholine or organophosphate at the air/aqueous interface:AFM and UV-Vis studies.Langmuir 1998,14,4853-4859.
    [5]White,B.J.;legako,J.A.;Harmon,H.J.Spectrophotometric detection of cholinesterase inhibitors with an integrated acetyl-/butyrylcholinesterase surface.Sensor.Actual.B-Chem.2003,89,107-111.
    [6]Lee,H.;Kim,Y.A.;Cho,Y A.;Lee,Y.T.Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor.Chemosphere 2002,46,571-576.
    [7]Du,D.;Chen,S.;Cai,J.;Zhang,A.Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface.Talanta 2008,74,766-772.
    [8]Vikholm-Lundin,I.;Piskonen,R.;Albers,W.M.Hybridisation of surface-immobilised single-stranded oligonucleotides and polymer monitored by surface plasmon resonance.Biosens.Bioelectron.2007,22,1323-1329.
    [9]Lee,C.Y.;Nguyen,P.C.T.;Grainger,D.W.;Gamble,L.J.;Castner,D.G.Structure and DNA hybridization properties of mixed nucleic acid/maleimide-ethylene glycol monolayers.Anal.Chem.2007,79,4390-4400.
    [10]Tang,H.;Wang,Q.;Xie,Q.;Zhang,Y.;Tan,L.;Yao,S.Enzymatically biocatalytic precipitates amplified antibody-antigen interaction for super low level immunoassay:An investigation combined surface plasmon resonance with electrochemistry.Biosens.Bioelectron.2007,23,668-674.
    [11]Kurita,R.;Yokota,Y.;Sato,Y.;Mizutani,F.;Niwa,O.On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system.Anal.Chem.2006,78,5525-5531.
    [12]Sun,Y.;Bai,Y.;Song,D.;Li,X.;Wang,L.;Zhang,H.Design and performances of immunoassay based on SPR biosensor with magnetic microbeads.Biosens.Bioelectron.2007,23,473-478.
    [13]Jung,S.;Jung,J.;Suh,I.;Yuk,J.S.;Kim,W.;Choi,E.Y.;Kim,Y.;Ha,K.Analysis of C-reactive protein on amide-linked N-hydroxysuccinimide-dextran arrays with a spectral surface plasmon resonance biosensor for serodiagnosis.Anal Chem.2007,79,5703-5710.
    [14]Du,X.;Wang,Y.;Ding,Y.;Guo,R.Protein-directed assembly of binary monolayers at the interface and surface patterns of protein on the monolayers.Langmuir 2007,23,8142-8149.
    [15]Minunni,M.;Tombelli,S.;Mascini,M.;Bilia,A.;Bergonzi,M.C.;Vincieri,F.F.An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening.Talanta 2005,65,578-585.
    [16]Rich,R.L.;Day,Y.S.N.;Morton,T.A.;Myszka,D.G.High-resolution and high- throughput protocols for measuring drug/human serum albumin interactions using BIACORE.Anal.Biochem.2001,296,197-207.
    [17]Okun,I.;Veerapandian,P.New methods to mimic nature in high-throughput screening.Nature Biotechnol.1997,15,287-288.
    [18]He,L.;Musick,M.D.;Nicewarner,S.R.;Salinas,F.G.;Benkovic,S.J.;Natan,M.J.;Keating,C.D.Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization.J.Am.Chem.Soc.2000,122,9071-9077.
    [19]Willner,I.;Baron,R.;Willner,B.Growing metal nanoparticles by enzymes.Adv.Mater.2006,18,1109-1120.
    [20]Basnar,B.;Weizmann,Y.;Cheglakov,Z.;Willner,I.Synthesis of nanowires using dip-pen nanolithography and biocatalytic inks.Adv.Mater.2006,18,713-718.
    [21]Velev,O.D.;Kaler,E.W.In situ assembly of colloidal particles into miniaturized biosensors.Langmuir 1999,15,3693-3698.
    [22]Park,S.J.;Taton,T.A.;Mirkin,C.A.Array-based electrical detection of DNA with nanoparticle probes,Science 2002,295,1503-1506.
    [23]Huang,X.;Du,D.;Gong,X.;Cai,J.;Tu,H.;Xu,X.;Zhang,A.Composite assembly of silver nanoparticles with avidin and biotinylated AChE on gold for the pesticidal electrochemical sensing.Electroanalysis 2008,20,402-409.
    [24]Pavlov,V.;Xiao,Y.;Willner,I.Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles:nanotechnology-based sensing of nerve gases.Nano.Lett.2005,5,649-653.
    [25]Lyon,L.A.;Pena,D.J.;Natan,M.J.Surface plasmon resonance of Au colloid-modified Au films:particle size dependence.J.Phys.Chem.B 1999,103,5826-5831.
    [26]Lyon,L.A.;Musick,M.D.;Natan,M.J.Colloidal Au-enhanced surface plasmon resonance immunosensing.Anal Chem.1998,70,5177-5183.
    [27]Li,X.;Tamada,K.;Baba,A.;Knoll,W.;Hara,M.Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.J.Phys. Chem.B 2006,110,15755-15762.
    [28]Habauzit,D.;Chopineau,J.;Roig,B.SPR-based biosensors:a tool for biodetection of hormonal compounds.Anal,Bioanal.Chem.2007,387,1215-1223.
    [29]Meli,M.V.;Lennox,R.B.Surface plasmon resonance of gold nanoparticle arrays partially embedded in quartz substrates.J.Phys.Chem.C 2007,111,3658-3664.
    [30]Walz,I.;Schwack,W.Cutinase inhibition by means of insecticidal organophosphates and carbamates.3.oxidation of phosphorothionates by chloroperoxidase from caldariomyces fumago.J.Agric.Food Chem.2007,55,8177-8186.
    [1]Wilson,R.;Schiffrin,D.J.Electrochemically oxidized ferrocenes as catalysts for the chemiluminescence oxidation of luminol.J.Electroanal.Chem.1998,448,125-130.
    [2]Kalenda,P.Ferrocene and some of its derivatives used as accelerators of curing reactions in unsaturated polyester resins.European Polymer J.1995,31,1099-1102.
    [3]Fotou,G.P.;Scott,S.J.Pratsinis,S.E.The role of ferrocene in flame synthesis of silica.Combust.Flame 1995,101,529-538.
    [4]陈灿辉,李红,刘彩红.二茂铁及其衍生物修饰电极的研究.电子器件,2004,27,324-625.
    [5]Rosebfeld A.;Furlani A.Preparation characterization and antileukemic properties of diamine malonatoplatinum(Ⅱ) complexes tethered to ferrocene,Inorg.Chem.Acta 1992,20,219-223.
    [6]徐春,蔡宏,何品刚,方禹之.二茂铁标记DNA电化学探针的研制及性质研究.高等学校化学学报,2001,22,1492-1495.
    [7]Hou,Y.;Jaffrezic-Renault,N.;Martelet,C.;Tlili,C.;Zhang,A.Study of langmuir and langmuir-blodgett films of odorant-binding protein/amphiphile for odorant biosensors.Langmuir 2005,21,4058-4065
    [8]Inagaki N.;Satoh K.C-terminal processing peptidase of chloroplasts.In:Barett A J,Rawlings ND,Woessner(eds) Handbook of proteolytic enzymes,vol 2,2nd edn.Academic Press,London,2004,pp 2028-2031
    [9]Xiao,Y.;Patolsky,E;Katz,E.;Hainfeld,J.F.;Willner,I."Plugging into enzymes":Nanowiring of redox enzymes by a gold nanoparticle.Science 2003,299,1877-1881.
    [10]Yu,J.J;Yu,D.L.;Zhao,T.;Zeng,B.Z.Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix.Talanta 2008,74,1586-1591.
    [11]Yang,H.P.;Zhu,Y.F.Glucose biosensor based on nano-SiO_2 and "unprotected" Pt nanoclusters.Biosens.Bioelectron.2007,22,2989-2993.
    [12]Zhao,S.;Zhang,K.;Sun,Y.Y.;Sun,C.Q.Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode:Direct electrochemistry and electrocatalysis.Bioelectrochemistry 2006,69,10-15.
    [13]Xiao,Y.;Pavlov,V.;Shlyahovsky,B.;Wiilner,I.An Os(Ⅱ) bisbipyridine 4-picolinic acid complex mediates the biocatalytic growth of Au-nanoparticles:optical detection of glucose and of acetylcholine esterase inhibition.Chem.Eur.J.2005,11,2698-2704.
    [14]Luo,X.L.;Xu,J.J.;Zhang,Q.;Yang,G.J.;Chen,H.Y.Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly.Biosens.Bioelectron.2005,21,190-196.
    [15]Scampicchio,M.;Wang,J.;Blasco,A.J.;Arribas,A.S.;Mannino,S.;Escarpa,A.Anal.Chem.2006,78,2060-2063.
    [16]Willner,I.;Baron,R.;Willner,B.;Growing metal nanoparticles by enzymes.Adv.Mater.2006,18,1109-1120.
    [17]Kraatz H.B.;Lusztyk,J.;Enright G.D.Ferrocenoyl Amino Acids:A Synthetic and structural study.Inorg..Chem.1997,36,2400-2405.
    [18]Subramanian,R;Lakshminarayanan,V.A study of kinetics of adsorption of alkanethiols on gold using electrochemical impedance spectroscopy.Electrochim.Acta 2000,45,4501-4509.
    [19]Creager,S.E.;Hockett,L.A.;Rowe,G.K.Consequences of microscopic surface roughness for molecular self-assembly.Langmuir 1992,8,854-861.
    [20]Bertilsson,L.;Liedberg,B.Infrared study of thiol monolayer assemblies on gold:preparation,characterization,and functionalization of mixed monolayers.Langmuir 1993,9,141-149.
    [21]Kawasaki,M.;Sato,T.;Tanaka,T.;Takao,K.;Rapid self-assembly of alkanethioi monolayers on sputter-grown Au(111).Langmuir 2000,16,1719-1728.
    [22]Yang,Z.;Conzalez-Cortez,A.;Jourquin,G.;Vir(?),J.;Kauffmann,J.Analytical application of self assembled monolayers on gold electrodes:critical importance of surface pretreatment.Biosens.Bioelectron.1995,10,789-795.
    [23]Lee,M.T.;Hsueh,C.C.;Freund,M.S.;Ferguson,G.S.Air Oxidation of self-assembled monolayers on polycrystalline gold:The role of the gold substrate.Langmuir 1998,14,6419-6423.
    [24]Dijksma,M.;Ishida,T.;Nishida,N.;Hara,M.;Sasabe,H.;Knoll,W.Formation and electrochemical characterization of self-assembled monolayers of thioctic acid on polycrystalline gold electrodes in phosphate buffer pH 7.4.Langmuir 2000,16,3852-3857.
    [25]Ron,H.;Rubinstein,I.Alkanethiol monolayers on preoxidized gold.encapsulation of gold oxide under an organic monolayer.Langmuir 1994,10,4566-4573.
    [26]Ron,H.;Rubinstein,I.Self-assembled monolayers on oxidized metals.3.alkylthiol and dialkyl disulfide assembly on gold under electrochemical conditions.J.Am.Chem.Soc.1998,120,13444-13452.
    [27]Ron,H.;Matlis,S.;Rubinstein,I.Self-assembled monolayers on oxidized metals.2.gold surface oxidative pretreatment,monolayer properties,and depression formation.Langmuir 1998,14,1116-1121.
    [28]Li,D.;Zhang,Y.;Jiang,J.;Li,J.;Electroactive gold nanoparticles protected by 4-ferrocene thiophenol monolayer.J.Colloid Interf Sci.2003,264,109-113.
    [29]Bediako-Amoa,I.;Sutherland,T.C.;Li,C.;Silerova,R.;Kraatz.H.B.Electrochemical and surface study of ferrocenoyl oligopeptides.J.Phys.Chem.B 2004,108,704-714.
    [30]黎江.D1蛋白酶的分离提纯及其与抑制剂先导化合物的相互作用.华中师范大学硕士学位论文.2008.
    [1]McGurk,S.L.;Green,R.J.;Sanders,G.H.W.;Davies,M.C.;Roberts,C.J.;Tendler,S.J.B.;Williams,P.M.Molecular interactions of biomolecules with surface-engineered interfaces using atomic force microscopy and surface plasmon resonance.Langmuir 1999,15:5136-5140.
    [2]Malmsten,M.Studies of serum protein adsorption at phospholipid surfaces in relation to intravenous drug delivery.Colloid Surface A 1999,159,77-87.
    [3]Silin,V.;Weetall,H.;Vanderah,D.J.SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers(SAMs).J.Colloid Interf.Sci.1997,185,94-103.
    [4]Green,R.J.;Davies,J.;Davies,M.C.;Roberts,C.J.;Tendler,S.J.B.Surface plasmon resonance for real time in situ analysis of Protein adsorption to polymer surfaces.Biomaterials 1997,18,405-413.
    [5]Brink,G.;Sigl,H.;Sackmann,E.Near-infrared surface plasmon resonance in silicon-based sensor:new opportunities in sensitive detection of biomolecules from aqueous solutions by applying microstep for discriminating specific and non-specific binding.Sens Actuators B 1995,25,756-761.
    [6]Brundstedt,M.R.;Ziats,N.P.;Robertson,S.P.;Protein adsorption to poly(ether urethane ureas)modified with acrylate and methacrylate polymer and copolymer additives.J.Biomed.Mater.Res.1993,27,367-377.
    [7]Osterberg.E.;Bergstrom,K.;Holmberg,K.Copmparison of polysaccharide and poly(ethylene glycol) coatings for reduction of protein adsorption on polystyrene surfaces.Colloid Surface A 1993,77,159-169.
    [8]Norman,M.E.;Williams,P.Illum,L.Human serum albumin as a probe for surface conditioning (oponization) of block copolymer-coated microspheres.Biomaterials 1992,13,841-849.
    [9]Silin,V.;Weetall,H.;Vanderah,D.J.SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers(SAMs).J.Colloid Interf.Sci.1997,185,94-103.
    [10]Herrwerth,S.;Eck,W.;Reinhardt,S.;Grunze M.Factors that determine the protein resistance of oligoether self-assembled monolayers - internal hydrophilicity,terminal hydrophilicity,and lateral packing density.J.Am.Chem.Soc.2003,125,9359-9366.
    [11]L(o|¨)f(?)s,S.;Johnsson,B.A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands.J.Chem.Soc.Chem.Commun.1990,1526-1528.
    [12]Raiber,K.;Terfort,A.;Benndorf,C.;Krings,N.;Strehblow,H.H.Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning.Surf.Sci.2005,595,56-63.
    [13]Harder,P.;Grunze,M;Dahint,R.;Whitesides,G.M;Laibinis,P.E.Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption.J.Phys.Chem.B 1998,102,426-436.
    [14]Laibinis,P.E.;Bain,C.D.;Nuzzo,R.G.;Whitesides,G.M.The structure and wetting properties of ome4ga-Alkoxy-n-alkanethioIate Monolayers on Gold and Silver.J.Phys.Chem.1995,99,7663-7676.
    [15]Porter,M.D.;Bright,T.B.;Allara,D.L.;Chidsey,C.E.D.Spontaneously organized molecular assemblies.4.Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry,infrared spectroscopy,and electrochemistry.J.Am.Chem.Soc.1987,109,3559-3568.
    [16]Mol,N.J.;Fischer,M.J.E.Suface plasmon resonance with the AUTOLAB ESPRIT theory and applications handbook.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700