石墨烯及石墨烯基二元和三元纳米复合材料制备及其在超级电容器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器具有功率密度高,循环寿命长,安全环保等优点,在电动汽车领域具有广泛地应用前景。提高超级电容器能量密度和功率密度,缩短充放电时间成为该领域研究的热点。而寻找一种比容量高、性能稳定的超级电容电极材料是解决这些问题的关键。石墨烯具有高的电子传导速率、比表面积和机械强度,在超级电容器电极材料领域显示出了巨大的应用前景。目前,为了大规模低成本制备石墨烯,大多采用石墨的氧化还原法。然而在还原过程中,传统的一水合肼还原剂毒性大,污染环境,并且制备出的石墨烯易团聚,严重地限制了石墨烯及其石墨烯基复合材料的实际应用。因此,寻找一种简单的、环保的制备石墨烯以及石墨烯基复合材料方法是人们渴求的。本论文在分析石墨烯近期的研究成果和应用成果的基础上,开展了水溶性石墨烯,石墨烯-导电聚合物二元复合材料,石墨烯-导电聚合物-过渡金属氧化物三元复合材料的构筑,采用SEM、XPS、XRD、FT-IR、BET等对复合材料的结构、形貌进行表征,深入研究石墨烯及其石墨烯基复合材料作为超级电容器电极材料的电化学电容性能,并取得如下成果:
     (1)论文首次采用碳酸钠热碱溶液对氧化石墨烯进行还原制备了水溶性石墨烯,并与传统的化学还原剂一水合肼和已报道的碱性还原剂氢氧化钾进行了对比。通过FT-IR,XRD,Raman,XPS,TGA等数据的分析,可以得出碳酸钠热碱溶液对于氧化石墨烯具有一定的还原特性。研究结果表明,热碱溶液还原得到石墨烯的比表面积(Na_2CO_3-Graphene:789m~2/g; K-Graphene:632m~2/g)要比一水合肼还原后得到的石墨烯的比表面积(420m~2/g)要大;然而热碱溶液还原得到石墨烯的电导率(Na_2CO_3-Graphene:10S/m; K-Graphene:12.8S/m)要比一水合肼还原后得到石墨烯的电导率(187.5S/m)要小。电化学测试表明Na_2CO_3-Graphene有着理想的电容特性,在5mA/cm~2的电流密度下,其比电容为228F/g。所以用Na_2CO_3溶液还原氧化石墨烯是一种高效低成本绿色的方法,可以用来大量生产还原氧化石墨烯和大量用于电化学电容器的石墨烯基电极材料。
     (2)以氧化石墨烯的酸性溶液为水相,三氯甲烷为油相,分别将过硫酸铵(APS)和苯胺加入到水相和油相中,采用油/水界面聚合法制备了氧化石墨烯-聚苯胺复合材料。通过FT-IR数据分析表明氧化石墨烯中的羟基(-OH)和羧基(-COOH)和聚苯胺之间存在化学键作用和氢键连接。HRTEM和SEM表明生成的纤维状的聚苯胺均匀地分布在氧化石墨烯表面。电化学测试表明在扫描速率为5mv/s时,聚苯胺、氧化石墨烯和聚苯胺/氧化石墨烯纳米复合材料的比电容值分别是244F/g,26F/g和893F/g,可以看出聚苯胺/氧化石墨烯纳米复合材料的比电容值远大于聚苯胺和氧化石墨烯。
     (3)采用磺化石墨烯的酸性溶液作为水相,三氯甲烷作为油相,分别将APS和苯胺加入到水相和油相中,采用油/水界面聚合法制备了磺化石墨烯-聚苯胺复合材料。研究了不同质量比的磺化石墨烯和苯胺对复合材料电化学性能的影响。电化学测试表明当苯胺和磺化石墨烯质量比是10:1时制备的复合材料(SGEPA-110)具有很好的电化学电容性能。当扫描速率是2mV/s时,电容值可以达到962F/g。经过1000次循环后比电容值保持率为78%,在功率密度是102W/kg时能量密度是68.86Wh/kg。磺化石墨烯-聚苯胺纤维复合材料这种优异电化学性能主要归因于二元纳米复合材料协同效应,磺化石墨烯不仅作为高比表面积的基体支撑材料来负载小尺寸的聚苯胺颗粒而且还以其优异的导电性能形成整个复合材料的导电网络。
     (4)采用一步溶液法制备了石墨烯-聚苯胺复合材料。利用苯胺在氧化过程中失去电子来直接还原氧化石墨烯得到石墨烯-聚苯胺低聚物,然后直接在溶液中加入浓盐酸将溶液的pH值调到1,加入引发剂APS,在冰水浴中反应得到石墨烯-聚苯胺复合材料。这种反应优点是石墨烯表面吸附有苯胺低聚物,限制了石墨烯的团聚,从而保证在聚苯胺聚合前石墨烯的单片层分散状态。并且,此反应中没有外加的还原剂来还原氧化石墨烯,从而也避免了外加还原剂对复合材料的影响。研究了不同质量比的氧化石墨烯和苯胺对复合材料电化学性能的影响。电化学测试表明,当苯胺和氧化石墨烯质量比是1:8时制备的复合材料(GPA8),在扫描速率是1mV/s时,比电容值可以达到2033F/g。GPA8复合材料电极在0.5A/g时比电容值可以达到959F/g,在5A/g时比电容仍然可以达到480F/g。在经过100次循环伏安循环后,比电容值保持率为80%。
     (5)采用一锅法制备石墨烯-聚苯胺-二氧化锡三元复合材料(GSP),利用GO+SnSO_4+H_2O-Graphene+SnO_2+H_2SO_4反应,在未加外来的还原剂下,利用Sn~(2+)氧化成SnO_2的同时将氧化石墨烯还原制备石墨烯-二氧化锡二元复合材料(GS),而且反应液为酸性,在此条件下加入苯胺和引发剂,进行聚苯胺聚合。控制氧化石墨烯的含量,改变二氧化锡和苯胺的质量,制备一系列GSP三元复合材料。电化学测试结果表明随着聚苯胺在三元复合材料的比例增加,电容值会有急剧增加。在扫描速率是5mV/s时,GSP118三元复合材料的电容值是913.4F/g,而GS11复合材料时38.4F/g。并且由于二氧化锡的引入,使得GSP三元复合材料的稳定性得到了提高,经过100次循环伏安测试,电容值保持率可以达到90%左右。
Super capacitor with high power density, long cycle life, andenvironmental protection has been a research hotpot. Scientists and researchunits around the world at present are dedicated to the study on how toimprove the energy density and power density of super capacitor, shorten thecharging and discharging time? However, the key to solve these problems isto find a good super capacitor electrode material. Graphene has the goodelectrical conductivity, the large specific surface area and strong mechanicalstrength. Graphene in the field of super capacitor electrode materialsshowed great application prospect. At present, for the sake of large-scale,low-cost preparation of graphene, chemical reduction of graphene oxide isused. However in the process of reduction, a traditional hydrazine hydratereductant is toxic, environmental pollution, and the as-prepared graphene iseasy to renite, severely limiting the graphene and graphene compositeapplication. Therefore, this paper based on the analysis of graphene based on recent research and application of the results, carried out a water solublegraphene and graphene-conductive polymer binary composite,graphene-conductive polymers-transition metal oxides ternary composites.The structure and morphology of the composites were characterized by SEM,XPS, XRD, FT-IR and BET. Graphene and graphene-based compositematerial as a super capacitor electrode material of electrochemical capacitorare also studied, and achieved the following results:
     (1) The thermal alkali reduction process of graphene oxide was studiedby carbonate sodium, compared with traditional chemical reduction agenthydrazine and reported potassium hydroxide. The research found that specificsurface area of Na_2CO_3-Graphene and K-Graphene were789and632m~2/g,respectively. However, specific surface area of H-Graphene was420m~2/g.The conductivity of Na_2CO_3-Graphene and K-Graphene were10and12.8S/m. however, the conductivity of H-Graphene was187.5S/m.Electrochemical tests show that Na_2CO_3-Graphene has ideal specificcapacitance of228F/g at the current density of5mA/cm~2. Therefore, Na_2CO_3thermal solution is an effective and low cost green chemical reduction agentfor the reduction of graphene oxide. It can be used for mass productionreduction graphene oxide and a large number of the graphene electrodematerial for electrochemical capacitors.
     (2) With graphene oxide acid solution as the water phase,trichloromethane as the oil phase, respectively, the ammonium persulfate (APS) and aniline were added to the water phase and oil phase.Graphene-oxide/polyaniline composite was prepared via oil/water interfacialpolymerization. The results showed that hydroxyl (-OH) and carboxyl(-COOH) groups of graphene oxide and polyaniline had chemical bonds andhydrogen bonds. HRTEM and SEM show that the generated fibrous ofpolyaniline is evenly distributed on the surface of graphene oxide.Electrochemical results indicated that a high specific capacitance of893F/gfor the hybrids was measured at the potential scan rate of5mV/s in a6MKOH aqueous solution compared to244F/g for pure PANIF and26F g-1forGO.
     (3) Using sulfonated graphene acid solution as the water phase,trichloromethane as oil phase, the APS and aniline were added to the waterphase and oil phase, respectively. Different mass feed ratios ofSDBS-Graphene and aniline in the interfacial polymerization was alsoinvestigated to select the SDBS-Graphene-PANI-F (SGEPA) composites bytheir effect on the supercapacitor performance. It can be found that thecomposites show high specific capacitance and good cycling stability whenmass ratio of PANI-F to SDBS-Graphene is10. The SGEPA compositeelectrodes with a mass ratio of1:10showed better electrochemicalperformance than pure polyaniline nanofiber and graphene. A high specificcapacitance of962F/g was obtained at a potential scan rate of2mV/s and thespecific capacitance value of SGEPA-110retained about78%after1000 cycles. It also exhibited a high energy density of68.86Wh/kg at a powerdensity of102W/kg. The extraordinary electrochemical properties of thecomposites were attributed to the well-designed structural advantages ofbinary nanocomposites and the good combination and synergistic effectsbetween graphene and polyaniline.
     (4) Aniline is used to restore graphene oxide. The use of aniline on theoxidation process lost electrons. Electrons are captured by graphene oxide.Graphene-polyaniline oligomer is formed. Then directly adding concentratedhydrochloric acid in a solution and then dispatch the pH of the solution to1,to join the initiator APS, reaction in the ice water bath to get graphene-polyaniline composite material. This advantage is one step solution method isused to preparation of graphene-polyaniline composites, it avoidagglomeration of graphene in the solution, at the same time the graphenesurface adsorption of aniline oligomer, which also limits its further together,thereby ensuring the polyaniline state before single layer graphene dispersionpolymerization. And this reaction did not plus a reducing agent for reductionof graphene oxide, thus avoid the effect of reducing agent on the compositematerial. Different mass ratio of graphene oxide and aniline were studied.Electrochemical tests show that when aniline and graphene oxide mass ratiowas1:8(GPA8), the specific capacitance values can reach2033F/g at1mv/s.It is noted that the specific capacitance of GPA8is959F/g at0.5A/g and stillkeeps as high as480F/g even at5A/g. However, the specific capacitance of PANI decreases from155to38F/g at current densities of0.5and5A/g,respectively. After100cycles, the redox peaks for GPA8electrode are stillpresent, indicating a good cycling performance with capacitance retention of80%.
     (5) Using GO+SnSO_4+H_2O-Graphene+SnO_2+H_2SO_4, we adopt one-potmethod to prepare graphene-SnO_2-polyaniline ternary composite; itselectrochemical performance was studied. Research found that as polyanilinein the proportion of ternary composite increased, capacitance value will beincreased dramatically. When the scan rate is5mV/s, the capacitance value ofGSP118ternary composite can reach913.4F/g. However, the capacitancevalue of GS11composite can only reach38.4F/g. Moreover, GSP ternaycomposite can become more stability due to the indroduction of SnO_2.Capacitance retention of GSP ternary composite can reach about90%.
引文
[1]蒋利军,张向军,刘晓鹏.新能源材料的研究进展[J].中国材料进展,2009,28(7-8):50-56
    [2]陈英放,李媛媛,邓梅根.超级电容器的原理及应用[J].电子元件与材料,2008,27(4):6-9
    [3]李晶,赖延清,金旭东.超级电容器的储能机理与关键材料研究进展[J].科技创新导报,2011,1:123-124
    [4]陈新丽,李伟善.超级电容器电极材料的研究现状与发展[J].广东化工,2006,33(5):52-57
    [5] Zhang L, Zhou R, Zhao X S. Graphene-based material as supercapacitor electrodes[J]. J.Mater. Chem.,2010,20:5983-5992
    [6]王康,余爱梅,郑华均.超级电容器电极材料的研究进展[J].浙江化工,2010,41(4):18-22
    [7] Becker H I. Low voltage electrolytic capacitor[P].1957Contract No.: US2800616(A)
    [8] Conway B E, in Proc. Symp. On Electrochemical capacitor. Delnick F M, Tomkiewicz M,eds., vol.95-29,15, Electrochem Society, Pennington, N.J.1996.
    [9] Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemicalenergy storage[J]. J. Electrochem. Soc.,1991,138(6):1539
    [10] Millikan R A. The General Law of Fall of a Small Spherical Body through a Gas, and itsBearing upon the Nature of Molecular Reflection from Surfaces[J]. Phys. Rev.,1923,22:1-23.
    [11]刘国阳,周安宁.超级电容器炭基材料研究进展[J].炭素,2006,4:27-31
    [12]吕进玉,林志东.超级电容器导电聚合物电极材料的研究进展[J].材料导报,2007,21(3):29-31
    [13]何铁石,赵龙,刘志成.石墨烯基超级电容器电极材料研究进展[J].电子元件与材料,2011,30(12):71-73.
    [14] Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F. AdvancedAsymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous GrapheneElectrodes with High Energy Density[J]. Adv. Funct. Mater.,2012,22(12):2632-41
    [15] Lu X, Zhai T, Zhang X, Shen Y, Yuan L, Hu B, Gong L, Chen J, Gao Y, Zhou J, Tong Y,Wang Z. WO3–x@Au@MnO2Core–Shell Nanowires on Carbon Fabric forHigh-Performance Flexible Supercapacitors[J]. Adv. Mater.,2012,24(7):938-944
    [16] Zhi M, Manivannan A, Meng F, Wu N. Highly conductive electrospun carbonnanofiber/MnO2coaxial nano-cables for high energy and power densitysupercapacitors[J]. J. Power. Sources.,2012,208(10):345-53
    [17] Nam K W, Kim K B. A Study of the Preparation of NiOxElectrode via ElectrochemicalRoute for Supercapacitor Applications and Their Charge Storage Mechanism[J]. J. Electro.Soc.,2002,149(3): A346-A54
    [18] Deng W, Liu Y, Zhang Y, Lu F, Chen Q, Ji X. Enhanced electrochemical capacitance ofnanoporous NiO based on an eggshell membrane[J]. RSC Adv.,2012,2(5):1743-5
    [19] Pang H, Zhang B, Du J, Chen J, Zhang J, Li S. Porous nickel oxide nanospindles withhuge specific capacitance and long-life cycle[J]. RSC Adv.,2012,2(6):2257-61
    [20] Yang Q, Lu Z, Chang Z, Zhu W, Sun J, Liu J, Sun M, Duan X. Hierarchical Co3O4nanosheet@nanowire arrays with enhanced pseudocapacitive performance[J]. RSC Adv.,2012,2(4):1663-1668.
    [21] Zhao C, Wang X, Wang S, Wang Y, Zhao Y, Zheng W. Synthesis of Co(OH)2/graphene/Nifoam nano-electrodes with excellent pseudocapacitive behavior and high cycling stabilityfor supercapacitors[J]. Int. J. Hydrogen. Energy.,2012,37(16):11846-11852
    [22] Yu G, Xie X, Pan L, Bao Z, Cui Y. Hybrid nanostructured materials for high-performanceelectrochemical capacitors[J]. Nano. Energy.,2013,2(2):213-234
    [23] Gupta V, Miura N. High performance electrochemical supercapacitor fromelectrochemically synthesized nanostructured polyaniline [J]. Mater. Lett.,2006,60:1466-1469.
    [24] Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y. Enhanced capacitance and ratecapability of graphene/polypyrrole composite as electrode material for supercapacitors[J].J. Power. Sources.,2011,196:5990-5996
    [25] Pieta P, Venukadasula G, D’Souza F, Kutner W. Preparation and Selected Properties of anImproved Composite of the Electrophoretically Deposited Single-Wall Carbon Nanotubes,Electrochemically Coated with a C60-Pd and Polybithiophene Mixed Polymer Film[J]. J.Phys. Chem. C.,2009,113:14046-14058
    [26] Ferraris J P, Eissa M M, Brotherston I D, Loveday D C. Performance Evaluation of Poly3-(Phenylthiophene) Derivatives as Active Materials for Electrochemical CapacitorApplications[J]. Chem. Mater.,1998,10:3528-3535
    [27]李晶,赖延清,刘业翔.导电聚苯胺电极材料在超级电容器其中的应用及研究进展[J].材料导报,2006,20(12):20-27
    [28] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V,Firsov A A. Electric field effect in atomically thin carbon film [J]. Science.2004,306:666-669
    [29] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Graphene-based unltracapacitors[J]. NanoLett.,2008,8:3498-3502
    [30] Bolotin K, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H. Ultrahighelectron mobility in suspended graphene[J]. Solid State Commun.,2008,146:351-355
    [31] Balandin A A, Ghosh S, Bao W, Calizo I, Tewelderhan D, Miao F, Lau C. Superior thermalconductivity of single-layer graphene[J]. Nano Lett.,2008,8:902-907
    [32] Geim A K, Novoselov K S. The rise of graphene[J]. Nat. Mater.,2007,6:183-191
    [33] Zhang Y, Tan Y, Stormer H, Kim P. Experimental observation of the quantum Hall effectand Berry’s phase in graphene[J]. Nature.2005,438:201-204
    [34] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide asa transparent and flexible electronic material [J]. Nanotechnol.,2008,3:270–274
    [35] Moon I K, Lee J, Ruoff R S, Lee H. Reduced graphene oxide by chemical graphitization[J]. Nat. Commun.,2010,1:73-75
    [36] Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C. Anomalous bond of mmonolayergraphite on transition-metal carbide surfaces [J]. Phys. Rev. Lett.,1990,64:768–771
    [37] Berger C, Song Z, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A,Conrad E, First P, Heer W. Electronic confinement and coherence in patterned epitaxialgraphene [J]. Science.2006,312:1191–1196
    [38] Liu, N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-Step Ionic-Liquid-AssistedElectrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly fromGraphite [J]. Adv. Func. Mater.,2008,18:1518-1525
    [39] Subrahmanyam K S, Panchakarla L S. Simple Method of Preparing Graphene Flakes byan Arc-Discharge Method [J]. J. Phys. Chem. Lett.,2009,113:4257-4259
    [40] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J.Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature.2009,458:872-876
    [41] Brodie B C. On the atomic weight of graphite[J]. Philos Trans Soc.,1859,14:249-259.
    [42] Staudenmaier L. Verfahren zur darstellung der graphitsaure[J]. Ber Dtsch Chem Ges.1898,31:1481-1487.
    [43] Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc.,1958,80:1339.
    [44] Marcano D, Kosynkin D, Berlin J, Sinitskii A, Sun Z, Slesarev A, Alemany L, Lu W, TourJ. Improved Synthesis of Graphene Oxide[J]. ACS Nano.,2010,4:4806-4814
    [45] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y,Nguyen S, Ruoff R. Synthesis of graphene-based nanosheets via chemical reduction ofexfoliated graphite oxide[J]. Carbon.2007,45:1558-1565.
    [46] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, et al. Efficient reductionof graphite oxide by sodium borohydride and its effect on electrical conductance[J]. AdvFunct Mater2009,19:1987-1992
    [47] Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, Yao J. Facile synthesis andcharacterization of graphene nanosheets[J]. J. Phys. Chem. C.,2008,112:8192-8195.
    [48] Lei Z B, Lu L, Zhao X S. The electrocapacitive properties of graphene oxide reduced byurea[J]. Energy. Enviro. Sci.2012,5:6391-6399
    [49] Fernandez-Merino M J, Guardia L, Paredes J I, Villar-Rodil S, Solis-Fernandez P,Martinez-Alonso A, Tascon J. Vitamin C is an ideal substitute for hydrazine in thereduction of graphene oxide suspensions[J]. J. Phys. Chem. C.,2010,114(14):6426-6432
    [50] Amarnath C A, Hong C E, Kim N H, Ku B C, Kuila T, Lee J H. Efficient synthesis ofgraphene sheets using pyrrole as a reducing agent[J]. Carbon.2011,49:3497-502
    [51] Liao R J, Tang Z H, Lei Y D, Guo B C. Polyphenol-reduced graphene oxide: mechanismand derivatization[J]. J. Phys. Chem. C.2011.,115:20740-6
    [52] Pei S F, Zhao J P, Du J H, Ren W C, Cheng H M. Direct reduction of graphene oxide filmsinto highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon.2010,48:4466-4474
    [53] Song P, Zhang X Y, Sun M X, Cui X L, Lin Y H. Synthesis of graphene nanosheets viaoxalic acid-induced chemical reduction of exfoliated graphite oxide[J]. RSC Adv.,2012,2:1168-1173
    [54] Fan Z J, Wang K, Wei T, Yan J, Song L P, Shao B. An environmental friendly and efficientroute for the reduction of graphene oxide by aluminum power[J]. Carbon.2010,48:1670-92
    [55] Mei X G, Ouyang J Y. Ultrasonication-assisted ultrafast reduction of graphene oxide byzinc power at room temperature[J]. Carbon.2011,49:5389-5397
    [56] Fan Z J, Kai W, Yan J, Wei T, Zhi L J, Feng J, Ren Y, Song L, Wei F. Facile synthesis ofgraphene nanosheets via Fe reduction of exfoliated graphite oxide[J]. ACS Nano.,2011,5:191-8
    [57] Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L, Zhang F B. Deoxygenation ofexfoliated graphite oxide under alkaline conditions: a green route to graphenepreparation[J]. Adv. Mater.,2008,20:4490-4493
    [58] Zhou T, Chen F, Liu K, Deng H, Zhang Q, Feng J W, Fu Q. A simple and efficient methodto prepare graphene by reduction of graphite with sodium hydrosulfite[J].Nanotechnology.2011,22:045704
    [59] Kim D, Yang S J, Kim Y S, Jung H, Park C R. Simple and cost-effective reduction ofgraphite oxide by sulfuric acid[J]. Carbon.2012,50:3229-3232
    [60] Moon I K, Lee J, Ruoff R S, Lee H. Reduced graphene oxide by chemicalgraphitization[J]. Nat. Commu.,2010,1:1-6
    [61] Kuila T, Bose S, Khanra P, Mishra K, Kim N H, Lee J H. A green approach for thereduction of graphene oxide by wild carrot root[J]. Carbon.2012,50:914-21
    [62] Bose S, Kuila, Mishra A K, Kim N H, Lee J H. Dual role of glycine as a chemicalfunctionalizer and a reducing agent in the preparation of graphene: an environmentalfriendly method[J]. J. Mater. Chem.,2012,22:9696-703
    [63] Hofmann U, Frenzel A. The reduction of graphite oxide with hydrogen sulphide[J].Kolloid Zeitschrift1934,68:149-151
    [64] Zhu C Z, Guo S J, Fang Y X, Dong S J. Reducing sugar: new functional molecules for thegreen synthesis of graphene nanosheets[J]. ACS Nano.,2010,4:2429-2437
    [65] Wu Z S, Ren W, Gao L, Liu B, Jiang C, Cheng H M. Synthesis of high quality graphenewith a pre-determined number of layers[J]. Carbon.2009,47:493-499
    [66] Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, et al. Controlled synthesis of large-areaand patterned electrochemically reduced graphene oxide films[J]. Chem. Euro. J.,2009,15:6116-6120
    [67] Simon A, Dronskowski R, Krebs B, Hettich B. The crystal structure of Mn2O7[J]. Angew.Chem. Int. Ed. Engl.,1987,26(2):139-140
    [68] Hofmann U, Holst R. S urenatur und die Methylierung von Graphitoxyd[J]. Ber. Dtsch.Chem. Ges. B.,1939,72:754–771
    [69] Ruess G. über das graphitoxyhydroxyd (graphitoxyd)[J]. Monatsh. Chem.,1946,76:381-417
    [70] Scholz W, Boehm H P, Untersuchungen am graphitoxid. VI. Betrachtungen zur strukturdes graphitoxids[J]. Z. Anorg. Allg. Chem.,1969,369:327–340
    [71] Nakajima T, Matsuo Y. Formation process and structure of graphite oxide[J]. Carbon.1994,32(3):469–475
    [72] Lerf A, He H, Forster M, Klinowski. Structure of Graphite Oxide Revisited[J].J.Phys.Chem.B.,1998,102:4477-4482
    [73] Zhang K, Zhang L L, Zhao X S, Wu J S. Graphene/polyaniline nanofiber composites assupercapacitor electrodes[J]. Chem. Mater.,2010,22:1392-401
    [74] Xu J. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on graphene oxidesheet with synergistic effect for energy storage[J]. ACSNano,2010.4:5019-5026
    [75] Zhang L, Zhao S, Tian X, Zhao X S. Layered Graphene Oxide Nanostructures withSandwiched Conducting Polymers as Supercapacitor Electrodes[J]. Langmuir.2010,26:17624-17628
    [76] Gao Z, Yang W, Wang J, Yan H, Yao Y, Ma J, Wang B, Zhang M, Liu L. Electrochemicalsynthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofiberscomposite and its electrochemical performance[J]. Electrochimica Acta.,2013,91:185-194
    [77] Zhang Q, Li Y, Feng W. Electropolymerization of graphene oxide/polyaniline compositefor high-performance supercapacitor[J]. Electrochimica Acta.,2013,90:95-100
    [78] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reactionof graphene–MnO2composites as supercapacitor electrodes[J]. Carbon.2010,48:3825-3833
    [79] Chen S, Zhu J, Xu X, Han Q, Wang X. Graphene oxide-MnO2nanocomposites forsupercapacitors[J]. ACS Nano.,2010,4(5):2822-2830
    [80] Chen S, Zhu J, Wang X. One-step synthesis of graphene-cobalt hydroxide nanocompositesand their electrochemical properties[J]. Phys. Chem. Chemical. Physics.,2010,114:11829-11834
    [81] Du F, Yu D, Dai L, Ganguli S, Varshney V, Roy A K. Preparation of tunable3D pillaredcarbon nanotube-graphene networks for high-performance capacitance[J]. Chem. Mater.,2011,23(21):4810-4816
    [82] Wang H, Casalongue H, Liang Y, Dai H. Ni(OH)2nanoplates grown on graphene asadvanced electrochemical pseudocapacitor materials[J]. J. Am. Chem. Soc.,2010,132:7472-7477
    [83] Xia X, Hao Q, Lei W, Wang W, Sun D, Wang X. Nanostructured ternary composites ofgraphene/Fe2O3/polyaniline for high-performance supercapacitor[J]. J. Mater. Chem.,2012,22:16844-16850.
    [1]杜希文,原续波.材料分析方法[M].天津:天津大学出版社,2006.166-196
    [2]郭立伟,戴鸿滨,李爱滨.现代材料分析测试方法[M].北京:兵器工业出版社,2008.1-50
    [3]滕凤恩,王煜明,龙骧. X射线学基础与应用[M].长春:吉林大学出版社.1991.1-23
    [4]李树堂.金属X射线衍射与电子显微分析技术[M].北京:冶金工业出版社,1980.53-89
    [5]周玉,高辉.材料分析测试技术-材料X射线衍射与电子显微分析[M].黑龙江:哈尔滨工业大学,1998.3-87
    [6] Winefordner J D. Raman spectroscopy for chemical analysis[M]. New Jersey. Wiley&Sons.,Inc., Publication,2000.4-10
    [7] Coats A W, Redfern J P. Thermogrametric analysis: A review [J]. Analyst.,1963,88:906-924
    [8]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.55-102
    [9] Edington J W. Proactical electron microscopy in materials science[J]. New York. Van NostrandReinhold Co.,1976.4-8
    [10]贾梦秋,杨文胜.应用电化学[M].北京:高等教育出版社,2004.
    [11]查全性.电极过程动力学导论[M].北京:科学出版社,2002.
    [12] Wang J. Analytical electrochemistry[M]. New Jersey. Wiley&Sons., Inc., Publication,2006.
    [13]藤岛昭[著],陈震,姚建年[译].电化学测定方法[M].北京:北京大学出版社,1995.
    [14] Bard A J, Faulkner L R. Electrochemical methods fundamentals and applications[M]. NewJersey: Wiley&Sons., Inc., Publication,2001.
    [15] Barsoukov E, Macdonald J R. Impedance spectroscopy theory, experiment, and applications[M].New Jersey: Wiley&Sons., Inc., Publication,2005.
    [16]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2004.
    [17] Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F. Preparation of a graphenenanosheet/polyaniline composite with high specific capacitance [J]. Carbon.2010,48:487-493
    [18] Li J, Xie H, Li Y, Li Z. Electrochemical properties of graphene nannosheets/polyanilinenanofibers composites as electrode for supercapacitors [J]. J. Power. Sources.,2011,196:10775-10781
    [19] Zhang K, Zhang L L, Zhao X S, Wu J S. Graphene/polyaniline nanofiber composites assupercapacitor electrodes[J]. Chem. Mater.,2010,22(4):1392-1401
    [20] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction ofgraphene-MnO2composites as supercapacitor electrodes[J]. Carbon.2010,48(13):3825-3833.
    [1] Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S. Stable aqueousdispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly(sodium4-styrenesulfonate)[J]. J. Mater. Chem.,2006,16:155-158
    [2] An X, Simmons T, Shah R, Wolfe C, Lewis K M, Washington M, Nayak S K, Talapatra S,Kar S. Stable aqueous dispersions of noncovalently functionalized graphene from graphiteand their multifunctional high-performance applications[J]. Nano. Lett.,2010,10(14):4295-4301
    [3] Xu Y, Bai H, Lu G, Li C, Shi G. Flexible graphene films via the Filtration of water-solublenoncovalent functionalized graphene sheets[J]. J. Am. Chem. Soc.,2008,130(18):5856-5857
    [4] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions ofgraphene nanosheets[J]. Nat. Nano.,2008,3:101-105
    [5] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliatedgraphite oxide under alkaline conditions: a green route to graphene preparation[J]. Adv.Mater.,2008,20(23):4490-4493
    [6] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc.,1958,80(6):1339-1339
    [7] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V,Gorchinskiy A D. Layer-by-layer assembly of ultrathin composite films from micron-sizedgraphite oxide sheets and polycations[J]. Chem. Mater.,1999,11(3):771-778
    [8] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile synthesis andcharacterization of graphene nanosheets[J]. J. Phys. Chem. C.,2008,112(22):8192-8195
    [9] Geng Y, Wang S, Kim J. Preparation of graphite nanoplatelets and graphene sheets[J]. J.Colloid. Interface. Sci.,2009,336(2):592-598
    [10] Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z. Electrically conductivepolyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J].Polymer.2010,51(5):1191-1196
    [11] Moon K, Lee J, Ruoff R S, Lee H. Reduced graphene oxide by chemical graphitization[J].Nat. Commu.,2010,1:73-78
    [12] Kudin K N, Ozbas B, Schniepp H C, Prud’Homme R K, Aksay I A, Car R. Raman spectraof graphite oxide and functionalized graphene sheets[J]. Nano Lett.,2008,8(1):36-41
    [13] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D,Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers[J].Phys. Rev. Lett.,2006,97(18):187401-187405
    [14] Lei Z, Li L, Zhao X S. The electrocapacitive properties of graphene oxide reduced byurea[J]. Energy. Environ. Sci.,2012,5:6391-6399
    [15] Zhu C Z, Guo S J, Fang Y X, Dong S J. Reducing sugar: new functional molecules for thegreen synthesis of graphene nanosheets[J]. ACS Nano.,2010,4:2429-2437
    [16] Luo D C, Zhang G X, Liu J F, Sun X M. Evaluation criteria for reduced graphene oxide[J].J. Phys. Chem. C.,2011,115(23):11327-11335
    [17] Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage inlithium ion batteries[J]. Carbon.2009,47(8):2049-2053
    [18] Fernandez-Merino M J, Guardia L, Paredes J I, Villar-Rodil S, Solis-Fernandez P,Martinez-Alonso A, Tascon J M D. Vitamin C is an ideal substitute for hydrazine in thereduction of graphene oxide suspensions[J]. J. Phys. Chem. C.,2010,114(14):6426-6432
    [19] Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide viaL-ascorbic acid[J]. Chem. Commun.,2010,46(7):1112-1114
    [20] Zhu Y, Murali S, Stoller M, Ganesh K, Cai W, Ferreira P, et al. Carbon-basedsupercapacitors produced by activation of graphene[J]. Science.2011,332(6037):1537-1541
    [21] Jin Y, Huang S, Zhang M, Jia M, Dong Hu. A green and efficient method to producegraphene for electrochemical capacitors from graphene oxide using sodium carbonate asa reducing agent [J]. Appl. Surf. Sci.,2013,268:541-546
    [22] Jin Y, Jia M, Zhang M, Wen Q. Preparation of stable aqueous dispersion of graphenenanosheets and their electrochemical capacitive properties [J]. Appl. Surf. Sci.,2013,264:787-793
    [1] Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S. Theoretical and experimental specificcapacitance of polyaniline in sulfuric acid[J]. J. Power. Sources.,2009,190(2):578-586
    [2] Gupta V, Miura N. Electrochemically Deposited Polyaniline Nanowire’s Network[J].Electrochem. Solid-State. Lett.,2005,8(12): A630
    [3]Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F. Preparation of a graphenenanosheet/polyaniline composite with high specific capacitance[J]. Carbon.2010,48(2):487-493
    [4] Chen W, T Teng. Polyaniline-deposited porous carbon electrode for supercapacitor[J].Electrochimica Acta.,2003,48:641-649
    [5]Chen, W C, Wen T C. Electrochemical and capacitive properties of polyaniline-implantedporous carbon electrode for supercapacitors[J]. J. Power. Sources.,2003,117(1-2):273-282
    [6] Dou Y, Liu H, Xia Y, Tu B, Zhao D, Liu X. Syntheses of polyaniline ordered mesoporouscarbon composites with interpenetrating framework and their electrochemical capacitiveperformance in alkaline solution[J]. J. Power. Sources.,2011,196:1608-1614
    [7]Wang Y, Li H, Xia Y. Ordered Whiskerlike Polyaniline Grown on the Surface ofmesoporous carbon and its electrochemical capacitance performance[J]. Adv. Mater.,2006,18:2619-2623
    [8] Li L, Song H, Zhang Q, Yao J, Chen X. Effect of compounding process on the structure andelectrochemical properties of ordered mesoporous carbon/polyaniline composites aselectrodes for supercapacitors[J]. J. Power. Sources.,2009,187(1):268-274
    [9] Wang Q, Li J, Gao F, Li W, Wu K, Wang X. Activated carbon coated with polyaniline as anelectrode material in supercapacitors[J]. New Carbon Mater.,2008,23(3):275-280
    [10] Park J, Park O. Hybrid electrochemical capacitors based on polyaniline and activatedcarbon electrodes[J]. J. Power. Sources.,2002,111(1):185-190
    [11] Bleda-Martinez M, Peng C, Zhang S, Chen G, Morallon E, Cazorla-Amoros D.Electrochemical Methods to Enhance the Capacitance in Activated Carbon/PolyanilineComposites[J]. J. Electrochem. Soci.,2008,155(9): A672-A678
    [12] Liu J, Sun J, Gao L. A Promising Way To Enhance the Electrochemical Behavior ofFlexible Single-Walled/Polyaniline composite films[J]. J. Phys. Chem. C.,2010,114:19614-19620
    [13] Gupta V, Miura N. Polyaniline single-wall carbon nanotube (PANI SWCNT) compositesfor high performance supercapacitors[J]. Electrochimica Acta.,2006,52:1721-1726
    [14] Branzoi V, Branzoi F, Pilan L. Electrochemical fabrication and capacitance of compositefilms of carbon nanotubes and polyaniline[J]. Surf. Inerface. Anal.,2010,42:1266-1270
    [15] Jang J, Bae J, Choi M, Yoon S. Fabrication and characterization of polyaniline coatedcarbon nanofiber for supercapacitor[J]. Carbon.2005,43(13):2730-2736
    [16] Zhou G, Wang D, Li F, Zhang L, Weng Z, Cheng H. The effect of carbon particlemorphology on the electrochemical properties of nanocarbon/polyaniline composites insupercapacitors[J]. New Carbon Mater.,2011,26(3):180-189
    [17] Zhang K, Zhang L, Zhao X S, Wu J S. Graphene Polyaniline Nanofiber Composites asSupercapacitor[J]. Chem. Mater.,2010,22:1392-1401
    [18] Hummers W S, Offeman R E. Preparation of graphitic oxide[J] J. Am. Chem. Soc.,1958,80:1339-1339
    [19] Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S. Stable aqueousdispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly(sodium4-styrenesulfonate)[J]. J. Mater. Chem.,2006,16:155-158
    [20] Jamadade V S, Dhawale D S, Lokhande C D. Studies on electrosynthesizedleucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and theirsupercapacitive behavior[J]. Synth. Met.,2010,160:955-960
    [21] Deka M, Nath A K, Kumar A. Effect of dedoped (insulating) polyaniline nanofibers on theionic transport and interfacial stability of poly(vinylidene fluoride-hexafluoropropylene)based composite polymer electrolyte membranes[J]. J. Membrane. Science.,2009,327:188-194
    [22] Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitizedsolar cells[J]. Nano. Lett.,2007,8:323-327
    [23] Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang Z, Sun W, Chen Y. Organic photovoltaicdevices based on a novel acceptor material: graphene[J]. Adv. Mater.,2008,20:3924-3930
    [24] Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J. Polymerphotovoltaic cells based on solution-processable graphene and P3HT[J]. Adv. Func.tMater.,2009,19:894-904
    [25] Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by thesolvothermal reduction of colloidal dispersions of graphite oxide[J]. Carbon.2008,46:1994-1998
    [26] Kenji F, Kazuhiko K, Kennichi I, Masaki Y. Foliated natural graphite as the anode materialfor rechargeable lithium-ion cells[J]. J. Power. Sources.,1997,69:165-168
    [27] Hu C C, Lin J Y. Effects of the loading and polymerization temperature on the capacitiveperformance of polyaniline in NaNO3[J]. Electrochim Acta.,2002,47:4055-4067
    [28] Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer.Morphology and chemistry of its oxidation and reduction in aqueous electrolytes[J]. J.Chem. Soc. Faraday. Trans.,1986,182:2385-2400
    [29] Heeger A J. Nobel Lecture: Semiconducting and metallic polymers: The fourthgeneration of polymeric materials[J]. Rev. Mod. Phys.,2001,73:681-700
    [30] Wang H, Hao Q, Yang X, Lu L, Wang X. Effect of graphene oxide on the properties of itscomposite with polyaniline[J]. ACS Appl. Mater. Interfaces.,2010,2:821-828
    [31] Wang D, Li F, Zhao J, Ren W, Chen Z, Tan J, Wu Z, Gentle I, Lu G, Cheng H.Fabrication of graphene/polyaniline composite paper via in iitu anodicelectropolymerization for high-performance flexible electrode[J]. ACS Nano.,2009,3:1745-1752
    [32] Zhang H, Cao G, Wang W, Yuan K, Xu B, Zhang W, Cheng J, Yang Y. Influence ofmicrostructure on the capacitive performance of polyaniline/carbon nanotube arraycomposite electrodes[J]. Electrochim Acta.,2009,54:1153-1159
    [1] Hummers W S, Offeman R E. Preparation of graphite oxide[J]. J. Am. Chem. Soc.,1958,80(6):1339-1339
    [2] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V.Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxidesheets and polycations[J]. Chem. Mater.,1999,11(3):771-778
    [3] Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z. A transparent, flexible,low-temperature, and solution-processible graphene composite electrode[J]. Adv. Funct.Mater.,2010,20(17):2893-2902
    [4] Deka M, Nath A K, Kumar A. Effect of dedoped (insulating) polyaniline nanofibers on theionic transport and interfacial stability of poly(vinylidene fluoride-hexafluoropropylene)based composite polymer electrolyte membranes[J]. J. Membrane. Science.,2009,327(1-2):188-194
    [5] Yang N L, Zhai J, Wan M X, Wang L, Jiang L. Layered nanostructures of polyaniline withgraphene oxide as the dopant and template[J]. Synth. Met.,2010,160(15-16):1617-1622
    [6] Chiang J C, MacDiarmid A.‘Polyaniline’: Protonic acid doping of the emeraldine form tothe metallic regime[J]. Synth. Met.,1986,13(1-3):193-205
    [7] Macdiarmid A G, Chiang J C, Richter A F. Polyaniline: a new concept in conductingpolymers[J]. Synth. Met.,1987,18(1-3):285-290
    [8] He W, Zhang W N, Li Y, Jing X L. A high concentration graphene dispersion stabilized bypolyaniline nanofibers[J]. Synth. Met.,2012,162(13-14):1107-1113
    [9] Yan J, Wei T, Shao B, Fan Z, Qian W. Preparation of a graphene nanosheet/polyanilinecomposite with high specific capacitance[J]. Carbon.2010,48(2):487-493
    [10] Mao L, Zhang K, Sze H, Wu J S. Surfactant-stabilized graphene/polyaniline nanofibercomposites for high performance supercapacitor electrode[J]. J. Mater. Chem.,2012,22:80-85
    [11] Li Y, Peng H, Li G, Chen K. Synthesis and electrochemical performance of sandwich-likepolyaniline/graphene composite nanosheets[J]. Eur. Polym. J.,2012,48(8):1406-1412
    [12] Kumar N A, Choi H J, Shin Y R, Chang D W, Dai L M, Baek J B. Polyaniline-graftedreduced graphene oxide for efficient electrochemical supercapacitors[J]. ACS Nano.,2012,6(2):1715-1723
    [13] Wang H, Hao Q, Yang X, Lu L, Wang X. A nanostructured graphene/polyaniline hybridmaterial for supercapacitors[J]. Nanoscale.2010,2:2164-2170
    [14] Hao Q, Wang H, Yang X, Lu L, Wang X. Morphology-controlled fabrication of sulfonatedgraphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization andinvestigation of their electrochemical properties[J]. Nano Res.,2011,4(4):323-333
    [15] Li J, Xie H, Li Y, Liu J, Li Z. Electrochemical properties of graphenenanosheets/polyaniline nanofiber composites as electrode for supercapacitors[J]. J. Power.Sources.,2011,196(24):10775-10781
    [16] Wang D, Li F, Zhao J, Ren W, Chen Z, Tan J, Wu Z, Gentle I, Lu Q, Cheng H. Fabricationof graphene/polyaniline composite paper via in situ anodic electropolymerization forhigh-performance flexible electrode[J]. ACS Nano.,2009,3(7):1745-1752
    [17] Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F. Preparation of graphenenanosheet/carbon nanotube/polyaniline composite as electrode material forsupercapacitors[J]. J. Power. Sources.,2010,195(9):3041-3045
    [18] Jin Y, Huang S, Zhang M, Jia M. Preparation of sulfonated graphene-polyanilinenanofiber composites by oil/water interfacial polymerization and their application forsupercapacitors[J]. Synth. Met.,2013,168:58-64
    [1] Zhu C Z, Guo S J, Fang Y X, Dong S J. Reducing sugar: new functionalmolecules for the green synthesis of graphene nanosheets[J]. ACS Nano.,2010,4(4):2429-2437
    [2] Amarnath C A, Hong C E, Kim N H, Ku B C, Kuila T, Lee J H. Efficient synthesis ofgraphene sheets using pyrrole as a reducing agent[J]. Carbon.2011,49(11):3497-502
    [3] Titelman G I, Gelman V, Bron S, Khalfin R L, Cohen Y, Bianco-Peled H.Characteristics and microstructure of aqueous colloidal dispersions of graphiteoxide[J]. Carbon.2005,43(3):641–649
    [4] Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline forsupercapacitors[J]. Electrochem Commun.,2009,11(6):1158-1161
    [5] Acevedo D, Rivarola C, Miras M, Barbero C. Effect of chemical functionalization onthe electrochemical properties of conducting polymers. Modification of polyanilineby diazonium ion coupling and subsequent reductive degradation[J]. ElectrochimicaActa.,2011,56(11):3468-3473
    [6] Mishra A K, Ramaprabhu S. Functionalized graphene-based nanocomposites forsupercapacitor application [J]. J. Phys. Chem. C.,2011,115(29):14006-14013
    [7] Zengin H, Zhou W, Jin J, Czerw R, Smith Jr., D W, Echegoyen L, Carroll D L,Foulger S H, Ballato J, Carbon nanotube doped polyaniline[J], Adv Mater.200214(20):1480-1483
    [8] Li Y, Fang Y, Liu H, Wu X, Lu Y. Free-standing3D polyaniline-CNT/Ni-fiber hybridelectrodes for high performance supercapacitors[J]. Naoscale.2012,4:2867-2869
    [9] Chaudhari H K, Kelkar D S. Investigation of structure and electrical conductivity indoped polyaniline[J]. Polym. Int.,1997,42(4):380-384
    [10] Shen J F, Hu Y Z, Shi M, Lu X, Qin C, Li C, Ye M G. Fast and facile preparation ofgraphene oxide and reduced graphene oxide nano sheets[J]. Chem. Mater.,2009,21(15):3514-3520
    [11] Gao Z, Yang W, Wang J, Yan H, Yao Y, Ma J, Wang B, Zhang M, Liu L.Electrochemical synthesis of layer-by-layer reduced graphene oxidesheets/polyaniline nanofibers composite and its electrochemical performance[J].Electrochimica Acta.,2013,91:185-194
    [12] Baibarac M, Baltog I, Godon C, Lefrant S, Chauvet O. Colvalent functionalization ofsingle-walled carbon nanotubes by aniline electrochemical polymerization[J].Carbon.2004,42(15):3143-3152
    [13] Cochet M, Louarn G, Quillard S, Buisson J P, Lefrant S. Theoretical andexperimental vibrational study of emeraldine in salt form. Part Ⅱ[J]. J. Raman.Spectrosc.,2000,31(12):1041-1049
    [14] Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F. Preparation of a graphenenanosheet/polyaniline composite with high specific capacitance[J]. Carbon.201048(2):487-493
    [15] Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F. Preparation of graphenenanosheet/carbon nanotube/polyaniline composite as electrode material forsupercapacitors[J]. J. Power. Sources.,2010,195(9):3041-3045
    [16] Yang M, Cheng B, Song H, Chen X. Preparation and electrochemical performance ofpolyaniline-based carbon nanotubes as electrode material for supercapacitor[J].Electrochimica Acta.,2010,55(23):7021-7027
    [17] Jin Y, Huang S, Zhang M, Jia M. Preparation of sulfonated graphene-polyanilinenanofiber composites by oil/water interfacial polymerization and their application forsupercapacitors [J]. Synth. Met.,2013,168:58-64
    [18] Luo Y, Kong D, Jia Y, Luo J, Lu Y, Zhang D, Qiu K, Li C, Yu T.Self-assembledgraphene@PANI nanoworm composites with enhanced supercapacitor performance[J]. RSC Adv.,2013,3:5851-5859
    [19] Qi X, Tan C, Wei J, Zhang H. Synthesis of graphene–conjugated polymernanocomposites for electronic device applications [J]. Nanoscale.,2013,5:1440-1451
    [1] Li F H, Song J F, Yang H F, Gan S Y, Zhang QX, Han D X, Ivaska A, Niu L. One-stepsynthesis of graphene/SnO2nanocomposites and its application in electrochemicalsupercapacitors[J]. Nanotechnology,2009,20:455602-455607
    [2] Wang WJ, Hao QL, Lei W, Xia XF, Wang X. Geaphene/SnO2/polypyrrole ternarynanocomposites as supercapacitor electrode materials[J]. RSC Adv.,2012,2:10268-10274
    [3] Xu YX, Bai H, Lu GW, Li C, Shi GQ. Flexible graphene films via the filtration ofwater-soluble nanocovalent funtionalized graphene sheets[J]. J. Am. Chem. Soc.,2008,130:5856-5857
    [4] Mishra AK, Ramaprabhu S. Functionalized graphene-based nanocomposites forsupercapacitor application[J]. J. Phys. Chem. C.,115,2011:14006-14013
    [5] Liu S, Liu H, Li ZP, Yang SR, Wang JQ. Fabrication of free-standinggraphene/polyaniline nanofibers composite paper via electrostatic adsorption forelectrochemical supercapacitors[J]. New J. Chem.,2011,35:369-374
    [6] Cong HP, Ren XC, Wang P, Yu SH. Flexible graphene-polyaniline composite paper forhigh-performance supercapacitor[J]. Enery. Environ. Sci.2013
    [7] Yao J, Shen XP, Wang B, Liu HK, Wang GX. In-situ chemical synthesis ofSnO2-graphene nanocomposite as anode materials for lithium-ion batteries[J].Eletrochem Commun.,2009,11:1849-1852
    [8] Kim H, Kim SW, Park YU, Gwon H, Seo DH, Kim Y, Kang K. SnO2/graphenecomposite with high lithium storage capability for lithium rechargeable batteries[J].Nano Res.,2010,3:813-821
    [9] Huang YF, Lin CW. Facile synthesis and morphology control of grapheneoxide/polyaniline anocomposites via in-situ polymerization process[J]. Polymer.2012,53:2574-2582
    [10] Zhang M, Lei D, Du Z, Yin X, Chen L, Li Q, Wang Y, Wang T. Fast synthesis ofSnO2/graphene composites by reducing graphene oxide with stannous ions[J]. J. Mater.Chem.,2011,53:1673-1676
    [11] Li Y, Lv X, Lu J, Li J. Preparation of SnO2-nanocrystal/graphene-nanosheetscomposites and their lithium storage ability[J]. J. Phys. Chem. C.,2010,114:21770-21774
    [12] Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y. Graphene sheets decorated with SnO2nanoparticles: in-situ synthesis and highly efficient materials for cataluminescence gassensors[J]. J. Mater. Chem.,2011,21:5972-5977
    [13] Zhang L, Jiang L, Yan H, Wang W, Wang W, Song W, Guo Y, Wan L. Mono dispersedSnO2nanoparticles on both sides of single layer graphene sheets as anode materials inLi-ion batteries[J]. J. Mater. Chem.,2010,20:5462-5467

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700