新型过渡金属/碳纳米复合材料的制备及分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文以石墨烯、碳纳米管、介孔碳以及表面活性物质为基本材料,通过自组装、掺杂等步骤,首先制备了石墨烯-碳纳米管、石墨烯-苯胺、聚二烯丙基二甲基氯化铵(PDDA)-介孔碳等复合材料,然后在其表面负载过渡金属纳米材料,进而制得了新型过渡金属/碳纳米复合材料。并对所制备的材料进行了系统的分析与表征,研究了这些材料被用于催化、电化学传感器的可能性。具体工作内容如下:
     1.采用原位自组装法制备了三明治层状堆叠结构的氧化石墨烯(Gr)-碳纳米管(CNTs)复合材料,然后利用乙二醇的一步还原法,将Pt纳米粒子负载于Gr/CNTs复合物表面,制得了Pt/Gr-CNTs复合材料。利用扫描电子显微镜(SEM)、X-射线粉末衍射仪(XRD)等手段对Pt/Gr-CNTs进行了系统的表征。进一步研究证明Pt/Gr-CNTs复合材料在中性介质中对甲醇氧化具有高的催化活性。
     2.在成功合成了具有夹心结构的Pt/Gr/CNTs复合材料基础上,发展了一种基于该复合材料的电化学传感器,建立了测定热敏纸纸样中双酚A含量的分析方法。以循环伏安法(CV)和微分脉冲伏安法(DPV)为主建立的双酚A分析方法,可在6.0x10-8到8.0×10-5mol/L的浓度范围内进行测定,检测限为4.2×10-8mol/L(S/N=3)。
     3.发展了一种基于有机和水相界面相转移的方法,通过电荷转移自组装技术制备了Gr/苯胺(ANI)纳米复合材料;同时以Gr-ANI为原材料,利用原位电聚合法制备了Gr/-聚苯胺(PANI)纳米复合材料;进而将金属钯负载在Gr/pANI基底上用于制作电化学传感的新材料。用可见-紫外光谱法(UV-VIS)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)等手段表征了制备的复合材料。然后利用对苯二酚和邻苯二酚作为探针分子对Pd/Gr-PANI复合材料修饰电极的电催化活性进行了研究。结果表明,该材料对两种探针分子具有良好的电催化作用,可用于对苯二酚和邻苯二酚同分异构体的同时测定。
     4.通过原位自组装技术制备了三明治结构的Gr-CNTs纳米复合物,然后将其作为填料制备了导电性好的Gr-CNTs/聚酰亚胺(PI)混合膜。并在此基础上制备了更高导电性的、表面银化的Ag-Gr-CNTs/PI柔性复合膜。所制备的材料性质表明了其有望被应用于太阳能电池以及生物传感器等领域。
     5.对介孔碳(MC)进行功能化修饰,然后利用水热反应法将类石墨烯材料MOS2负载于MC表面,制得了MoS2/PDDA-MC复合材料、并将其应用于电化学传感研究。以该复合材料制得的修饰电极对L-半胱氨酸(L-Cys)具有良好的电催化能力,可望用于催化析氢、含硫有机小分子的检测。
In this paper, we studied the electrochemical behavior of several biological molecules on the transition metal/graphene-carbon nanotubes(Gr-CNTs) nanocomposites modified electrodes. The transition metal/Gr-CNTs nanocomposites were synthesized through liquid phase reduction method, several noble metal nanocomposites were successfully synthesized and their morphology and crystalline structures were characterized and analyzed carefully. Additionally, transition metal/Gr-CNTs nanocomposites-based nanocomposites modified electrodes were prepared and applications in electrochemical analysis were also extensively studied. The main contents are as follows:
     1. The sandwich lamination structure of Gr-CNTs nanocomposite has been fabricated through in situ facile and green method. Then Pt nanoparticles are fabricated on Gr-CNTs via a simple one-step chemical reduction method in ethylene glycol (EG) and water system. The Pt/Gr-CNTs was further characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which indicated that the as-synthesized Pt nanoparticles was successfully dispersed on the surface of Gr-CNTs nanocomposite. Electrochemical study has been proved that the Pt/Gr-CNTs nanocomposite has higher catalytic activity in neutral medium for methanol oxidation, which is hopefully used in variety types of cells and biosensors in physiological medium.
     2. Pt/Gr-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disrupter bisphenol A in thermal printing papers. A facile and green method was developed to synthesize the Gr-CNTs nanocomposite with a sandwich lamination structure. Pt nanoparticles were loaded on the assynthesized Gr-CNTs nanocomposite to prepare an electrochemical sensor for determining bisphenol A (BPA) in thermal printing paper. The electrochemical behavior of BPA on the Pt/Gr-CNTs nanocomposite was investigated by cyclic voltammetry (CV) and chronocoulometry (CC). The direct determination of BPA was accomplished by using differential pulse voltammetry (DPV) under optimized conditions. The oxidation peak current was proportional to the BPA concentration in the range from6.0*10"8to 8.0x10-5M. The detection limit was4.2×10-8M (S/N=3). The fabricated electrode showed good reproducibility, stability and selectivity. The proposed method was successfully applied to determine BPA in thermal printing papers samples and the results were satisfact.
     3. Anew facile in situ direct synthesis method of graphene-aniline (Gr-aniline) nanocomplex by a chargetransfer self-assembly technology at organic-aqueous interface was developed in this work. The graphene-polyaniline (Gr-PANI) nanocomposite was prepared by simultaneous electropolymerization of Gr-aniline, and palladium nanoparticles were loaded onto the Gr-PANI nanocomposite to be used as a new electrode material for electrochemical sensing. Hydroquinone (HQ) and catechol (CC) were used as probe molecule to evaluate the electrocatalytic activity of Pd/Gr-PANI nanocomposite. The Pd/Gr-PANI nanocomposite shows so excellent electro-catalytic activities toward the oxidation of HQ and CC isomers that the oxidation peaks of the two molecules were well and easily resolved. The excellent reproducibility, stability and selectivity of the Pd/Gr-PANI nanocomposite make it a potential candidate as electrochemical sensor for simultaneous determination of HQ and CC isomers.
     4. Silver nanoparticles modified graphene-carbon nanotubes/polyimide (Gr-CNTs/PI) films have been prepared by electrochemical reduction of silver nitrate on potassium hydroxide hydroxylated of Gr-CNTs/PI films surface. The as-prepared nanocomposites were characterized by transmission electron microscopy(TEM), scanning electron microscopy(SEM), X-ray diffraction(XRD) analyzer and semiconductor characterization system. The lower content of Gr-CNTs (10wt.%) doping in PI matrix can improve the conductivity of PI films more clearly than pure CNTs. The conductivity can be regulated by controlling Gr-CNTs content in PI matrix. These silver nanoparticles into Gr-CNTs/PI films presented here can act as deposition seeds which can initiate subsequent electroless silver or copper or electrodeposition other metal.
     5. In this work, a simple MoS2/PDDA-MC modified glassy carbon electrode (GCE) sensor has been fabricated. The electrochemical behavior of L-Cys was investigated on MoS2/PDDA-MC modified GCE.
引文
[1]张莉芹,袁泽喜.纳米技术和纳米材料的发展及其应用[J].武汉科技大学学报(自然科学版).2003,26(3):234-238.
    [2]Peng H,Tang J,Yang L,Pang J,Ashbaugh H S,Brinker C J. Responsive Periodic Mesoporous Polydiacetylene/Silica Nanocomposites[J]. J. Am. Chem.Soc..2006,128:5304-5035.
    [3]Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E. C60:Buckminster fullerene[J]. Nature.1985,318:162-163.
    [4]Iijima S. Helical microtubules of graphitic carbon[J]. Nature.1991,354:56-58.
    [5]Nvoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science.2004,306(5696): 666-669.
    [6]Baughman R H, Zakhidov A, De Heer W A. Carbon nanotubes-the route toward applications[J]. Science.2002,297:787-792.
    [7]Normile D, The End-Not Here Yet,But Coming SoonScience,2001,293,787.
    [8]Hughes TV, Chambers C R. Manufacture of carbon filaments. US Patents No.405,480(1889).
    [9]Rubio A,Corkill J L, Cohen M L. Theory of graphitic boron nitride nanotubes[J]. J. Phys. Rev. B.1994,49:5081-5084.
    [10]Hellgren N, Johansson M P, Broitman E, Hultman L, Sundgreen J E. Anisotropies in magnetron sputtered carbon nitride thin films[J]. Appl. Phys. Lett.2001,78:2703-2706.
    [11]Teter D M, Hemley R J. Low-Compressibility Carbon Nitrides[J]. Science.1996,271:53-55.
    [12]Han W Q, Bando Y, Kurashima K, Sato T. Boron-Doped Carbon Nanotubes Prepared through a Substitution Reaction[J]. Chem. Phys. Lett..1999,299:368-373.
    [13]Yang S H,Shin W H, Lee J W, Kim H S, Kang J K, Kim Y K. Nitrogen-mediated fabrication of transition metal-carbon nanotube hybrid materials[J]. Appl. Phys. Lett..2007,90:013103-105.
    [14]Stephen O,Ajayan P M. Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen[J]. Science.1994,266:1683-1685.
    [15]Charlier J C, Terrones M, Baxendale M. Enhanced electron field emission in B-doped carbon nanotubes[J]. Nano Lett..2002,2:1191-1195.
    [16]Cioffi C, Campidelli S, Sooambar C, Marcaccio M, Marcolingo G, Meneghetti M, Paolucci D,Paolucci F, Ehli C, Rahman G M A, Sgobba V, Guldi D M, Prato M. Synthesis, Characterization, and Photoinduced Electron Transfer in Functionalized Single Wall Carbon Nanohoms[J]. J. Am. Chem. Soc.2007,129:3938-3945.
    [17]Yang C M, Noguchi H, Murata K, Yudasaka M, Hashimoto A, Iijima S, Kaneko K. Highly Ultramicroporous Single-Walled Carbon Nanohorn Assemblies[J]. Adv. Mater..2005,17:866-870.
    [18]IUPAC manual of symbols and terminology [J]. Pure Appl Chem.1972,31:578-638.
    [19]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, Mccullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates[J]. J. Am. Chem. Soc. 1992,114(27):10834-10843.
    [20]Sloan J,Cook J, Green M L, Hutehison J L. Crystallisation inside fullerene related structures[J]. J. Mater. Chem..1997,9:1089-1095.
    [21]Lee C, Wei X, Kysar J W, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J]. Science.2008,321:385-388.
    [22]Novoselv K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science.2004,306,666-669.
    [23]Lewis R S, Tang M, Wecker J F, Anders E, Stell E, Interstellar diamonds in meteorites[J]. Nature.1987,326:160-162.
    [24]Rosentsveig R, Margolin A, Gorodnev A,Biro R P, Rapaport L, Novema Y, Naveh G,Tenne R. Synthesis of fullerene-like MoS2 nanoparicles and their tribological[J]. J. Materl,Chem,2009, 19(25):4368-4374.
    [25]Chpra N G,Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A. Boron nitride nanotubes[J]. Science.1995,269(5226):966-967.
    [26]Rao C N R, Govindaraj A. Synthesis of inorganic nanotubes[J]. Adv. Mater..2009,21(42): 4208-4233.
    [27]Ayari A, Cobas E, Ogundadegbe O, Fuhrer M S. Realization and electrical characterization of ultrathin crystals of layered transition-metal di-chalcogenides[J]. J. Appl. Phys..2007, 101(1):014507.
    [28]Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. MoS2 and WS2 analogues of graphene[J]. Angew. Chem. Int. Ed..2010,49(24):4059-4062.
    [29]Coleman J N, Lotya M, et al.. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science.2011,331(6017):568-571.
    [30]Coleman J.N., Dalton A.B., Curran S., et al. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer[J]. Adv Mater.2000,12(3):213-216
    [31]Balavoine F., Schultz P., Richard C., et al. Helical crystallization of proteins on carbon nanotubes:A first step towards the development of new biosensors[J]. Angew Chem In Ed.1999, 38(13):1912-1915.
    [32]O'Connell M.J., Boul P., Ericson L.M., et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J]. Chem Phys Lett.2001,342(3-4): 265-271.
    [33]Islam M.F., Rojas E., Bergey D.M., et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Lett.2003,3(2):269-273.
    [34]Tsang S.C., Chen Y.K., Harris P.J.F., et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature.1994,372:159-167.
    [35]Hiuta H., Ebbsen T.W., Tanigaki K. Opening and purification of arbon nanotubes i high yields[J]. Adv Mater.1995,7(3):275-276.
    [36]Wong S.S., Joselevich E., Woolley A.T., et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology[J]. Nature.1998,394:52-55.
    [37]Andrews R., Jacques D., Qian D., et al. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures[J]. Carbon.2001,39(11):1681-1687.
    [38]Niyogi S., Hu H., Haddon R.C., et al. Chromatographic purification of soluble single-walled carbon nanotubes (s-SWCNTs)[J]. J Am Chem Soc.2001,123(4):733-734.
    [39]Balasubramanian K., Sordan R,, Burghard M., et al. A selective electrochemical approach to carbon nanotube field-effect transistors[J]. Nano Lett,2004,4(5):827-830.
    [40]Lee C.S., Baker S.E., Marcus M.S., et al. Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes[J]. Nano Lett,2004, 4(9):1713-1716.
    [41]Huang Q., Gao L. Immobilization of rutile TiO2 on multiwalled carbon nanotubes[J]. J Mater Chem.2003,13(7):1517-1519.
    [42]Liu Y.Q., Gao L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites:Effect of the surface treatment of the carbon nanotubes[J]. Carbon,2005,43(l):47-52.
    [43]Banerjee S., Wong S. S., Synthesis and characterization of carbon nanotube-nanocrystal heterostructures[J]. Nano Lett,2002,2(3):195-200.
    [44]Ravindran S., Chaudhary S., Colburn B., et al. Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications[J]. Nano Lett,2003,3(4):447-453
    [45]Zhao L.P., Gao L. Storage of methane on wet activated carbon:influence of pore size distribution[J]. Carbon,2004,42(8-9):1858-1861.
    [46]Jiang L.Q., Gao L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity[J]. Mater Chem Phys.2005,91(2-3):313-316.
    [47]Sun J., Gao L., Iwasa M. Noncovalent attachment of oxide nanoparticles onto carbon nanotubes using water-in-oil microemulsions[J]. Chem Comm.2004, (7):832-833.
    [48]Lee C.S., Baker S.E., Marcus M.S., et al. Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes[J]. Nano Lett,2004, 4(9):1713-1716.
    [49]Knox J H, Kaur B,Millward G R. Structure and performance of porous graphitic carbon in liquid chromatography[J]. J. Chromatogr A.1986,352:3-25.
    [50]Kyotani T,Nagai,T,Inoue S,Tomita A. Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels[J]. Chem. Mater.1997,9:609-615.
    [51]Li Z J, Jaroniec M. Colloidal Imprinting:A Novel Approach to the Synthesis of Mesoporous Carbons[J]. J. Am Chem. Soc.2001,123:9208-9209.
    [52]Brun N,Prabaharan S R S,Morcrette M,Sanchez C,Pecastaings QDerre A,Soum A,Deleuze H,Birot M, Birot M, Backov R. Hard Macrocellular Silica Si(HIPE) Foams Templating Micro/Macroporous Carbonaceous Monoliths:Applications as Lithium Ion Battery Negative Electrodes and Electrochemical Capacitors[J]. Adv. Funct. Mater.2009,19:3136-3145.
    [53]Liu B, Shioyama H,Akita T,Xu Q. Metal-Organic Framework as a Template for Porous Carbon Synthesis[J]. J. Am. Chem. Soc.2008,130:5390-5391.
    [54]Ma Z X, Kyotani T,Lju Z,Terasaki O,Tomita A. Very High Surface Area Microporous Carbon with a Three-Dimensional Nano-Array Structure:Synthesis and Its Molecular Structure[J]. Chem. Mater.2001,13:4413-4415.
    [55]Chen X F, Jun Y S, Takanabe K,Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride:A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light[J]. Chem. Mater.,2009,21:4093-4095.
    [56]Hulicova-Jurcakova D, Seredych M, Lu G Q, Bandosz T J. Combined Effect of Nitrogen-and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors[J]. Adv. Funct. Mater.,2009,19:438-447.
    [57]Hao N, Yang Y X, Wang H T, Webley P A, Zhao D Y. Synthesis of large-pore phenyl-bridged mesoporous organosilica with thick walls by evaporation-induced self-assembly for efficient benzene adsorption[J]. J. Colloid Interf. Sci.,2010,346,429-435.
    [58]Datta K K R, Reddy B V S, Ariga K, Vinu A. Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Three-Component Coupling Reaction[J]. Angew. Chem. Int. Ed..2010,49:5961-5965.
    [59]Wang J C, Liu Q. An Ordered Mesoporous Aluminosilicate Oxynitride Template to Prepare N-Incorporated Ordered Mesoporous Carbon[J]. J. Phys. Chem. C,2007,111:7266-7272.
    [60]Shin Y S, Fryxell G, Um W Y, Parker K, Mattigod S V, Skaggs R. Sulfur-Functionalized Mesoporous Carbon[J]. Adv. Funct. Mater..2007,17:2897-2901.
    [61]Zhao X C, Wang A Q, Yan J W, Sun G Q, Sun L X,Zhang T. Synthesis and Electrochemical Performance of Heteroatom-Incorporated Ordered Mesoporous Carbons[J]. Chem. Mater..2010, 22,5463-5473.
    [62]Wan Y, Qian X, Jia N Q, Wang Z Y, Li H X, Zhao D Y. Direct Triblock-Copolymer-Templating Synthesis of Highly Ordered Fluorinated Mesoporous Carbon[J]. Chem. Mater.,2008,20:1012-1018.
    [63]Fanning P E, Vannice M A. A drifts study of the formation of surface groups on carbon by oxidation[J]. Carbon,1993,31:721-730.
    [64]Jiang Z X, Liu Y, Sun X P, Tian F P, Sun F X, Liang C H, You W S, Han C R, Li C. Activated Carbons Chemically Modified by Concentrated H2SO4 for the Adsorption of the Pollutants from Wastewater and the Dibenzothiophene from Fuel Oils[J]. Langmuir.2003,19: 731-736.
    [65]Basula P A, Lu A H, Nitz J J, Schuth F. Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach[J]. Micropor. Mesopor. Mater., 2008,108:266-275.
    [66]Lu A H, Li W C, Muratova N, Spliethoff B, Schuth F. Evidence for C-C bond cleavage by H2O2 in a mesoporous CMK-5 type carbon at room temperature[J]. Chem. Commun., 2005,5184-5186.
    [67]Li H F, Xi H A, Zhu S M, Wen Z Y, Wang R D. Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon[J]. Micropor. Mesopor. Mater.2006,96:357-362.
    [68]Vinu A, Hossian K Z, Srinivasu P, Mijahara M, Anandan S, Gokulakrishnan N, Mori T, Ariga K, Balasubramanian V V. Carboxy-mesoporous carbon and its excellent adsorption capability for proteins[J]. J. Mater. Chem.,2007,17:1819-1825.
    [69]Samant P V, Goncalves F, Freitas M M A, Pereira M F R, Figueiredo J L. Surface activation of a polymer based carbon[J]. Carbon,2004,42:1321-1325.
    [70]Gorka J, Zawislak A, Choma J, Jaroniec M. KOH activation of mesoporous carbons obtained by soft-templating [J]. Carbon,2008,46,1159-1161.
    [71]Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. The structure of suspended graphene sheets [J]. Nature,2007,446,60-63.
    [72]杜海军.石墨烯和荧光碳纳米颗粒的制备及其电化学特性的研究[D].广东,华南理工大学,2010.
    [73]McAllister M J, Li J L, Adamson D H, et al.. Single sheet functionalize graphene by oxidation and thermal expansion of graphite[J].Chemistry of Materials,2007,19(18):4396-4404.
    [74]Stankovich S, Piner R D, Nguyen S T, Ruoff R S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon,2006,44:3342-3347.
    [75]Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A, Haddon R C. Solution properties of graphite and graphene [J]. J Am Chem Soc,2006,128:7720-7721.
    [76]Si Y C, Samulski E T. Synthesis of water soluble graphene[J]. Nano Lett,2008,8: 1679-1682.
    [77]Shen J F, Hu Y Z, Li C, Qin C, Ye M X. Synthesis of amphiphilic graphene nanoplatelets[J]. Small.2009,5:82-85.
    [78]Xu Y F, Liu Z B, Zhang X L, Wang Y, Tian J G, Huang Y, Ma Y F, Zhang X Y, Chen Y S. A graphene hybrid material covalently functionalized with porphyrin:Synthesis and optical limiting property[J]. Adv Mater,2009,21:1275-1279.
    [79]Yang X Y, Zhang X Y, Ma Y F, Huang Y, Chen Y S. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted biological applications [J]. J Mater Chem, 2009,19:2710-2714.
    [80]Li-Hong Liu and Mingdi Yan. Functionalization of pristine graphene with perfluorophenylazides[J]. J. Mater. Chem..2011,21:3273-3276
    [81]Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. J Mater Chem,2006,16:155-158.
    [82]Li X L, Wang X R, Zhang L, Lee S W, Dai H J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science,2008,319:1229-1232.
    [83]Xu Y X, Bai H, Lu G W, Li C, Shi G Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized gra-phene sheets[J]. J. Am. Chem. Soc,2008,130: 5856-5857.
    [84]Valles C, Drummond C, Saadaoui H, Furtado C A, He M S, Roubeau O, Ortolani L, Monthioux M, Penicaud A. Solutions of nega-tively charged graphene sheets and ribbons[J]. J Am Chem Soc,2008,130:15802-15804.
    [85]Liang Y Y, Wu D Q, Feng X L, Mullen K. Dispersion of graphene sheets in organic solvent supported by ionic interactions [J]. Adv Ma-ter,2009,21:1679-1683.
    [86]Patil A J, Vickery J L, Scott T B, Mann S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA[J]. Adv. Mater.2009,21,3159-3164.
    [87]Yuxi Xu and Gaoquan Shi. Assembly of chemically modified graphene:methods andapplications[J]. J. Mater. Chem..2011,21:3311-3323.
    [88]Zhangpeng Li, Jinqing Wang, Xiaohong Liu, Sheng Liu,Junfei Ou and Shengrong Yang, Electrostatic layer-by-layer self-assembly multilayer filmsbased on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors[J]. J. Mater. Chem..2011,21, 3397-3403.
    [89]Hongtao Liu, Yunqi Liu and Daoben Zhu. Chemical doping of graphene[J]. J. Mater. Chem.. 2011,21,3335-3345.
    [90]Si Y.C., Samulski E.T. Exfoliated Graphene Separated by Platinum Nanoparticles[J]. Chem Mater.2008,20(21):6792-6797.
    [91]Zhu C., Guo S., Zhai Y., et al. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker[J]. Langmuir.2010,26(10):7614-7618.
    [92]Guo S., Dong S., Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. ACS Nano.2010,4(1):547-555.
    [93]Williams G., Serger B., Kamat P.V. TiO2-graphene nanocomposites, UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano.2008,2 (7):1487-1491.
    [94]Girit C O, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C W, Crommie M F, Cohen M L, Louie S G, Zettl A. Graphene at the edge:stability and dynamics[J]. Science. 2009,323(5922):1705-1708.
    [95]Meter J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A. Direct imaging of lattice atoms and topological defects in grapheme membranes[J]. Nano Lett.2008, 8(11):3582-3586.
    [96]Kudin K N, Ozbas B, Schniepp H C, Prud'homme R K, Aksay I A, Car r. Raman spectra of graphite oxide and functionalized graohene sheets[J]. Nano Lett.2008,8(1):36-41.
    [97]Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of grapheme and grapheme layers[J]. Phys. Rev. Lett..2006,97(18):187401-404.
    [98]Park J S, Reina A,Saito R, Kong J, Dresselhaus G, Dresselhaus M S. G band Raman spectra of single, double and triple layer grapheme[J]. Carbon.2009,47(5):1303-1310.
    [99]Dervishi E, Li Z, Watanabe F, Biswas A, Xu Y, Biris A R, Saini V, Biris A S. Large-scale grapheme production by RF-CCVD method[J]. Chem. Commun..2009,4061-4063.
    [100]Xu J.M. Highly ordered carbon nanotube arrays and IR detection[J]. Infrared Physics and Technology.2001,42(3-5):485-491.
    [101]Wang Z., Liu J., Liang Q., et al. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J]. Analyst.2002,127(5):653-658.
    [102]Kang X.H., Mai Z.B., Zou X.Y., et al. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes[J]. Anal Biochem.2007,369(1):71-79.
    [103]Li L.H., Zhang W.D. Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing[J]. Microchimica Acta.2008, 163(3-4):305-311.
    [104]Dong S.Q., Zhang S., Chi L.Z., et al. Electrochemical behaviors of amino acids at multiwall carbon nanotubes and Cu2O modified carbon paste electrode[J]. Anal Biochem.2008, 381(2):199-204.
    [105]Chen J., Zhang W.D., Ye J.S. Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocompoiste [J]. Electrochem Commun.2008,10(9):1268-1271.
    [106]Updike S.J., Hicks G.P. The enzyme electrode[J]. Nature.1967,214:986-988.
    [107]Lim S.H., Wei J., Lin J., et al. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto nafion-solubilized carbon nanotube electrode[J]. Biosens Bioelectron.2005,20(11):2341-2346
    [108]Guiseppi-Elie Anthony, Chenghong Lei, Ray H Baughman. Direct electron transfer of glucose oxidase on carbon nanotube[J]. Nanotechnology.2002,13(5):559-564.
    [109]Jung D.H., Kim B.H., KoanKo Y., et al. Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube films[J]. Langmuir. 2004,20(20):8886-8891.
    [110]Kong J., Franklin N.R., Zhou C.W., et al. Nanotube molecular wires as chemical sensors [J]. Science,2000,287:622-625.
    [111]Collins P.G., Bradley K., Ishigami M. Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J]. Science.2000,287:1801-1804.
    [112]Ye J.S., Cui H.F., Liu X., et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors[J]. Small.2005,1(5):560-565.
    [113]李志杰,梁奇.碳纳米管和石墨在电化学嵌锂过程中的协同效应[J].应用化学.2001,18(4):269-271.
    [114]Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K. Gate-induced insulating state in bilayer graphene devices[J]. Nature Mater..2008,7:151-157.
    [115]Zhou S Y, Gweon G H, Fedorov A V. Substrate induced band gap opening in epitaxial grapheme[J]. Nature Mater..2007,6:770-775.
    [116]Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Lett.2008,8(1):323-327.
    [117]Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Graohene-based ultracapacitors[J]. Nano Lett..2008,8(10):3498-3502.
    [118]Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Chaotic dirac billiard in grapheme quantum dots[J]. Science.2008,320(5874):356-358.
    [119]Shen J, Zhu Y, Chen C, Yang X, Li C. Facile preparation and upconversion luminescence of grapheme quantum dots[J]. Chem. Commun..2011,47:2580-2582.
    [120]Pan D, Zhang J, Li Z,Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent grapheme quantum dots[J]. Adv. Mater..2010,22(6):734-738.
    [121]Scheuermann G M, Rumi L,Steurer P, Bannwarth W, Mulhaupt R. Palladium nanoparticles on graphene oxide and its functionalized grapheme derivatives as highly active catalysts for the Suzuki-miyaura coupling reaction[J]. J. Am. Chem. Soc..2009,131(23):8262-8270.
    [122]Li Y, Fan X, Qi J, Ji J, Wang S,Zhang G, Zhang F. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction [J]. Nano Res..2010,3(6):429-437.
    [123]Pasricha R, Gupta S, Srivastava A K. A facile and novel synthesis of Ag-graphene-based nanocomposites[J]. Small.2009,5(20):2253-2259.
    [124]Xu C,Wang X, Zhu J. Graphene-metal particle nanocomposites [J]. J. Phys. Chem. C.2008, 112(50):19841-19845.
    [125]Kim Y K, Na H K, Lee Y W, Jang H,Han S W, Min D H. The direct growth of gold rods on grapheme thin films[J]. Chem. Commun..2010,46:3185-3187.
    [126]Hassan H M A, Abdelsayed V, Khder A E R S, AbouZeid K M, Terner J, El-Shall M S, Al-Resayes S I, El-Azhary A A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media[J]. J. Mater. Chem..2009,19:3832-3837.
    [127]Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide[J]. J. Am. Chem. Soc..2010,132(21):7279-7281.
    [128]Guo S, Dong S. Graphene nanosheets:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chem. Soc. Rev..2011,40:2644-2672.
    [129]Yang S, Feng X, Wang L, Tang K, Maier J, Mullen K. Graphene-based nanosheets with a sandwich structure[J]. Angew. Chem. Int. Ed..2010.49(28):4795-4799.
    [130]Yu D, Dai L. Self-assembled grapheme/carbon nanotube hybrid films for super capacitors [J]. J. Phys. Chem. Lett..2010,1(2):467-470.
    [131]Hong T K, Lee D W, Choi H J, Shin H S, Kim B S. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with grapheme nanosheets[J]. ACS Nano.. 2010,4(7):3861-3868.
    [132]Lee D H, Kin J E, Han T H, Wang J W, Jeon S, Choi S, Hong S H, Lee W J, Ruoff R S, Kim S O. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant grapheme films[J]. Adv. Mater..2010,22(11):1247-1252.
    [133]Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrea-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'home R K, Brinson L C. Functionalized grapheme sheets for polymer nanocomposites[J]. Nat. Nanotechnol.. 2008,3:327-331.
    [134]Sranobich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials[J]. Nature.2006,442:282-286.
    [135]Yang Y F, Wang J, Zhang J, Liu J C, Yang X L, Zhao H Y. Exfoliated graohite oxide decorated by PDMAEMA chains and polymer particles[J]. Langmuir.2009,25(19):11808-11814.
    [136]J B Wu, M Agrawal, H A Becerril, et al.. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes[J]. ACS Nano,2010,4,43-48.
    [137]Ryoo R, Joos S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J. Phys. Chem. B.1999,103(37):7743-7746.
    [138]Jun S, Joo S H, Ryoo R,Kruk M,Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure[J]. J. Am. Chem. Soc..2000, 122(43):10712-10713.
    [139]Joos S H, Chol S J, Oh L, et al.. Ordered nanoporous arrays of carbon supporting high dispersion of platinum nanoparties[J]. Nature.2001,412:169-172.
    [140]Minchev C,Huwe H, Tsoncheva T, et al.. Iron oxide modified mesoporous carbon: Physicochemical and catalytic study[J]. Micropor. Mesopor. Mater..2005,81:333-341.
    [141]Hartmann M, Vinu A, Chandrasekar G. Adsorption of vitamin E on mesoporous carbon molecular sieves[J]. Chem Mater.2005,17(4):829-833.
    [142]Hartmann M. Ordered mesoporous materials for biladsorption and biocatalysis[J]. Chem. Mater..2005,17(18):4577-4593.
    [143]Zhang W H, Shi J L, Chen H R, Hua Z L, Yan D S. Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica[J]. Chem. Mater..2001,13(2):648-654.
    [144]Roggenbuck J, Tiemann M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon[J]. J. Am. Chem. Soc..2005,127(4): 1096-1097.
    [145]Liu H Y, Wang K P, Teng H S. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation[J]. Carbon.2005, 43(3):559-566.
    [146]Goyal R N,Singh S O, Chatterjee S, Bishnoi S. Elelctrochemical investigations of prednisone using fullerene-C60-modified edge plane pyrolytic graphite electrode[J]. Indian J. Chem.,2010,49A:26-33.
    [147]Goyal R N,Gupta V K, Chatterjee S. Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids[J]. Biosens. Bioelectron..2009,24:1649-1654
    [148]Fang C, Zhou X. The electrochemical characteristics of C60-glutathione modified Au electrode and the electrocatalytic oxidation of NADH[J]. Electroanal..2001,13:949-954.
    [149]Li M, Li N, Gu Z, Zhou X, Sun Y, Wu Y. Electrocatalysis by a C60--cyclodextrin (1:2) and nafion chemically modified electrode of hemoglobin[J]. Anal. Chim. Acta.1997,356:225-229.
    [150]Liu W, Gao X. C60 trianion-mediated electrocatalysis and amperometric sensing of hydrogen peroxide[J]. Electrochem. Commun.2008,10,1377-1380.
    [151]Carano M,Cosnier S,Kordatos K,Marcaccio M, Margotti M,Paolucci F,Prat M,Rffia S. A glutathione amperometric biosensor based on an amphiphilic fullerene redox mediator immobilised within an amphiphilic polypyrrole film[J]. J. Mater. Chem.,2002,12,1996-2000.
    [152]Wei Z L, Li Z J, Sun X L,Fang Y J, Liu J K. Synergistic contributions of fullerene, ferrocene, chitosan and ionic liquid towards improved performance for a glucose sensor[J]. Biosens. Bioelectron..2010,25,1434-1438.
    [153]Werner P, Verdejo R, Wollecke F, Altstadt V, Sandier J K W, Shaffer M S P. Carbon Nanofibers Allow Foaming of Semicrystalline Poly(ether ether ketone)[J]. Adv. Mater.,2005,17, 2864-2869.
    [154]Qiu J S, Zhang H Z, Liang C H, Li J W, Zhao Z B. Co/CNF Catalysts Tailored by Controlling the Deposition of Metal Colloids onto CNFs:Preparation and Catalytic Properties[J]. Chem. Eur. J..2006,12,2147-2151.
    [155]Vander Lee M K, Josvan Dillen A, Bitter J H, De Jong K P. Deposition Precipitation for the Preparation of Carbon Nanofiber Supported Nickel Catalysts[J]. J. Am. Chem. Soc.2005,127:13573-13582.
    [156]Huang J S, Wang D W, Hou H Q, You T Y. Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH[J], Adv. Funct. Mater.,2008,18:441-448.
    [157]Liu L,Teng H, Hou H Q,You T Y. Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode[J], Biosens. Bioelectron., 2009,24:3329-3334.
    [158]Wu L, Yan F, Ju H X. An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber[J], J. Immunol. Methods,2007,322:12-19.
    [159]Zhang J, Lei J P, Liu Y Y, Zhao J W, Ju H X. Highly sensitve amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite[J]. Biosens. Bioelectron., 2009,24:1858-1863.
    [160]Hao C, Ding L, Zhang X J, Ju H X. Biocompatible Conductive Architecture of Carbon Nanofiber-Doped Chitosan Prepared with Controllable Electrodeposition for Cytosensing[J]. Anal. Chem.,2007,79:4442-4447.
    [161]Ding L, Hao C, Zhang X J, Ju H X. Carbon nanofiber doped polypyrrole nanoscaffold for electrochemical monitoring of cell adhesion and proliferation J]. Electrochem. Commun., 2009,11:760-763.
    [162]Baker S E, Colavita P E, Tse K Y, Hamers R J. Functionalized Vertically Aligned Carbon Nanofibers as Scaffolds for Immobilization and Electrochemical Detection of Redox-Active Proteins[J]. Chem. Mater..2006,18:4415-4422.
    [163]Cioffi C, Campidelli S, Sooambar C, Maraccio M, Marcolongo G, Meneghetti M,Paolucci D, Paolucci F, Ehli C, Rahman G M A, Sgobba V,Guldi D M,Prato M. Synthesis, Characterization, and Photoinduced Electron Transfer in Functionalized Single Wall Carbon Nanohoms[J]. J. Am. Chem. Soc..2007,129:3938-3945.
    [164]Wang J. Nanomaterial-Based Amplified Transduction of Biomolecular Interactions[J]. Small,2005,1:1036-1043.
    [165]Liu X Q, Shi L H, Niu W X, Li H J, Xu G B. Amperometric glucose biosensor based on single-walled carbon nanohorns[J]. Biosens. Bioelectron.,2008,23:1887-1890.
    [166]Shi L H, Liu X Q, Niu W X, Li H J, Han S, Chen J, Xu G B. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode[J]. Biosens. Bioelectron.2009,24:1159-1163.
    [167]Liu X Q, Li H J, Wang F A,Zhu S Y, Wang Y L, Xu G B. Functionalized single-walled carbon nanohorns for electrochemical biosensing[J]. Biosens bioelectron.,2010,25:2194-2199.
    [168]Tu W W, Lei J P, Ding L, Ju H X. Sandwich nanohybrid of single-walled carbon nanohorns-TiO2-porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol[J]. Chem. Commun..2009,4227-4229.
    [169]Ding L, Cheng W,Wang X J, Jue Y D, Lei J P, Yin Y B, Ju H X. A label-free strategy for facile electrochemical analysis of dynamic glycan expression on living cells[J]. Chem. Commun., 2009,7161-7163.
    [170]Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Carbon Nanohorn Sensitized Electrochemical Immunosensor for Rapid Detection of Microcystin-LR[J]. Anal. Chem.,2010,82:1117-1122.
    [171]Golyal R N,Gupta V K,Chatterjee S. Voltammetric biosensors for the determination of paracetamol at carbon nanorube modified pyrolytic graphite electrode[J]. Sens Actuat B-Chem. 2010,149(l):252-258.
    [172]Babaei A,Afrasiabi M,Babazadeh M A. Glassy carbon electrode modified with multi-walled carbon nanotube/chitosan composite as a new sensor for simultaneous detemination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples[J]. Elecrroanalysis.2010,22(15):1743-1749.
    [173]Sanghavi B J, Srivastava A K. Simultaneous voltammetric determination of acetaminophen,aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode[J]. Electrochimi Acta.2010,55(28):8638-8648.
    [174]Shahrokhian S, Kamalzadeh Z, Bezzaatpour A. Differential pulse boltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes[J]. Sens Actuat B-Chem, 2008,133(2):599-606.
    [175]Jin J H,Cho E,Kwon C,et al.. Selective monitoring of rutin and quercetin based on a novel multi-wall carbon nanotube-coated glassy carbon electrode modified with microbial carbohydrates alpha-cyclosophorohexadecaose and succinoglycan monomer M3[J]. Bull Korean Chem Soc, 2010,31(7):1897-1901.
    [176]Liu J S, Zhou D Z,Liu X P. Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode[J]. Coll Surfaces B. 2009,70(1):20-24.
    [177]Luong J H T,Hrapovic S,Wang D. Multi-wall carbon nanotube(MWCNT) based electrochemical biosensors for mediatorless detection of putrescine[J]. Electroanalysis.2005,17(1): 47-53.
    [178]Moraes F C, Mascaro L H, Machado S A S. Direct electrochemical determination of Carbaryl using a multi-walled carbon nanotube/cabalt phthalocyanine modified electrode[J]. Talanta,2009,79(5):1406-1411.
    [179]Cai J, Du D. A disposable sensor based on immobilization of acetycholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryI[J]. J Appl Electrochem.2008,38(9):1217-1222.
    [180]Joshi K A,Tang J,Haddon R, et al.. A Disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode[J]. Electroanalysis. 2005,17(1):54-58.
    [181]Yahoubian H, Soltani-nejad V, Roodsaz S. Simultaneous voltammetric determination of norepinephrine, uric acid and folic acid at the surface of modified chloranil carbon nanotube paste electrode[J]. Intern J Electrochem Sci.2010,5(10):1411-1421.
    [182]Zare H R, Nasirizadeh N. Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode[J]. Sens Actuat B-Chem.2010,143(2):666-672.
    [183]Moraes F C, Golinelli D L C, Mascaro L H, et al.. Determination of epinephrine in urine using multi-walled carbon nanotube modified with cabalt phthalocyanine in a paraffin composite electrode[J]. Sens Actuat B-Chem.2010,148(2):492-497.
    [184]Shahrokhian S, Asadian E. Simultaneous voltmmetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode[J]. Electrochim Acta.2010,55(3):666-672.
    [185]Akbari R,Noroozifar M, Khorasani-Motlagh M, et al.. Simultaneous determination of ascorbic acid and uric acid by a new modified carbon nanotube-paste electrode using chloromercuriferrocene[J]. Anal Sci.2010,26(4):425-430.
    [186]Zhou X, Zheng N, Hou S R, et al.. Selective determination of dopamine in the presence of ascorbic acid at a multi-wall carbon nanotube-poly(3,5-dihydroxy benzoic acid) film modified electrode[J]. J Electroanal Chem.2010,642(1):30-34.
    [187]Jiang L C, Zhang W D. A highly sensitve nanenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode[J]. Biosens Bioelectron.2010,25(6):1402-1407.
    [188]Wang Z H,Wang Y M, Luo G A. A Selective boltammetric metho for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes[J]. Analyst. 2002,127(10):1353-1358.
    [189]Shahrokhian S, Asadian E. Electrochemical determination of L-dopa in the presence of ascorbic acid on the surface of the glassy carbon elelctrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron[J]. J Electroanal Chem.2009,636(1-2):40-46.
    [190]Yagoubian H,Karimi-Maleh H,Khalilzadeh M A, et al.. Electrocatalytic oxidation of levodopa at a ferrofene modified carbon nanotube paste electrode[J]. Inter J Electrochem Sci. 2009,4(7):993-1003.
    [191]Wang Z H, Wang Y M, Luo G A. The electrocatalytic oxidation of thymine at α-cyclodextrin incorporated carbon nanotube-coated electrode[J]. Electroanalysis.2003,15(13): 1129-1133.
    [192]Wang W J, Wang F, Yao Y L, et al.. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film[J]. Electrochim Acta.2010,55(23):7055-7060.
    [193]Wang Y, Li Y, Tang L, Lu J, Li J. Application of graphene-modified electrode for selective detection of dopamine[J]. Electrochemistry Communications.2009,11:889-892.
    [194]Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J]. Anal. Chem., 2009,81:2378-2382.
    [195]Zhou M, Zhai Y M, Dong S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide[J]. Anal. Chem..2009,81:5603-5613.
    [196]Du D,Zou Z X, Shin Y S, Wang J, Wu H, Engelhard M H,Liu J, Aksay I A, Lin Y H. Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres[J].Anal. Chem., 2010,82:2989-2995.
    [197]约瑟夫.王,分析电化学[M],北京:化学工业出版社,2008,112-122.
    [198]Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules reactants connected to electrodes through olefinic substituents [J]. J Phys Chem..1973,77(11):1401-1410.
    [199]Moses P R, Wier L, Murray R W. Chemically modified tin oxiade electrode[J]. Anal Chem.1975,47(12):1882-1886.
    [200]董绍俊,车广礼,谢元武.化学修饰电极[M],北京:科学出版社,2003.
    [201]Brown A P, Anson F C. Cyclic and differential pulse voltammetric behavior of reactants confined to electrode surface[J]. Anal Chem.1977,49(11):1589-1595.
    [202]Sagiv J. Organized monolayers by adsorption formation and structure of oleophobic mixed monolayers on solid-surfaces[J]. J Am Chem Soc.1980,102(l):92-98.
    [203]Lennox J C, Murray R W. Chemically modified electrodes electron-spectroscopy for chemical-analysis and alternating-current voltammetry of glassy carbon-bound tetra(aminophenyl)prophyrins[J]. J Am Chem Soc.1978,100(12):3710-3714.
    [210]Bilewicz R, Majda M. Bifunctional monomolecular langmuir-blodgett-films at electrodes-electrochemistry at single molecule gate sites[J]. J Am Chem Soc, 1991,113(14):5464-5466.
    [205]Tauster S J, Fung S C, Garten R L. Strong Metal-support interactions group-8 Noble-metals supported on TiO2[J]. J Am Chem Soc.1978,100(1):170-175.
    [206]Coury LA, Birch E M, Heineman W R. Gamma-irradiated polymer-modified graphite-electrodes with enhanced response to catechol[J]. Anal Chem.l988,60(6):553-560.
    [207]Kuwana T, French W G. Electrooxidation or reduction of organic compounds into aqueous solutions using carbon paste electrode[J]. Anal Chem.1964,36(1):241.
    [208]Karyakin A A, Puganova E A, Budashov I A. Prussian blue based nanoelectrode arrays for H2O2 detection[J]. Anal Chem.2004,76:474-478.
    [209]Kalcher K. Chemically modified carbon paste electrode in voltammetric analysis[J]. Electroanalysis.1990,2(6):419-433.
    [210]Wang L G, Li Y H, Tien H T. Electrochemical transduction of an immunological reaction via S-blms[J]. Bioelectrochem Bioenerg.1995,36(2):145-147.
    [211]Shu H C,Wu N P. A chemically modified carbon paste electrode with D-lactate dehydrogenase and alanine aminotranferase enzyme sequences for D-lactic acid analysis[J]. Talanta.2001,54(2):361-368.
    [212]Ofero T F,Rodriguez J, Angulo E, et al.. Artificial muscles from bilayer structures[J]. Synth Me.1993,57(1):3713-3717.
    [213]Beck F, Baun P,Schloten F. Anodic release of anions from polypyrrole[J]. J Electroanal Chem.1989,267(1-2):141148.
    [214]谢远武,董绍俊,光谱电化学方法-理论与应用[M],长春:吉林科学技术出版社,1993.
    [1]Iijima S. Helical microtubules of graphitic carbon[J]. Nature.1991.354:56-58.
    [2]Kumashiro R, Hiroshiba N, Komatsu N, Akasaka T, Maeda Y. FET properties of chemically modified carbon nanotubes[J]. J Phys Chem Solids.2008,69:1206-1208.
    [3]Aoki N, Akasaka T, Watari F, Yokoyama A. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions[J]. Dent Mater.2007,26:178-185.
    [4]Stokes P, Khondaker SI. Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis[J]. Nanotechnol.2008,19:175202(1-5).
    [5]Georgakilas V, Kordatos K, Prato M, Holzinger M, Hirsch A, Organic Functionalization of Carbon Nanotubes[J]. J. Am. Chem Soc.2002,124:760-761.
    [6]Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M. Amino acid functionalisation of water soluble carbon nanotubes[J]. Chem Commun.2002,3050-3051.
    [7]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films[J]. Science.2004,306:666-669.
    [8]Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature.2005,438: 197-200.
    [9]EunJoo Yoo, Tatsuhiro Okata,Tornoki Akita, Masanori Kohyama, Junji Nakamura,and Itaru Honma. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface[J]. NANO Letters.2009,9:2255-2259.
    [10]Z.J. Fan, J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, M.L. Zhang, W.Z. Qian, F. Wei. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors[J]. Adv. Mater.2010,22:3723-3728.
    [11]Dingshan Yu and Liming Dai. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors[J]. J. Phys. Chem. Lett.2010,1:467-470.
    [12]Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nat Commun.2012, DOI:10.1038/ncomms1661.
    [13]V.C. Tung, L.M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, Y. Yang. Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors,"[J]. Nano Lett.2009,9:1949-1955.
    [14]Y.K. Kim, D.H. Min. Durable Large-Area Thin Films of Graphene/Carbon Nanotube Double Layers as a Transparent Electrode[J]. Langmuir.2009,25:11302-11306.
    [15]G.Q. Xin, W. Hwang, N. Kim, S.M. Cho, H. Chae.A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes[J]. Nanotechnology.2010,21:405201-1-405201-7.
    [16]X.J. Lua, H. Dou, B. Gao, C.Z. Yuan, S.D. Yang, H. Liang, L.F. Shen, X.G. Zhang. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors[J]. Electrochim. Acta.2011,56:5115-5121.
    [17]F.C. Meng, X.T. Zhang, B. Xu, S.F. Yue, H. Guo, Y.J. Luo. Alkali-treated graphene oxide as a solid base catalyst:synthesis and electrochemical capacitance of graphene/carbon composite aerogels[J]. J. Mater. Chem.2011,21:18537-18539.
    [18]S.Y. Yang, K.H. Chang, H.W. Tien, Y.F. Lee, S.M. Li, Y.S. Wang, J.Y. Wang, C.C.M. Ma, C.C.J. Hu. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors[J]. J. Mater. Chem.2011,21:2374-2380.
    [19]J.D. Qiu, G.C. Wang, R.P. Liang, X.H. Xia, H.W. Yu. Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells[J]. J. Phys. Chem. C.2011,115:15639-15645.
    [20]Y.M. Li, L.H. Tang, J.H. Li. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochem. Commun.2009,11:846-849.
    [21]Saha MS, Li RY, Sun XH. High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells[J]. J Power Sources. 2008,177:314-322.
    [22]Yuan J H, Wang ZJ, Zhang YJ, Shen YF, Han DX, Zhang Q, Xu XY, Niu L. Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer:A tunable catalyst film for anodic methanol oxidation [J].Thin Solid Films.2008,516:6531-6535.
    [23]Niu JJ, Wang JN. Activated carbon nanotubes-supported catalyst in fuel cells[J]. Electrochim Acta.2008,53:8058-8063.
    [24]Ghosh S, Raj CR,Facile In Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike Pt Nanostructures:An Efficient Electrocatalyst for Fuel Cell Application, J Phys Chem C.2010,114:10843-10849.
    [25]Wang S, Jiang SP, White TJ, Guo J, Wang X. Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells[J]. J Phys Chem C.2009,113: 18935-18945.
    [26]Hsin YL, Hwang KC, Yeh CT, Poly(vinylpyrrolidone)-Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells,J Am Chem Soc 129 (2007)9999-10010.
    [27]Prabhuram J, Zhao TS, Tang ZK, Chen R, Liang ZX,Multiwalled Carbon Nanotube Supported PtRu for the Anode of Direct Methanol Fuel Cells,J Phys Chem B 110 (2006) 5245-5252.
    [28]Yen CH, Kenichi SZ, Lin YY, Bailey F, Cheng IF, Wai CM, Chemical Fluid Deposition of Pt-Based Bimetallic Nanoparticles on Multiwalled Carbon Nanotubes for Direct Methanol Fuel Cell Application,Energy & Fuels 21 (2007) 2268-2271.
    [29]Yanga HZ, Daia L, Xub D, Fangb J, Zou SZ, Electrooxidation of methanol and formic acid on PtCu nanoparticles, Electrochim Acta 55 (2010) 8000-8004.
    [30]Abdel Hameed RM, El-Khatib KM, Ni-P and Ni-Cu-P modified carbon catalysts for methanol electro-oxidation in KOH solution, Int J hydrogen energy 35 (2010) 2517-2529.
    [31]Yoo E, Okata T, Akita T, Kohyama M, Nakamura JJ, Honma I,Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface, Nano Lett 9 (2009) 2255-2259.
    [32]Shang NG, Pagona Papakonstantinou, Wang P, Silva SRP,Platlnum Integrated Graphene for Methanol Fuel Cells, J Phys Chem C 114 (2010) 15837-15841.
    [33]Galal A, Atta NF, Hassan HK. Graphene Supported-Pt-M (M= Ru or Pd) for Electrocatalytic Methanol Oxidation[J]. Int J Electrochem Sci.2012,7:768-784.
    [34]Stankovich S, Dikin DA, Dommett GHB, Kohlhass KM, Zimney ZJ, Stach EA, Piner RD, Nguyen ST, Ouff RS, Graphene-based composite materials, Nature,442 (2006) 282-286.
    [35]Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK, Room-Temperature Quantum Hall Effect in Graphene, Science 315 (2007) 1379-1379.
    [36]Valla T, Camacho J, Pan ZH, Fedorov AV, Walters AC, Howard CA, Ellerby M. Anisotropic Electron-Phonon Coupling and Dynamical Nesting on the Graphene Sheets in Superconducting CaC6 using Angle-Resolved Photoemission Spectroscopy[J]. Phys Rev Lett.2009, 102:107007(1-4).
    [37]Xu Y, Zhao L, Bai H, Hong W, Li C, Shi G. Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions[J]. J Am Chem Soc.2009,131:13490-13497.
    [38]Das B, Eswar Prasad K, Ramamurty U, Rao CNR. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene[J], Nanotechnol.2009,20:125705(1-5).
    [39]Ghosh S, Raj CR. Facile In Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike Pt Nanostructures:An Efficient Electrocatalyst for Fuel Cell Application[J]. J Phys Chem C.2010,114:10843-10849.
    [40]Li YJ, Gao W, Ci LJ, Wang CM, Pulickel M.. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation[J]. Carbon.2010,48:1124-1130.
    [41]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.
    [42]Hirata M, Gotou T, Ohba M, Thin-film particles of graphite oxide 2:Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits, Carbon 43 (2005) 503-510.
    [43]K. S. Subrahmanyam, S. R. C. Vivekchand, A. Govindaraj and C. N. R. Rao. A study of graphenes prepared by different methods:characterization, properties and solubilization[J]. J. Mater. Chem.2008,18:1517-1523.
    [44]Shin-Yi Yang, Kuo-Hsin Chang, Hsi-Wen Tien, Ying-Feng Lee, Shin-Ming Li, Yu-Sheng Wang, Jen-Yu Wang, Chen-Chi M. Ma, Chi-Chang Hu. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors[J]. J. Mater. Chem.21 (2011) 2374-2380.
    [45]Zhuangjun Fan, Jun Yan, Linjie Zhi, Qiang Zhang, Tong Wei, Jing Feng, Milin Zhang, Weizhong Qian, Fei Wei. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors[J]. Adv. Mater.2010,22:3723-3728.
    [46]Yan Li,Yang Zhao, Huhu Cheng, Yue Hu, Gaoquan Shi, Liming Dai, Liangti Qu. Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups[J]. J. Am. Chem.Soc.2012,134:15-18.
    [47]Xiangjun Lu, HuiDou, BoGao, ChangzhouYuan, SudongYang, Liang Hao, LaifaShen, XiaogangZhang. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors[J]. Electrochimica Acta.2011,56:5115-5121.
    [48]Niu JJ, Wang JN. Activated carbon nanotubes-supported catalyst in fuel cells[J]. Electrochim Acta.2008,53:8058-8063.
    [49]Lin YH, Cui XL, Yen C, Wai CM. Platinum/carbon nanotube nanocompasite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells[J], J Phys Chem B. 2005,109:14410-14415.
    [50]Huang JC, Liu ZL, He CB, Gan LM. Synthesis of PtRu Nanoparticles from the Hydrosilylation Reaction and Application as Catalyst for Direct Methanol Fuel Cell[J], J Phys Chem B.2005,109:16644-16649.
    [51]S.M. Golabi, H.R. Zare, Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified electrodeposited film derived from caffeic acid[J], Electroanalysis.1999,11:1297-1298.
    [52]F. Selanda, R. Tunolda, A. David, Harrington B., Activating and deactivating mass transport effects in methanol and formic acid oxidation on platinum electrodes[J]. Electrochim. Acta 2010,55:3384-3391.
    [53]Adams RN, Electrochemistry at solid electrode[M], New York:Marcel Dekker,1969, 220-222.
    [I]E. Burridge, Eur. Chem. News.2003,17:14-17.
    [2]M. Morgan, Phenol/acetone-facts, figures and future, available online at: http://www.icis.com/v2/chemicals/9075165/bisphenol-a/uses.html, in:The 4th ICISWorld Phenol/Acetone Conference, Prague, June 6-7,2006.
    [3]A.V. Krishnan, P. Stathis, S.F. Permuth, L. Tokes, D. Feldman, bisphenol-A:An Estrigenic substance is released from polycarbonate flasks during autoclaving[J], Endocrinology.1993,132: 2279-2286.
    [4]Ana Ballesteros-Gomez, Soledad Rubio, Dolores Perez-Bendito, Analytical methods for the determination of bisphenol A in food[J]. Journal of Chromatography A.2009,1216:449-469.
    [5]Laura N. Vandenberg, Russ Hauser, Michele Marcus, Nicolas Olea, Wade V. Welshons, Human exposure to bisphenol A (BPA)[J], Reproductive Toxicology.2007,24:139-177.
    [6]B.T. Akingbemi, C.M. Sottas, A.I. Koulova, G.R. Klinefelter, M.P. Hardy, Inhibition of Testicular Steroidogenesis by the Xenoestrogen Bisphenol A Is Associated with Reduced Pituitary Luteinizing Hormone Secretion and Decreased Steroidogenic Enzyme Gene Expression in Rat Leydig Cells[J]. Endocrinology.2004,145:592-603.
    [7]Sonya Lunder, David Andrews, Jane Houlihan, Synthetic estrogen BPA coats cash register receipts, http://www.ewg.org/bpa-in-store-receipts, Published July 27th,2010.
    [8]Sandra Biedermann, Patrik Tschudin, Koni Gr,Transfer of bisphenol A from thermal printer paper to the skin[J]. Anal Bioanal Chem.2010,398:571-576.
    [9]Braun J.M., Kalkbrenner A.E., Calafat A.M, Bernert J.T., Ye X, Silva M.J., Barr D.B., Sathyanarayana S, Lanphear B.P., Variability and Predictors of Urinary Bisphenol A Concentrations during Pregnancy[J]. Environmental Health Perspectives.2010,119:131-137.
    [10]Sonya Lunder et al, Senior Analyst; David Andrews, Jane Houlihan, Synthetic estrogen BPA coats cash register receipts[J], Published July 27th,2010.
    [11]Y.Watabe, T. Kondo, M. Morita, N. Tanaka, J. Haginaka, K. Hosoya, Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device[J]. J. Chromatogr. A 2004,1032:45-49.
    [12]H. Sambea, K. Hoshina, K. Hosoya, J. Haginaka, Simultaneous determination of bisphenol A and its halogenated derivatives in river water by combination of isotope imprinting and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A.2006,1134:16-23.
    [13]J. Fan, H. Guo, G. Liu, P. Peng, Simple and sensitive fluorimetric method for determination of environmental hormone bisphenol A based on its inhibitory effect on the redox reaction between peroxyl radical and rhodamine 6G[J]. Anal. Chim. Acta.2007,585:134-138.
    [14]Z. Kuklenyik, J. Ekong, C.D. Cutchins, L.L. Needham, A.M. Calafat, Simultaneous measurement of urinary bisphenol A and alkylphenols by automated solid-phase extractive derivatization gas chromatography/mass spectrometry[J]. Anal. Chem.2003,75:6820-6825.
    [15]M. Kawaguchi, R. Ito, N. Endo, N. Okanouchi, N. Sakui, K. Saito, H. Nakazawa, Liquid phase microextraction with in situ derivatization for measurement of bisphenol A in river water sample by gas chromatography-mass spectrometry[J]. J. Chromatogr. A.2006,1110:1-5.
    [16]Fengran Wang, Jinquan Yang, Kangbing Wu, Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A[J]. Anal. Chim. Acta. 2009,638:23-28.
    [17]M. Murugananthan, S. Yoshihara, T. Rakuma, T. Shirakashi, Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrodeOriginal[J]. J. Hazard. Mater.2008,154:213-220.
    [18]D.G. Mita, A. Attanasio, F. Arduini, N. Diano, V. Grano, U. Bencivenga, S. Rossi, A. Amine, D. Moscone, Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers[J]. Biosens. Bioelectron.2007,23:60-65.
    [19]B. Pan, D.H. Lin, H. Mashayekhi, B.S. Xing, Adsorption and hysteresis of bisphenolA and 17a-ethinyl estradiol on carbon nanomaterials[J]. Environ. Sci. Technol.2008,42:5480-5485.
    [20]Y. Barbieri, W.A. Massad, D.J. Diaz, J. Sanz, F. Amat-Guerri, N.A. Garcia, Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin: kinetics, mechanism and photoproducts[J]. Chemosphere.2008,73:564-571.
    [21]M. Ngundi, O. Sadik, T. Yamaguchi, S. Suye, First comparative reaction mechanisms of P-estradiol and selected environmental hormones in a redox environment[J]. Electrochem. Commun.2003,5:61-67.
    [22]Z. J.Fan, J.Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, M.L. Zhang, W.Z. Qian, F. Wei, A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors[J]. Adv. Mater.2010,22:3723-3728.
    [23]V.C. Tung, L.M. Chen, M.J. Allen, J.K.Wassei, K.Nelson, R.B. Kaner,Y.Yang, Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors[J]. Nano Lett.2009,9:1949-1955.
    [24]G.Q.Xin,W.Hwang,N.Kim,S.M.Cho,H.Chae. A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes[J]. Nanotechnology.2010,21:405201 (7pp).
    [25]E.Yoo,J.Kim,E.Hosono,H.Zhou,T.Kudo,I.Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, NanoLett.8(2008)2277-2282.
    [26]Seung-Deok Seo, In-Sung Hwang, Seung-Hun Lee, Hyun-Woo Shim, Dong-Wan Kim, 1D/2D carbon nanotube/graphene nanosheet composite anodes fabricated using electrophoretic assembly[J]. Ceramics International.2012,38:3017-3021.
    [27]Xiangjun Lua, HuiDoua, BoGao, ChangzhouYuan, SudongYang,Liang Hao, LaifaShen, XiaogangZhang, A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors[J]. Electrochimica Acta.2011,56:5115-5121.
    [28]Fanchang Meng, Xuetong Zhang, Bin Xu, Shufang Yue, Hui Guo, Yunjun Luo, Alkali-treated graphene oxide as a solid base catalyst:synthesis and electrochemical capacitance of graphene/carbon composite aerogels[J]. J. Mater. Chem..2011,21:18537-18539.
    [29]S. Stankovich, D.A. Dikin, G. H. B. Dommett, K.M. Kohlhass, Z. J. Zimney, E. A. Stach, R. D. Piner, S. T Nguyen, R. S. ouff, Graphene-based composite materials[J]. Nature.2006,442: 282-286.
    [30]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Room-Temperature Quantum Hall Effect in Graphene[J]. Science.2007,315:1379-1379.
    [31]T. Valla, J. Camacho, Z. H. Pan, A. V. Fedorov, A. C. Walters, C. A. Howard and M. Ellerby, Anisotropic Electron-Phonon Coupling and Dynamical Nesting on the Graphene Sheets in Superconducting CaC6 using Angle-Resolved Photoemission Spectroscopy[J]. Phys. Rev. Lett. 2009,102:107007(1-4).
    [32]Y. Xu, L. Zhao, H. Bai, W. Hong, C. Li, G. Shi, Chemically Converted Graphene Induced Molecular Flattening of 5,10,15,20-Tetrakis(1-methyl-4-pyridinio)porphyrin and Its Application for Optical Detection of Cadmium(II) Ions[J]. J. Am. Chem. Soc.2009,131:13490-13497.
    [33]B. Das, K. Eswar Prasad, U. Ramamurty, C. N. R. Rao, Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene[J]. Nanotechnology.2009,20:125705(1-5).
    [34]Sourov Ghosh, C. Retna Raj, Facile In Situ Synthesis of Multiwall Carbon Nanotube Supported Flowerlike Pt Nanostructures:An Efficient Electrocatalyst for Fuel Cell Application[J]. J. Phys. Chem. C.2010,114:10843-10849.
    [35]Yongjie Li, Wei Gao, Lijie Ci, Chunming Wang, Pulickel M. AjayanCatalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation[J]. carbon 2010,48: 1124-1130.
    [36]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS, Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon 2007,5:1558-1565.
    [37]Hirata M, Gotou T, Ohba M, Thin-film particles of graphite oxide 2:Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits[J]. Carbon 2005, 43:503-510.
    [38]Raquel Verdejo, M. Mar Bernal, Laura J. Romasanta, Miguel A. Lopez-Manchado, Graphene filled polymer nanocomposites[J]. J. Mater. Chem.2011,21:3301-3310.
    [39]Vincent C. Tung, Li-Min Chen, Matthew J. Allen, Jonathan K. Wassei, Kurt Nelson, Richard B. Kaner, Yang Yang, Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors[J]. Nano Letters.2009,9: 51949-1955.
    [40]Jonathan K. Wassei, Kitty C. Cha, Vincent C. Tung, Yang Yang, Richard B. Kaner, The effects of thionyl chloride on the properties of graphene and graphene-carbon nanotube composites[J]. J. Mater. Chem.2011,21:3391-3396.
    [41]Niu JJ, Wang JN. Activated carbon nanotubes-supported catalyst in fuel cells[J]. Electrochim Acta,2008,53:8058-63.
    [42]H L Guo, X F Wang,37Q Y Qian, F B Wang, X H Xia, A Green Approach to the Synthesis of Graphene Nanosheets[J]. ACS Nano 2009,3:2653-2659.
    [43]Huan-shun Yina, Yun-lei Zhou, Shi-yun Ai, Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection[J]. J. Electroanal. Chem. 2009,626:80-88.
    [44]L. Agui, P. Ya~nez-Sede-no, J.M. Pingarron, Preparation and characterization of a new design of carbon-felt electrode for phenolic endocrine disruptors[J]. Electrochim. Acta 2006,51:2565.
    [45]Kuramitz H, Nakata Y, Kawasaki M, Tanaka S. Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode[J]. Chemosphere,2001, 45:37-43.
    [46]Kuramitz H, Matsushitaa M, Tanaka S Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode[J]. Water Research 2004,38: 2331-2338.
    [47]H. Sambe, K. Hoshina, K. Hosoya, J. Haginaka, Simultaneous determination of bisphenol A and its halogenated derivatives in river water by combination of isotope imprinting and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A 2006,1134:16-23.
    [48]L. Fernandez, C. Borras, H. Carrero, Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode[J]. Electrochim. Acta 2006,52:872-884.
    [49]Huanshun Yina, Lin Cuia, Shiyun Aia, Hai Fana, Lusheng Zhub,Electrochemical determination of bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon electrode[J]. Electrochimica Acta 2010,55:603-610.
    [50]R. Adams, Electrochemistry at Solid Electrodes[M] M. Dekker, New York,1969.
    [51]F. Anson, Application of Potentiostatic Current Integration to the Study of the Adsorption of Cobalt(III)-(Ethylenedinitrilo(tetraacetate) on Mercury Electrodes[J]. Anal. Chem.1964,36: 932-934.
    [52]Silvana Andreescu, Omowunmi A. Sadik, Correlation of Analyte Structures with Biosensor Responses Using the Detection of Phenolic Estrogens as a Model[J]. Anal. Chem.2004,76: 552-560.
    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films[J]. Science.2004, 306:666-669.
    [2]H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, A. F. Morputgo, Bipolar Supercurrent in Graphene[J]. Nature 2007,446:56-59.
    [3]G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, J. A. Stroscio, Scattering and Interference in Epitaxial Graphene[J]. Science 2007,317:219-222.
    [4]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett 2008,8:902-907.
    [5]S. Stankovich, D. A. Dikin, G H. B. Dommett, K. M. Kohlhaas, E. J.Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based Composite Materials[J]. Nature 2006,442: 282-286.
    [6]J. H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, E. D. Williams, Printed Graphene Circuits[J]. Adv. Mater.2007,19:3623-3627.
    [7]D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G G. Wallace, Nat. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nanotechnol.2008,3:101-105.
    [8]T. Valla, J. Camacho, Z. H. Pan, A. V. Fedorov, A. C. Walters, C. A. Howard and M. Ellerby, Anisotropic Electron-Phonon Coupling and Dynamical Nesting on the Graphene Sheets in Superconducting CaC6 Using Angle-Resolved Photoemission Spectroscopy[J]. Phys. Rev. Lett., 2009,102:107007-107010.
    [9]Y. Xu, L. Zhao, H. Bai, W. Hong, C. Li and G Shi, Flexible Graphene Films via the Filtration of Water-soluble Noncovalent Functionalized Graphene Sheets[J]. J. Am. Chem. Soc.,2008,130: 5856-5857.
    [10]B. Das, K. Eswar Prasad, U. Ramamurty and C. N. R. Rao, Nano-indentation Studies of Polymer Matrix Composites Reinforced by Few-layer Grapheme[J]. Nanotechnology,2009,20: 125705-09.
    [11]Li, C.; Bai, H.; Shi, G. Q. Conducting Polymer Nanomaterials:Electrosynthesis and Applications[J]. Chem. Soc. Rev.2009,38:2397-2409.
    [12]Tran, H. D.; Li, D.; Kaner, R. B. One-Dimensional Conducting Polymer Nanostructures:Bulk Synthesis and Applications. Adv. Mater.2009,21,1487-1499.
    [13]Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline Nanofibers:A Unique Polymer Nanostructure for Versatile Applications[J]. Acc. Chem. Res.2009,42:135-145.
    [14]Kang, E. T; Neoh, K. G; Tan, K. L. Polyaniline:A Polymer with Many Interesting Intrinsic Redox States[J]. Prog. Polym. Sci.1998,23:277-324.
    [15]Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in Preparation, Processing and Applications of Polyaniline[J]. Prog. Polym. Sci.2009,34:783-810.
    [16]Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a Graphene Nanosheet/Polyaniline Complex with High Specific Capacitance[J]. Carbon 2010,48:487-493.
    [17]Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of Graphene/Polyaniline Complex Paper via In Situ Anodic Electropoly merization for High-Performance Flexible Electrode[J]. ACS Nano 2009,3: 1745-1752.
    [18]Bai, H.; Xu, Y. X.; Zhao, L.; Li, C.; Shi, G. Q. Non-Covalent Functionalization of Graphene Sheets by Sulfonated Polyaniline[J]. Chem. Commun.2009,1667-1669.
    [19]Liu, P. G.; Gong, K. C. Synthesis of Polyaniline-Intercalated Graphite Oxide by an In Situ Oxidative Polymerization Reaction[J]. Carbon 1999,37:706-707.
    [20]Wang, D.-W; Li, F.; Wu, Z.-S.; Ren, W.; Cheng, H.-M. Electrochemical Interfacial Capacitance in Multilayer Graphene Sheets:Dependence on Number of Stacking Layers[J]. Electrochem. Commun.2009,11:1729-1732.
    [21]Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Highly Conducting Graphene Sheets and Langmuir-Blodgett Films[J]. Nat. Nanotechnol.2008,3: 538-542.
    [22]Yanyu Liang, Dongqing Wu, Xinliang Feng, Klaus Mu"llen. Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions[J]. Adv. Mater.2009,21:1679-1683
    [23]Yi Sun, Stephen R. Wilson, and David I. Schuster, High Dissolution and Strong Light Emission of Carbon Nanotubes in Aromatic Amine Solvents[J]. J. Am. Chem. Soc.2001,123: 5348-5349.
    [24]C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen and G. N. Chen, A Graphene Platform for Sensing Biomolecules[J]. Angew. Chem., Int. Ed.,2009,48:4785-4787.
    [25]Gallon, B. J.; Kojima, R. W.; Kaner, R. B.; Diaconescu, P. L. Palladium Nanoparticles Supported on Polyaniline Nanofibers as Semi-Heterogeneous Catalysts in Water[J]. Angew. Chem., Int. Ed.2007,46:7251-7254.
    [26]Hu, J.; Liu, Y. Pd Nanoparticle Aging and Its Implications in the Suzuki Cross-Coupling Reaction[J]. Langmuir 2005,21:2121-2123.
    [27]H.P. Liang, Nathan S. Lawrence, L.J. Wan, L. Jiang, W.G. Song, and Timothy G. J. Jones, Controllable Synthesis of Hollow Hierarchical Palladium Nanostructures with Enhanced Activity for Proton/hydrogen Sensing[J]. J. Phys. Chem. C 2008,112:338-344.
    [28]Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. On the Nature of Strong Hydrogen Atom Trapping Inside Pd Nanoparticles[J]. J. Am. Chem. Soc.2008,130: 1828-1829.
    [29]F. J. Ibanez and F. P. Zamborini, Reactivity of Hydrogen with Solid-State Films of Alkylamine-and Tetraoctylammonium Bromide-Stabilized Pd, Pd/Ag, and Pd/Au Nanoparticles for Sensing and Catalysis Applications[J]. J. Am. Chem. Soc.2008,130:622-633.
    [30]Yin, Z.; Zheng, H.; Ma, D.; Bao, X. Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity [J]. J. Phys. Chem. C 2009,113:1001-1005.
    [31]Hui Meng, Shuhui Sun, Jean-Philippe Masse, and Jean-Pol Dodelet, Electrosynthesis of Pd Single Crystal Nanothorns and Their Application in the Oxidation of Formic Acid, Chemistry of Materials[J]. Chem. Mater.2008,20:6998-7002.
    [32]L.D. Burke, M.B.C. Roche, An Electrochemical Investigation of Monolayer and Multilayer Oxide Films on Palladium in Aqueous Media[J]. J. Electroanal. Chem.1985,186:139-154.
    [33]Nina I. Kovtyukhova,, Patricia J. Ollivier, Benjamin R. Martin, Thomas E. Mallouk, Sergey A. Chizhik, Eugenia V. Buzaneva, and Alexandr D. Gorchinskiy Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations[J]. Chem. Mater.1999,11:771-778.
    [34]Hummers, W. S.& Offeman, R. E. Preparation of Graphite Oxide[J]. J. Am. Chem. Soc.1958, 80:1339-1339.
    [35]Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The Structure of Suspended Graphene Sheets[J]. Nature,2007,446.60-63.
    [36]Kian Ping Loh, Qiaoliang Bao, Goki eda, manish chhowalla. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature chemistry.20102:1015-1024.
    [37]Kagan, M. R.& McCreery, R. L. Reduction of fluorescence interference in Raman spectroscopy via analyte adsorption on graphitic carbon[J]. Anal. Chem.199466:4159-4165.
    [38]E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samori, V.Palermo. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching[J]. J. Am. Chem. Soc.2009 131:15576-15577.
    [39]Kim, J., Cote, L. J., Kim, F.& Huang, J. Visualizing graphene based sheets by fluorescence quenching microscopy [J]. J. Am. Chem. Soc.2010 132:260-267.
    [40]Zunfeng Liul, Qian Liu, Yi Huang1, Yanfeng Ma, Shougen Yin, Xiaoyan Zhang, Wei Sun, Yongsheng Chen. Organic photovoltaic devices based on a novel acceptor material:graphene[J]. Adv. Mater.2008 20:3924-3930.
    [41]Wang, Y, Kurunthu, D., Scott, G. W.& Bardeen, C. J. Fluorescence quenching in conjugated polymers blended with reduced graphitic oxide[J]. J. Phys. Chem. C 2010,114:4153-4159.
    [42]Dong, H., Gao, W., Yan, F., Ji, H.& Ju, H. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J]. Anal. Chem.2010,82:5511-5517.
    [43]Riggs, J. E.; Guo, Z.; Carroll, D. L.; Sun, Y. P., Strong luminescence of solubilized carbon nanotubes[J]. J. Am. Chem. Soc.2000,122:5879-5880.
    [44]Park,S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li,X.;Velamakanni,A.; Ruoff, R. S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents[J]. Nano Lett.2009,9:1593-1597.
    [45]Rakesh K. Pandey and V. Lakshminarayanan. Electro-Oxidation of Formic Acid, Methanol, and Ethanol on Electrodeposited Pd-Polyaniline Nanofiber Films in Acidic and Alkaline Medium[J]. J. Phys. Chem. C 2009,113:21596-21603.
    [46]X.B. Yan, Z.J. Han, Y. Yang, B.K. Tay, NO2 gas Sensing with Polyaniline Nanofibers Synthesized by a Facile Aqueous/organic Interfacial Polymerization[J]. Sens. Actuators B 2007,123:107-113.
    [47]R. Cruz-silva, J. Romero-Garcia, J. L. Angulo-Sanchez, E. Flores-Loyola, M. H. Farias, F. F. Castillon, J. A. Diaz, Comparative Study of Polyaniline Cast Films Prepared from Enzymatically and Chemically Synthesized Polyaniline [J]. Polymer 2004 45:4711-4717.
    [48]Tiwaria, A.; Kumar, R.; Prabaharan, M.; Pandey, R. R.; Kumari, P.; Chaturvedi, A.; Mishra, A. K. Nanofibrous Polyaniline Thin Film Prepared by Plasma-induced Polymerization Technique for Detection of NO2 gas[J]. Polym. Adv. Technol.2010,21:615-620
    [49]Si, Y. C.; Samulski, E. T. Synthesis of Water Soluble Graphene[J]. Nano Lett.2008,8: 1679-1682.
    [50]Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and Exfoliation of Isocyanate-treated Graphene Oxide Nanoplatelets[J]. Carbon 2006,44:3342-3347.
    [51]A. Vadivel Murugan, T. Muraliganth, and A. Manthiram,Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomplexs for Energy Strorage[J]. Chem. Mater.2009,21:5004-5006.
    [52]Yoon-Bo Shim, Mi-Sook Won, and Su-Moon Park, In Situ Spectroelectrochemical Studies of Polyaniline Growth Mechanisms[J]. J. Electrochem. Soc.,1990,137:538-544
    [53]David E. Stilwell, Su-Moon Park, Electrochemistry of Conductive Polymers. III. Some physical and Electrochemical Properties Observed from Electrochemically Grown Polyaniline[J]. J. Electrochem. Soc.1988,135:2491-2496.
    [54]Liang H P, Lawrence N S, Jones T G J, Banks C E and. Ducati C, Nanoscale Tunable Proton/Hydrogen Sensing:Evidence for Surface-Adsorbed Hydrogen Atom on Architectured Palladium Nanoparticles[J]. J. Am. Chem. Soc.2007,129:6068-6069.
    [55]Wei Pan, Xiaokai Zhang, Houyi Ma,Jintao Zhang. Electrochemical Synthesis, Voltammetric Behavior, and Electrocatalytic Activity of Pd Nano particles[J]. J. Phys. Chem. C 2008,112: 2456-2465.
    [56]Xiao-Gang Zhang, Yasushi Murakami, Kiyochika Yahikozawa and Yoshio Takasu, Electrocatalytic Oxidation of Formaldehyde on Ultrafine Palladium Particles Supported on a Glassy Carbon[J]. Electrochimica Acta,1997,42:223-227.
    [1]Ghosh, M. K., Mittal, L., Eds.; Marcel Dekker. Polyimides; Fundamental Aspects and Technological Applications[M]. New York,1996.
    [2]P. Murugaraj, D.E. Mainwaring, N. Mora-Huertas, Electromechanical response of semiconducting carbon-polyimide nanocomposite thin film[J]. Compos. Sci. Technol.2009, 69:2454-2459.
    [3]Lebron-Colon, M.; Meador, M. A.; Gaier, J. R.; Sola, F.; Scheiman, D. A.; McCorkle, L. S., Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes[J]. ACS Appl. Mater. Interfaces.2010,2:669-676.
    [4]Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D., Aligned carbon canotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science 1994,265:1212-14.
    [5]Moniruzzaman, M.; Winey, K. I., Polymer Nanocomposites Containing Carbon Nanotubes[J]. Macromolecules.2006,39:5194-5205.
    [6]Cooper, C. A.; Young, R. J.; Halsall, M., Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy[J]. Composites Part A 2001,32:401-411.
    [7]Guanghua Gao, Tahir Cagin and William A Goddard Ⅲ, Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes[J]. Nanotechnology 1998,9:184-191.
    [8]Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E., Crystalline Ropes of Metallic Carbon Nanotubes[J]. Science 1996,273:483-488.
    [9]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Film[J]. Science.2004, 306:666-669.
    [10]H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, A. F. Morpurgo, Bipolar supercurrent in graphene[J]. Nature 2007,446:56-59.
    [11]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett.2008,8:902-907.
    [12]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J.Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials[J]. Nature.2006,442: 282-286.
    [13]D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nanotechnol.2008,3:101-105.
    [14]Steurer, P.; Wissert, R.; Thomann, R.; Muelhaupt, R. Macromol, Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide[J]. Rapid Commun. 2009,30:316-327.
    [15]Dan Chen, Hong Zhu, and Tianxi Liu, In Situ Thermal Preparation of Polyimide Nanocomposite Film Containing Functionalized Graphene Sheets[J]. Applied material & interfaces,2010,2(12):3702-3708,2010.
    [16]Hyunwoo Kim, Ahmed A. Abdala, and Christopher W. Macosko, Graphene/Polymer Nanocomposites[J]. Macromolecules 2010,43:6515-6530
    [17]Seema Ansari, Emmanuel P. Giannelis, Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites[J]. J. Polym. Sci. Part B, Polym. Phys.2009,47:888-897.
    [18]Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; et al., Functionalized graphene sheets for polymer nanocomposites[J]. Nat. Nanotechnol.2008,3: 327-331.
    [19]R.E. Southward, D.W. Thompson, A.K. St. Clair, Control of Reflectivity and Surface Conductivity in Metallized Polyimide Film Prepared via in Situ Silver(I) Reduction[J]. Chem. Mater.1997,9:501-510.
    [20]S. Ikeda, K. Akamatsu, H. Nawafune, Direct photochemical formation of Cu patterns on surface modified polyimide resin[J]. J. Mater. Chem.2001,11:2919-2921.
    [21]Kensuke Akamatsu, Shingo IKeda,Hidemi Nawafune,and Shigehito Deki. Surface Modification-Based Synthesis and Microstructural Tuning of Nanocomposite Layers: Monodispersed Copper Nanoparticles in Polyimide Resins[J]. Chem. Mater.2003,15:2488-2491.
    [22]K. Akamatsu, S. Ikeda, H. Nawafune, H. Yanagimoto, Direct Patterning of Copper on Polyimide Using Ion Exchangeable Surface Templates Generated by Site-Selective Surface Modification[J]. J. Am. Chem. Soc.2004,126:10822-10823.
    [23]Zhanpeng Wu, Dezhen Wu, Wantai Yang and Riguang Jin, Preparation of highly reflective and conductive metallized polyimide film through surface modification:processing, morphology and properties[J]. J. Mater. Chem.,2006,16:310-316.
    [24]Shingo Ikeda, Kensuke Akamatsu,Hidemi Nawafune, Takashi Nishino,and Shigehito Deki, Formation and Growth of Copper Nanoparticles from Ion-Doped Precursor Polyimide Layers[J]. J. Phys. Chem. B 2004,108:15599-15607.
    [25]Xin Zhang, Xuezhao Shi, Chunming Wang,Electrodeposition of Pt nanoparticles on carbon nanotubes-modified polyimide materials for electrocatalytic applications[J]. Catalysis Communications.2009,10:610-613.
    [26]N. I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T. E. Mallouk, S. A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Film from Micron-Sized Graphite Oxide Sheets and Polycations[J]. Chem. Mater.1999,11:771-778.
    [27]W. S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide[J]. J. Am. Chem. Soc.1958, 80:1339-1339.
    [28]C. Zhang, L.L. Ren, X.Y. Wang, T.X. Liu, Graphene Oxide-Assisted Dispersion of Pristine Multiwalled Carbon Nanotubes in Aqueous Media[J]. J. Phys. Chem. C 2010,114:11435-11440.
    [29]Shengli Qi,l Dezhen Wu,Zongwu Bai, Zhanpeng Wu,Wantai Yang,Riguang Jin, Direct Ion Exchange Self-Metallization:A Novel and Efficient Route for the Preparation of Double-Surface-Silvered Polyimide Film[J]. Macromol. Rapid Commun.2006,27:372-376.
    [30]Thomas, R. R.; Buchwalter, S. L.; Buchwalter, L. P.; Chao, T. H., Organic chemistry on a polyimide surface[J]. Macromolecules 1992,25:4559-4568.
    [31]Si, Y. C.; Samulski, E. T., Synthesis of Water Soluble Graphene[J]. Nano Lett.2008,8: 1679-1682.
    [32]Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon 2006,44:3342-3347.
    [33]Seita, M.; Nawafune, H.; Kanai, T.; Nishioka, T.; Mizumoto, S. Electron. Circuits World Conv.1999,5,1.
    [34]Strunskus, T.; Grunze, M.; Kochendoerfer, G.; Wo'll, Ch., Identification of Physical and Chemical Interaction Mechanisms for the Metals Gold, Silver, Copper, Palladium, Chromium, and Potassium with Polyimide Surfaces[J]. Langmuir 1996,12:2712-2725.
    [35]K. Akamatsu, N. Tsuboi, Y. Hatakenaka and S. Deki, In Situ Spectroscopic and Microscopic Study on Dispersion of Ag Nanoparticles in Polymer Thin Film, J. Phys. Chem. B,2000,104: 10168-10173.
    [36]D J. Skrovanek, P.C. Painter and M.M. Coleman, Hydrogen bonding in polymers.2. Infrared temperature studies of nylon 11[J]. Macromolecules 1986,19:699-705.
    [1]S. Shahrokhian, Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode, Anal. Chem.2001,73:5972-5978.
    [2]P.R. Lima, W.J.R. Santos, R.C.S. Luz, F.S. Damos, A.B. Oliveira, M.O.F. Goulart, L.T.Kubota, An amperometric sensor based on electrochemically triggered reaction:Redox-active Ar-NO/Ar-NHOH from 4-nitrophthalonitrile-modified electrode for the low voltage cysteine detection, J. Electroanal. Chem.612 (2008) 87-96.
    [3]K. Arlt, S. Brandt, J. Kehr, Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection, J. Chromatogr. A 2001,926:319-325.
    [4]F. Tanaka, N. Mase, C.F. Barbas, Determination of cysteine concentration by fluorescence increase:reaction of cysteine with a fluorogenic aldehyde, Chem. Commun.2004,24:1762-1763.
    [5]Yinling Wang, Wei Peng, Lin Liu, Feng Gao, Maoguo Li, The electrochemical determination of 1-cysteine at a Ce-doped Mg-Al layereddouble hydroxide modified glassy carbon electrode, Electrochimica Acta,012,70:193-198.
    [6]Ming Zhou, Jie Ding, Li-ping Guo, and Qing-kun Shang, Electrochemical Behavior of L-Cysteine and Its Detection at Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode,Anal. Chem.2007,79:5328-5335.
    [8]Yu-Hui Bai, Jing-Juan Xu, Hong-Yuan Chen, Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes, Biosensors and Bioelectronics, 2009,24:2985-2990.
    [9]J. Lock, J. Davis, The determination of disulphide species within physiological fluids,Trends Anal. Chem.2002,21:807-815.
    [10]N. Spataru, B.V. Sarada, E. Popa, D.A. Tryk, A. Fujishima, Voltammetric Determination of L-Cysteine at Conductive Diamond Electrodes, Anal. Chem.2001,73:514-519.
    [11]R.R. Moore, C.E. Banks, R.G. Compton, lectrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode, Analyst,2004,129:755-758.
    [12]Y. Lai, A. Ganguly, L. Chen, K. Chen, Direct voltammetric sensing of L-Cysteine at pristine GaN nanowires electrode, Biosens. Bioelectron.2010,26:1688-1691.
    [13]N. Sattarahmady, H. Heli, An electrocatalytic transducer for L-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core-shell structure, Anal. Biochem.2011,409: 74-78.
    [14]R. Ojani, J.B. Raoof, E. Zarei, Preparation of poly N,N-dimethylaniline/ferrocyanide film modified carbon paste electrode:Application to electrocatalytic oxidation of L-cysteine, J. Electroanal. Chem.2010,638:241-245.
    [15]P. Dharmapandian, S. Rajesh, S. Rajasingh, A. Rajendran, C. Karunakaran, Electrochemical cysteine biosensor based on the selective oxidase-peroxidase activities of copper, zinc superoxide dismutase, Sens. Actuators B,2010,148:17-22.
    [16]J.C. Ndamanisha, J. Bai, B. Qi, L. Guo, Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine, Anal. Biochem.2009, 386:79-84.
    [17]Ming Zhou, Jie Ding, Li-ping Guo, Qing-kun Shang, Electrochemical Behavior of L-Cysteine and ItsDetection at Ordered Mesoporous Carbon-ModifiedGlassy Carbon Electrode, Anal. Chem.2007,79:5328-5335.
    [18]Y.T. Lai, A. Ganguly, L.C. Chen, K.H. Chen, Direct voltammetric sensing of L-Cysteine at pristine GaN nanowires electrode, Biosens. Bioelectron.2010,26:1688-1691.
    [19]S. Ge, M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song, S. Yu, Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis, Biosens. Bioelectron.2012,31:49-54.
    [20]Y. Song, Z. He, H. Zhu, H. Hou, L. Wang, Electrochemical and electrocatalytic properties of cobalt nanoparticles deposited on graphene modified glassy carbon electrode:Application to some amino acids detection, Electrochim. Acta,2011,58:757-763.
    [21]Ming Zhou, Jie Ding, Li-ping Guo, Qing-kun Shang, Electrochemical Behavior of L-Cysteine and Its Detection at Ordered Mesoporous Carbon-ModifiedGlassy Carbon Electrode, Anal. Chem.2007,79,5328-5335.
    [22]Liang, C.; Dai, S. Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction, J. Am. Chem. Soc.2006,128:5316-5317.
    [23]Kim, J. M.; Stucky, G. D. Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers,Chem. Commun.2000,13:1159-1160.
    [24]Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.;Terasaki, O. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure, J. Am. Chem. Soc.2000,122,10712-10713.
    [25]ShuangyinWang, San Ping Jiang,and XinWang, Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation, Nanotechnology,2008,19:265601-06.
    [26]Lee H, Yoon S W, Kim E J, Park J, In-Situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials, Nano Lett.2007,7:778-784
    [27]Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and Cylindrical Structures of Tungsten Disulfide. Nature 1992,360:444-446.
    [28]Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 Analogues of Graphene. Angew. Chem., Int. Ed.2010,49:4059-4062.
    [29]Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh and Hua Zhang,The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature chemistry,2013,5:263-275.
    [30]R. Prins, V. H. J. Debeer and G. A. Somorjai, Structure and Function of the Catalyst and the Promoter in Co-Mo Hydrodesulfurization Catalysts, Catal. Rev.,1989,31:1-41.
    [31]T. Spalvins, J. Vac. A review of recent advances in solid film lubrication, Sci. Technol., A, 1987,5:212-219.
    [32]F. Q. Zhang, D. Gu, T. Yu, F. Zhang, S. H. Xie, L. J. Zhang, Y. H. Deng,Y. Wan, B. Tu, D. Y. Zhao, Mesoporous Carbon Single-Crystals from Organic-Organic Self-Assembly, J. Am. Chenm. Soc.,2007,129:7746-7747.
    [33]S. Y. Wang, S. P. Jiang, X. Wang, Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation, Nanotechnology, 2008,19:265601-06.
    [34]Ning Li, Yongming Chaia,, Yanpeng Lia, Zhe Tang, Bin Dong, Yunqi Liu, Chenguang Liu, Ionic liquid assisted hydrothermal synthesis of hollow vesicle-likeMoS2microspheres, Materials Letters,2012,66:236-238.
    [35]F. Su, J. Zeng, P. Bai, L. Lv, P.-Z. Guo, H. Sun, H.L. Li, J. Yu, J.Y. Lee, X.S. Zhao, Template Synthesis of Mesoporous Carbon Microfibers as a Catalyst Support for Methanol Electrooxidation, Ind. Eng. Chem. Res.2007,46:9097-9102.
    [36]B. Z. Fang, M. Kim, S. H. Wang, J. S.Yu, Colloid-imprinted carbon with tailored nanostructure as an unique anode electrocatalyst support for formic acid oxidation, Carbon 2008, 46:876-883.
    [37]P. I. Ravikovitch, A.Vishnyakoy, A.V.Neimark, M. M. L.Ribeiro Carrott, P. A. Russo, P. J.Carrott, Characterization of micro-mesoporous materials from nitrogen and toluene adsorption:experiment and modeling,Langmuir,2006,22:513-516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700