微合金化铝基阳极材料的组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Zn-In系阳极合金由于电化学性能较好,腐蚀产物易脱落,在防腐工程领域逐渐推广应用,是目前国内最有发展前景的牺牲阳极材料,但其电化学性能有待提高,表面溶解均匀性差,至今未有有效的解决方法。稀土元素是细化铝合金的首选元素,锰能有效净化铝合金中杂质铁元素,含硅的铝合金具有极好的铸造性能。因此通过微合金化加入适量的稀土元素细化晶粒改善组织、加入适量Mn降低杂质元素的不利影响及加入适量Si元素减少合金铸造缺陷是解决Al-Zn-In系阳极材料性能缺陷的有效途径。
     本文通过成分设计,用适量Ce、Mn及Si对Al-Zn-In-Mg-Ti合金进行微合金化,研究表明:对该合金进行微合金化达到了预期目的,经上海材料研究所检测,Al-5Zn-0.02In-1Mg-0.05Ti-(0.5Ce、0.1Si)牺牲阳极材料具有优良的综合电化学性能,其电流效率分别达94%及93%,且合金溶解均匀,其性能指标都高于目前工程上使用的牺牲阳极材料,这两种合金有很好的工业化应用前景。
     多元微合金化Al-Zn-In-Mg-Ti系合金的组织特点是偏析相增多,而该系合金的电化学性能比Al-Zn-In合金显著提高。因此偏析相对合金的电化学性能有重要作用。这使得对多元微合金化阳极材料的腐蚀机理也不能简单的沿用以前简单合金的腐蚀机理来解释。
     据此,本文采用X射线衍射(XRD)、扫描电镜(SEM)及透射电镜(TEM)等检测方法确定合金中的主要偏析相,然后采用不同测试技术,如极化曲线、电化学阻抗谱等,结合电化学噪声从不同方面研究合金中的偏析相在腐蚀过程中的变化,在此基础上揭示铝合金阳极溶解机理。结果表明:该系合金都含有MgZn2偏析相,MgZn2偏析相相对于α-Al基体呈阳极,具有活化铝合金且不会引起α-Al自腐蚀的优点,这就保证了该系合金具有较高的电流效率。
     合金中添加0.5Ce后,一方面晶粒明显细化,晶界溶质元素偏聚带明显窄化,除了MgZn2外还形成阳极性Al2CeZn2偏析相,这些阳极性偏析相是合金溶解的活化点,最终改善了合金不均匀溶解,同时也提高了合金的电流效率。合金中加入0.5Mn后,晶界溶质元素偏聚带窄化,其主要偏析相为MgZn2及A16Mn相,A16Mn细化晶粒及活化合金的效果比稀土元素Ce低,所以,Mn元素对合金综合性能的改善效果不如稀土Ce元素显著。合金中加入0.1%Si后,表现出稳定的良好的综合电化学性能,但Si元素对该合金性能的改善,不是由于偏析相的作用,主要是因为Si元素能明显提高Al合金的铸造性能,减少合金中的铸造缺陷,使合金组织成份均匀。
     探讨了该系合金在3.5%NaCl溶液中浸泡不同时间的腐蚀形貌、电化学阻抗谱及电化学噪声。结果表明:合金的初始溶解是由点蚀引起的,且点蚀都发生在偏析相处。用目前公认的溶解-再沉积机理无法解释偏析相的活化作用,必须结合偏析相优先溶解引发点蚀进一步解释。合金腐蚀初期的电化学噪声及其小波分析也验证了较高频率的亚稳态及稳态点蚀电位噪声在小波分析各阶能量中相对能量最高。此时电化学阻抗谱高-中频端呈现的感抗弧也表明合金处于点蚀阶段。
     随着腐蚀时间的延续,除了点蚀继续扩展外,合金晶粒内出现了均匀麻点状蚀坑,经SEM及EDX分析,此时在合金表面能检测到在铸态合金中检测不到的微量In元素,且麻点状蚀坑位置的In含量明显高于其余位置,说明合金此时发生了In元素的溶解-再沉积。在此阶段的电化学噪声及其小波分析同样印证了低频的溶解-再沉积电位噪声在小波分析各阶能量中相对能量最高。电化学阻抗谱低频端呈现出表征点蚀的感抗弧及表征溶解-再沉积的另一容抗弧。表明合金此时处于点蚀及溶解-再沉积共同控制的腐蚀期。随着腐蚀时间的进一步延长。溶解-再沉积的均匀麻点状蚀坑发生在合金整个表面,是合金最后均匀溶解的主要腐蚀形式。均匀腐蚀阶段的电化学噪声及其小波分析同样印证了低频有规律的溶解-再沉积电位噪声在小波分析各阶能量中相对能量最高。电化学阻抗谱低频端呈现出逐渐增大的表征溶解-再沉积的另一容抗弧,验证了合金此时主要以溶解-再沉积的形式腐蚀。
     因此,Al-5Zn-0.03In-1Mg-0.05Ti系阳极合金在NaCl溶液中的腐蚀包括以下三个阶段:1.腐蚀开始主要是由偏析相引发的点蚀期;2.随后,合金以点蚀及晶粒内部由Zn+、In1+引发的溶解-再沉积两种腐蚀形式同时溶解;3.合金腐蚀后期主要是Zn+、In+引发的溶解-再沉积的均匀腐蚀形式。
     本文的创新之处在于研制出了Al-5Zn-0.02In-1Mg-0.05Ti-(0.5Ce、0.1Si)两种高性能牺牲阳极材料,其性能均高于目前工程上使用的材料。该类材料中阳极性偏析相引发材料点蚀,活化合金。这类材料的活化有点蚀及溶解-再沉积两种方式。溶解过程包括点蚀、点蚀与溶解-再沉积、均匀腐蚀三个阶段。
Al-Zn-In series alloys are the most promising sacrificial anode materials with better electrochemical properties; corrosion product falls off easy and the alloys show great potential in anti-corrosion industry. But theirs electrochemical properties and nu-uniform surface dissolution need to be improved and no effective solution so far. RE element is preferred to refine aluminum alloy, manganese element can purify effectively the iron impuritity of aluminum alloy, and aluminum alloy containing silicon element with excellent casting performance. Therefore, it is an effective way to solve the above problems by microalloying with adding appropriate content rare earth element to refinement microstructure, adding suitable content Mn element to reduce the adverse effect of impurity element, and adding suitable content Si element to reduce the casting defects.
     In this paper, based on the composition design, the microalloying Al-Zn-In-Mg-Ti alloys with appropriate content of Ce, Mn and Si elements achieve the expected goal. The alloys have excellent integratation electrochemical properties by tested of Shanghai research institute of materials. The current efficiency of the alloys adding 0.5Ce and 0.1 Si element are 94% and 93%, respectively, with uniformity dissolution. The performances of the alloys are higher than the current sacrificial anode materials used in engineering. So the both alloys have good industrial applications perspective.
     The microstructure characteristic of multi-microalloying of Al-Zn-In-Mg-Ti alloy is distinctness increased precipitates. It is a fact that the electrochemical properties of Al-Zn-In-Mg-Ti alloy are higher than that of Al-Zn-In alloy. Thus the precipitates have an important effect on the electrochemical properties of the alloy. So the corrosion mechanism of the multi-microalloying anode material can't simply adopt the old corrosion mechanism of simple alloy.
     Accordingly, the major precipitates phases of the alloy were determined using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Then the corrosion behavior of the alloy was studied by different techniques, such as polarization curves, electrochemistry impedance spectrum (EIS) and so on, combined with the electrochemical noise (EN), based on this to reveal the dissolution mechanism of the alloy. The results show that all the alloys contain MgZn2 precipitates phase, MgZn2 precipitates phase is anode for the a-Al with the advantages of activation the alloy and will not cause the alloy self-corrosion. This ensures that the alloys have a higher current efficiency, but with un-uniformity dissolution lead in the large dendrites and un-uniformity MgZn2 precipitates of the cast alloy.
     The current efficiency and the un-uniformity dissolution of the alloy adding 0.5Ce were improved resulted in formation of the anode Al2CeZn2 precipitates which refine the grain of the alloy apparently, also act as the activation centers of the alloy. The grain of the alloy adding 0.5Mn was distinctness refine resulted in formation of the anode Al6Mn precipitates. The effect of grain refinement and activation with Mn element is lower than that of the rare earth Ce element. Therefore, the improvement effect of Mn element on the integration performance of the alloy is inconspicuous than that of Ce element. The alloy adding 0.1% Si shown a good stability integrated electrochemical properties. But the improving properties of the alloy are not because of the role of precipitates, mainly because of Si element can increase the casting performance, reduce casting defects, and make the micro structure uniform of the alloy.
     The dissolution mechanism of the alloy was investigated by the corrosion morphology, electrochemical impedance spectroscopy and electrochemical noise testing in 3.5% NaCl solution at different immersion time. The results show that the initial dissolution of the alloy is caused by pitting corrosion, and pitting get along with precipitates. The activation mechanism of the precipitates phase in the alloy can not be explained by the dissolved-redeposition, so must combine with the mechanism that the priority dissolution of precipitates phase. The EN and the wavelet analysis of the alloy in the early corrosion also verify that the noise energy of the metastable and steady-state pitting take the highest share in the wavelet analysis of the energy bands. At this time, the inductance loop of the EIS in low frequency also correspond with the characterization of the relevant literature to explain the passivation of metal at pitting stage.
     The mud pits structure appeared in the grain of the alloy in addition to the pitting corrosion continue to expand with the increase of immersion time. It can be detected the trace quantities In elements in the surface of the alloy which could not be detected in the cast alloy by SEM and EDX analysis. The In quantities of mud pits location were significantly higher than that of the rest position in the alloy. It was indicated that the In elements of the alloy has occurred dissolved-redeposition. The EN and the wavelet analysis of the alloy in the corrosion stage also verify that the noise energy of the "dissolved-redeposition" take the highest share in the wavelet analysis of the energy bands. The inductance loop of the EIS at high-frequency which characteriza the pitting and the second capacitive loop which characteriza the dissolved-redeposition also indicated that the corrosion controlled by the pitting and dissolved-redeposition at this corrosion stage. With further increase of the corrosion time, the pittings and the mud structure around the pittings were connected, and finally the entire alloy surface uniformly dissolved. Dissolved-redeposition took place in the entire surface of the alloy which is the major corrosion form at the later dissolution stage. The EN and the wavelet analysis of the alloy in the uniform corrosion stage also confirmed that the noise energy of the dissolved-redeposition with low frequency and regularity take the highest share in the wavelet analysis of the energy bands. The capacitive loop with gradual increase in the low frequency which characteriza the dissolved-redeposition also indicated that the corrosion controlled by the dissolved-redeposition.
     Therefore, the corrosion of Al-5Zn-0.03In-1Mg-0.05Ti series anode alloy in NaCl solution includes the following three stages:1. the pitting stage resulted in the precipitates phases in the grain boundary at the initially corrosion stages; 2. Subsequently, the alloy dissolve both with the pitting and the dissolved-redeposition by Zn+、In+ internal grain; 3. The dissolution is in mainly uniform corrosion by Zn+、In+ with dissolved-redeposition at the later corrosion stage.
     The innovation of the article lies in developed two kinds high-performance anode material of Al-5Zn-0.02In-1Mg-0.05Ti-(0.5Ce, 0.1Si) alloys. By identified, the performance of the alloys is higher than the currently materials used engineering. The anode precipitate phases of the alloys cause the alloy pitting and activate the alloy. The corrosion of the materials cause by pitting and dissolved-redeposition together. The corrosion process includes three stages of pitting, pitting and dissolved-redeposition, uniform corrosion.
引文
[1]冯永斌.侯保荣院士.我国去年因腐蚀造成经济损失.www.newsphoto.com.cn,2009,4,8
    [2]何业东,齐慧滨.材料腐蚀与防护概论[M].北京:机械工业出版社,2005,4
    [3]杨世伟,常铁军.材料腐蚀与防护[M].哈尔滨:哈尔滨工程大学出版社,2003,9
    [4]火时中.电化学保护[M].北京:化学工业出版社,1988
    [5]Schrieber C F, Reding J T. Testing a new aluminum galvanic anode for sea water service [J]. Materials Protection,1967,6 (5):33-37
    [6]涂湘缃.实用防腐蚀工程施工手册[M].北京:化学工业出版社,2000
    [7]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1989
    [8]郝小军.在特殊介质中应用的牺牲阳极的研究[硕士学位论文].广州:华南理工大学,1999
    [9]李永广.在役海底管线牺牲阳极评价及优质铝阳极的研究[硕士学位论文].广州:华南理工大学,1998
    [10]武江,刘贵甫,张洁.耐高温锌基合金牺牲阳极的研制[J].有色矿冶,2007,23(3):34-39
    [11]Bounoughaz M, Salhi E, Benzine K, et al. A comparative study of the electrochemical behaviour of Algerian zine and zinc from a commercial sacrificial anode [J]. Journal of Materials Science,2003,38 (6):1139-1145
    [12]巢国辉,黎文献,余琨.镁基牺牲阳极腐蚀行为研究[J].腐蚀科学与防护技术,2006,18(2):98-100
    [13]Oliver O, Robinson H A. Performance of magnesium galvanic anodes in underground service [J]. Corrosion,1952,8 (3):114-119
    [14]Bessone J B, Flamini D O, Saidman S B. Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium [J]. Corrosion Science,2005 (47):95-105
    [15]Shyeb H A, Wanb F M. Electrochemical behavior of aluminum alloys [J]. Journal of Applied Electrochemistr,2005,43 (4):655-660
    [16]胡士信.阴极保护工作手册[M].北京:化学工业出版社,1999
    [17]Norris J C, Alexander M R, Blomfield C J, et al. Quantit ative analysis of indium and iron at the surface of a commercial Al-Zn-In sacrificial anode [J]. Surface and Interface Analysis, 2000,30(1):170-175
    [18]Salinas D R, Garcia S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance:case of Al-Zn [J]. Journal of Applied Electrochemistry,2005 (29):1063-1071
    [19]Zein E S, Endres E F. Electrochemical behaviour of Al, Al-ln and Al-Ga-In alloys in chloride solutions containing zinc ions [J]. Journal of Applied Electrochemistry,2004 (34): 1071-1080
    [20]Flamini D O, Saidman S B, Bessone J B. Aluminium activation produced by gallium [J]. Corrosion Science,2006 (48):1413-1425
    [21]Reding J T, Newport J J. The influence of alloying elements on aluminum anodes in sea water [J]. Materials Protection,1966,5(12):1518
    [22]翟秀靓,符岩.添加元素对铝基牺牲阳极的影响[J].有色金属,2006,58(1):42-45
    [23]Saidman S B, Bessone J B. Cathodic polarizrton characterisites and actroction of aluminum in solutions containing indium and zinc ions [J]. Journal of Applied Hectrochemistry,2003, 27(6):731-736
    [24]Schrieber C F, Murray R W. Effect of hostile marine environments the Al-Zn-In-Si sacrificial anode [J]. Material Performance,1998,27 (12):70-77
    [25]Shayeb H A, Wahab F M. Effect of gallium ions on the electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions [J]. Corrosion Science,2001 (43): 643-654
    [26]Shayeb H A, Wahab F M. Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions[J]. Corrosion Science,2001 (43): 655-669
    [27]Sina H, Emamy M, Saremi M, et al. The influence of Ti and Zr on electrochemical properties of aluminum sacrificial anodes [J]. Materials Science and Engineering A,2006,4 (31):263-276
    [28]Karaminezhaad M, Jafari A H, Sarrafi A, etal. Influence of bismuth on electrochemical behavior of sacrificial aluminum anode [J]. Anti-Corrosion Methods and Materials,2006,53 (2):102-109
    [29]Mingang Z, Zhiliang C, Junmin Y, et al. Investigation of the behaviour of rare earth element cerium in aluminium-lithium alloys [J]. Journal of Materials Processing Technology,2001,115 (3):294-297
    [30]Bessone J B. The activation of aluminium by mercury ions in non-aggressive media [J]. Corrosion Science,2006 (48):4243-4256
    [31]Rohman C L. Electrically controlled lock [P]. US19670634322,19670427
    [32]Gurrappa I. Cathodic protection of cooling water systems and selection of appropriate materials [J]. Journal of Materials Processing Technology 2005,16 (6):256-267
    [33]Sherif Z E A, Frank E. Electrochemical behaviour of Al and some of its alloys in chloride solutions [J]. Passivation of Metals and Semiconductors and Properties of Thin Oxide Layers, the 9th International Symposium, Paris, France,2006:633-638
    [34]Munoz A G, Bessone J B. Anodic oxide growth on aluminium surfaces modified by cathodic deposition of Ni and Co [J]. Thin Solid Films 460 2004 (460):143-149
    [35]Shibli, S M. Archana, P A. Muhamed. Development of nano cerium oxide incorporated aluminium alloy sacrificial anode for marine applications [J]. Corrosion Science,2008,50(8): 2232-2238
    [36]Emamy, M. Keyvani, A.; Mahta. Effect of oxide inclusions on electrochemical properties of aluminium sacrificial anodes [J]. Journal of Materials Science and Technology,2009,25(1): 95-101
    [37]Venugopal A, Raja V S. Evidence of dissolution redeposition mechanism in activation of aluminum by indium [J]. British Corrosion Journal,2004,31 (4):318-320
    [38]Shibli S M A, Gireesh V S. Activation of aluminium alloy sacrificial anodes by selenium [J]. Corrosion Science,2005,56 (47):2091-2097
    [39]Jingling M, Jiuba W, Xvdong L, et al. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes [J]. Rare Metals,2009,28 (2):187-193
    [40]焦孟旺,文九巴,赵胜利,等.固溶温度对Al-Zn-Mg-RE合金电化学性能的影响[J].特种铸造与有色合金,2008,28(12):976-979
    [41]焦孟旺,文九巴,马景灵,等.稀土含量对Al-Zn-In-Mg-Ti牺牲阳极材料电化学性能的影响[J].功能材料,2007,37(7):2700-2702
    [42]Reboul M C, Delatte M. Activation mechanism for sacrificial Al-Zn/Hg anodes [J].Materials Performance,1980,19 (5):3539-3546
    [43]Salinas D R, Bessone J B. Electrochemical behavior of Al-5%Zn-0.1%Sn sacrificial anode in aggressive media:Influence of its alloying elements and its solidification structure [J]. Corrosion,1991,47 (9):665-673
    [44]King B J. Al-Si-Mn-Li anode for high temperature galvanic cell [P]. US19640399414,19640925
    [45]齐公台,郭稚弧,魏伯康,等.固溶处理对Al-Zn-In-Sn-Mg阳极组织与电化学性能的影响[J].金属热处理学报,2000,21(4):68-72
    [46]刘仁培,董祖珏,潘永明.6082和ZL101铝合金低熔共晶测试与分析[J].焊接学报,2005,25(10):28-31
    [47]蔡年生.电池用铝合金的开发应用[J].铝加工,1996,30(4):156-162
    [48]董保光,卢国琦.某些添加剂对负极氢过电位的影响[J].蓄电池,1989(4):11-13
    [49]林顺岩,王彬.高性能铝合金阳极材料的研究与开发[J].铝加工,2002,25(2):6 9
    [50]秦学,李振亚.铝合金阳极活化机理研究进展[J].电源技术2000,24(1):53-56
    [51]翁瑞,火时中.铝在海水中蚀孔生长的特点[J].中国腐蚀与防护学报,1987,7(4):28-290
    [52]Edward L, William H H, Keith E L. A critical review of aluminum anode activation [J]. Corrosion,2001, NACE
    [53]Miguel A. Hernandez and Juan Genesca, Electrochemical characterization of an Al-Zn-In galvanic anode [J]. Corrosion,2002, NACE
    [54]Breslin C B, Rudd A L. Activation of pure Al in indium-containing electrolyte impedance study [J]. Corrosion Science,2000,32 (22):1023-1039
    [55]孔小东,朱梅五,丁振斌.铝合金牺牲阳极研究进展[J].稀有金属,2003,27(3):376-381
    [56]许刚,曹楚南,李劲风,等.In3+与Ga3+对纯铝在KOH溶液中电化学行为的影响[J].物理化学学报,1998,14(1):27-32
    [57]许刚,曹楚南,李劲风,等.溶液中添加In3+对铝电极负差数效应的影响[J].腐蚀科学与防护技术,1997,9(4):271-75
    [58]钱鸣,黄永昌.XPS定量法研究AI-Zn-In牺牲阳极表面组成[J].中国腐蚀与防护学报,1990,10(4):339-45
    [59]Munoz A G,Saidman S B, Bessone J B. Corrosion of an Al-Zn-In alloy in chloride media [J]. Corrosion Science,2002 (44):2171-2182
    [60]Breslin C B, Friery L P. The synergistic interaction between indium and zinc in the activation of aluminium in aqueous electrolytes [J]. Corrosion science,36 (1994)231-238
    [61]孙鹤建,火时中.铟在铝基牺牲阳极溶解过程中的作用[J].中国腐蚀与防护学报,1987,7(2):115-120
    [62]吴益华.合金元素在铝基牺牲阳极活化过程中的作用[J].中国腐蚀与防护学报,1989,9(2):111-116
    [63]朱元良,赵艳娜.热处理对铝合金牺牲阳极电化学性能的影响[J].中国有色金属学报,2006,16(7):1300-1305
    [64]丁振斌孔小东,朱梅五.铝合金微观组织对其性能的影响[J].材料保护,2002,35(7):7-10
    [65]Li J F, Zheng Z Q, Chen W J, et al. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J], Corrosion Science, 2007 (49):2436-2449
    [66]Surekha K, Murty B S. Microstructural characterization and corrosion behavior of multipass friction stir procesSAED A2219 aluminium alloy [J], Surface & Coatings Technology,2008,2:1-12
    [67]Shworth V A, Booker C J. Cathodic Protection:Theory and practice-chapter 5 [M]. London,1986
    [68]Perkins J, Cummings J R. Morphological studies of occluded cell sin the in the piting of dilute aluminum alloy in sea water [J]. Journal of the Electrochemical Society,1982,129(1):137-1
    [69]GB/T 4948-2002.铝-锌-铟系合金牺牲[S].北京:中国标准出版社,2002.
    [70]战广深.常用牺牲阳极合金在NaCl溶液中的接触腐蚀行为[J].中国有色金属学报,1997,7(2):60-64
    [71]Lemieux E. Performance evaluation of low voltage anodes for Cathodic protection [J]. Corrosion,2002, N ACE
    [72]Talavera M A. Development and testing of aluminum sacrificial anode sin Hg free [J]. Corrosion,2001, NACE
    [73]Rossi S. Laboratory and field characterization of new sacrificial anode for cathodic protection of offshore structures [J]. Corrosion,1998,54 (12): 1018-1025
    [74]Lin J C, Shih H C. Improvement of the current efficiency of an Al-Zn-In anode by heat treatment [J]. Journal of the Electrochemical Society,1987,134 (4): 817-823
    [75]王祝堂,张振录,郑璇.铝合金的组织与性能[M].北京:冶金工业出版社,1988(1).8-12
    [76]Mondolfo L F, Parisia N L, Kardysa G J. Interfacial energies in low melting point metals [J]. Materials Science and Engineering,1985,68 (2):249-266
    [77]Venugopal A, Angal R D, Raja V S. Effect of grain bound and corrosion on impedance characteristics of an aluminum-zinc-indium alloy in 3.5% sodium chloride solution [J]. Corrosion,1996,52 (2):138-142
    [78]战广深.偶对中阴极材料不同对铝合金电偶腐蚀行为的影响[J].全面腐蚀控制,1993,7(4):10-13
    [79]张鉴清,张昭,王建明,等.电化学噪声的分析与应用Ⅱ电化学噪声的应用[J].中国腐蚀与防护学报,2002,22(4):241-248
    [80]朱峰,吴益华,黄永昌,等.铝和铝锌牺牲阳极的交流阻抗研究[J].腐蚀与防护,1988,5(8):8-11
    [81]Venugopal A, Raja V S. AC impedance study on the activation mechanism of aluminum by indium and zinc in 3.5% NaCl medium [J]. Corrosion Science, 1997,39 (12):2053-2065
    [82]Shepard E R, Graeser H J. Design of anode systems for cathodic protection of underground and water submerged metallic structures [J]. Corrosion,1950,6 (11):360-366.
    [83]朱承德,李异.用于不同温度的海水海泥中新型高效牺牲阳极的研制[J].中国海上油气,1999,11(1):28-31
    [84]Rossi S, Fambri L, Bonora P L. Study of the corrosion behaviour of phosphatized and painted industrial water heaters [J]. Progress in Organic Coatings,2001,42(1):65-74
    [85]Cabot P L, Garrido J L, Pe'rez E, et al. Eis study of Al-Zn-Mg alloys in the passive and transpassive potential regions [J]. Electrochimica Acta,1995,40 (4):447-454
    [86]Lianfang Li., William H. Hartt. The role of indium and zinc in activation of aluminum in NaCl solutions and in seawater [J]. Corrosion,2002, NACE
    [87]Sato F, Newman R C. Mechanism of activation of aluminum by low-melting point elements:part 2-effects of zinc on activation of aluminum piting [J]. Corrosion,1999,55 (1):3-9
    [88]Bessone J B, Salinas D R. An EIS study of aluminium barrier-type oxide films formed in different media [J]. Electrochimica Acta,1992,37 (12):2283-2290
    [89]Mohammed A, Sayed S, Essam E F, et al. AC and DC studies of the pitting corrosion of Al in perchlorate solutions [J]. Electrochimica Acta,2006,51 (22): 4754-4764
    [90]曹楚南,张鉴清著.电化学阻抗谱导论[M].北京:科学出版社,2002
    [91]Breslin C B, Rudd A L. Activation of pure Al in an indium-containing electrolyte-an elecrtochemical noise and impedance study [J]. Corrosion Science,2000 (42):1023-1039
    [92]侯德龙,宋月清,李德富,等.铝基牺牲阳极材料的研究与开发[论文集].第十二届中国有色金属学会材料科学与合金加工学术研讨会文集,2007:182-186
    [93]Saffar A H, Ashworth V, Grant W A, et al. The role of mercury in the dissolution of aluminium sacrificial anodes:A study using ion implantation [J]. Corrosion Science,2008,50 (12):3287-3294
    [94]Chen W Z, Qian K W. Refining effect of a new Al3TiBRE master alloy on Al sheets used for can manufacture and behavior of rare earths in master alloy [J]. Journal of Rare Earths,2003,21:571-579
    [95]Wei Z, Naing N A, Heat-transfer corrosion behaviour of cast Al alloy [J]. Corrosion Science 2008,50:3308-3313
    [96]Zorn M, Zettler J T, Knauer A, et al. In situ determination and control of AlGaInP composition during growth [J]. Journal of Crystal Growth,2006,287 (2):637-641
    [97]刘安生.二元合金状态图集[M].北京:冶金工业出版社,2004:48
    [98]Chakraborty A, Mondal T, Bera S K, et al. Effects of aluminum and indium incorporation on the structural and optical properties of ZnO thin films synthesized by spray pyrolysis technique [J]. Materials Chemistry and Physics, 2008,112(1):162-166
    [99]李慧中,周古昕,张新明.Mn含量对2519铝合金的组织与力学性能的影响[J].航空材料学报,2007,27(1):1-8
    [100]Battocchi D, Simoes A M, Tallman D E. Electrochemical behaviour of a Mg-rich primer in the protection of Al alloys[J]. Corrosion Science,2006,49: 1292-1306
    [101]Yiicel Birol. Grain refining efficiency of Al-Ti-C alloys [J]. Journal of Alloys and Compounds,2006,422 (2):128-131
    [102]韩红涛.稀土对铝合金阳极结构与性能的影响[D].中南大学硕士学位论文.2006
    [103]印飞,杨江波,孙宝德.高含铁量铝硅合金中铁相的凝固行为与形貌控制[J].上海交通大学学报,2002,36(1):43-50
    [104]GB/T 17848-1999《牺牲阳极电化学性能试验方法》[S].北京:中国标准出版社,1999
    [105]Keddam M, Kuntz C Takenouti H, et al. Exfoliation corrosion of aluminium alloyse xamined by electrode impedance [J]. Electrochimica A cta,1997,42 (1): 87-97
    [106]王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗谱特征[J].中国腐蚀与防护学报,1989,9(4):270-278
    [107]Xigang F, Darning J, Qingchang M. The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization [J]. Materials Letters,2006,60 (12):1475-1479
    [108]Baoan S, Xiufang B, Jing H, et al. Fragility of superheated melts in Al-RE (Ce, Nd, Pr) alloy system [J]. Materials Characterization,2008,59 (6):820-823
    [109]孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为[M].兵器工业出版社,1992
    [110]齐公台,张盈盈.电池用含稀土铝合金阳极性能的研究[J].稀有金属,2004,28(6):1010-1014
    [111]Brun P L, Froyen L, Delaey L. Double mechanical alloying of Al-5wt%Fe-4wt %Mn [J]. Materials Science and Engineering:A,2007,157 (1):79-88
    [112]Chand T M, Kori S A. Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al-Si alloys [J]. Tribology International, 2009,42 (1):59-65
    [113]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,9(4):261-270
    [114]Mondolfo L F. Aluminum alloys:structure and propertys [M]. New York: Butterworths Press,1976
    [115]李明利,殷京贩,柏文超,等.AI-Zn-Mg合金的TEM观察[J].中国有色金属学报,2002,12(1):230-235
    [116]刘斌,齐公台,冉伟.模拟偏析相Al2Zn在3%NaCl溶液中的电化学行为[J].中国腐蚀与防护学报,2007,27(2):92-96
    [117]Birbilis N, Cavanaugh M K, Buchheit R G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651 [J]. Corrosion Science,2006 (48):4202-4215
    [118]徐宏妍,李延斌.铝基牺牲阳极在海水中的活化行为[J].中国腐蚀与防护学报,2008,28(3):186-192
    [119]许刚,曹楚南等.纯铝在NaCl溶液中活化溶解时电化学行为研究[J].腐蚀科学与防护技术,1998,10(6):321-326
    [120]Valeria A, Christopher M A. Characterization of passive films formed on mild steels in bicarbonate solution by EIS [J]. Electrochemical Acta,2002,47 (10): 2081-2089
    [121]Zhang S S, Jow T R. Aluminum corrosion in electrolyte of Li-ion battery [J]. Journal of Power Sources,2002,109 (3):458-464
    [122]Nishimura T, Katayama H, Noda K. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J]. Corrosion Science, 2000,42(9):1611-1621
    [123]Veracruz, Nishikata A, Tsuru T. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environments [J].Corrosion Science,2008,40(1):125-139
    [124]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社.2007,8
    [125]Munoz A G, Saidman S B, Bessone J B. Influence of In on the corrosion of Zn-In alloys [J]. Corrosion Science,2001 (43):1245-1265
    [126]曹发和.高强度航空铝合金局部腐蚀的电化学研究[D].浙江大学博士学位论文,2006.12
    [127]苏景新.铝锂合金剥蚀研究和分形维数在表征腐蚀中的应用[D].浙江大学硕士学位论文2005.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700