SnP_2O_7基中温离子导体的电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体电解质是一类重要的功能材料。它们在燃料电池,化学传感器,氢、氧气的电解制备、分离和提纯,分子泵,氮的氧化物消除器,硫化氢消除器,有机物的催化氢化和脱氢,核聚变反应堆废气中的重氢、超重氢等氢的同位素气体的回收利用,常压合成氨等方面具有十分重要的应用价值和广阔的应用前景。
     传统的固体电解质材料钇稳定的氧化锆(YSZ)因其高的氧离子导电性及在氧化还原气氛中的化学稳定性而在电化学装置中得到普遍的应用。但是,由于其工作温度高,将会导致一系列严重问题,包括制作成本提高,电解质和电极成分通过界面扩散,难密封,材料易老化,等。由于中温电化学装置能够兼有高温和低温电化学装置的许多优点:(1)较快的电极反应速度;(2)较高的CO等杂质容忍性能;(3)较好的密封材料及连接材料选择性;(4)较简单的电化学装置结构;(5)较容易的水、热管理;等,因而,寻求能够在中温(100~600℃)下工作的离子导体已成为开发这类中温电化学装置的关键。最近,一类新型中温无机固态离子导体—AP_2O_7(A=Sn, Ti, Ge, Si, Zr)基四价金属焦磷酸盐因在100~600℃下具有良好的离子导电性能而引起了人们的极大兴趣。但至今关于焦磷酸盐的中温导电性集中于中温质子导电性研究,有关它们的氧离子导电性能、质子与氧离子的混合离子导电性能及离子导电机理的报道极少。
     基于以上情况,本论文主要对Sn_(1-x)R_xP_2O_7(R=M~(3+), M~(2+))固体电解质的中温电性能及应用进行了研究。主要研究工作及结果如下:
     (1)第一章—绪论。简要介绍了一些典型的固体电解质材料,有关的缺陷化学及离子传导机制,固体电解质材料的一些应用。概述了SnP_2O_7基中温电解质材料的研究背景,提出了本论文研究内容及研究意义。
     (2)第二章—SnP_2O_7的制备及其中温电性能研究。研究了反应物磷酸浓度、磷与锡的初始摩尔比例(Pini/Sn)及热处理温度对产物SnP_2O_7相纯度及电性能的影响。通过研究发现,1)制备单一立方相SnP_2O_7的最佳条件为:采用85%的浓H_3PO_4、热处理温度为500℃、初始磷与锡的摩尔比例(Pini/Sn)为:(Pini/Sn)≥2.4;2)热处理温度对样品电导率有着显著影响:σ(800℃)<σ(600℃)<σ(500℃);3)实验气氛对样品电导率有着显著影响:σ(dry air)<σ(wet air)<σ(wet H2);4)初始磷与锡的摩尔比例(Pini/Sn)对电导率也有着显著影响:σ(Pini/Sn=2.2)<σ(Pini/Sn=2.4)<σ(Pini/Sn=2.8)<σ(Pini/Sn=3.0)。当初始磷与锡摩尔比例Pini/Sn=2.4时,产物中磷与锡的摩尔比例Pfin/Sn=2。研究了Pfin/Sn=2的样品的中温(50–250℃)导电性能。该样品在氢气气氛中的离子、质子、氧离子和电子迁移数分别为ti=0.96–0.98,tH=0.76–0.79,tO=0.17–0.21,te=0.02–0.04,该样品在氢气气氛中几乎是一个纯离子导体,其中,质子导电为主,同时具有一定的氧离子导电和少量的电子导电。
     在氧分压pO_2为1~10~(-10)atm范围,电导率σ与氧分压pO_2的关系logσ–log(pO_2)基本上成一直线,表明样品在此氧分压范围是一个纯的离子导体;而在氧分压pO_2为10~(-10)~10~(-20)atm范围,电导率随氧分压的降低而升高,表明样品在此氧分压范围是一个离子与电子的混合导体,这与由氢浓差电池电动势得到的结果相一致。
     (3)第三章—Sn_(1-x)Ga_xP_2O_7的制备及其中温电性能研究。制备了Sn_(1-x)Ga_xP_2O_7(x=0.00,0.01,0.03,0.06,0.09,0.12,0.15)系列电解质样品。XRD测试表明,Sn_(1-x)Ga_xP_2O_7的掺杂限度为9mol%。
     掺杂离子浓度x对样品电导率有着显著的影响:σ (SnP_2O_7)<σ (x=0.01)<σ(x=0.03)<σ (x=0.06)<σ (x=0.12)<σ (x=0.09)。x=0.09的样品在干燥空气、湿润H_2气氛中175℃下,电导率分别达到最大值2.9×10-2S·cm~(-1)、4.6×10-2S·cm~(-1)。氧浓差电池电动势的测定结果表明,样品在干燥空气气氛中是一个氧离子与空穴的混合导体;氢浓差电池电动势的测定结果表明,在还原性气氛下样品主要表现为质子导电。掺杂离子浓度x为0.09的样品的燃料电池性能测试表明,在150℃、175℃下,其最大输出功率密度分别为19.2mW·cm~(-2),22.1mW·cm~(-2),表明x=0.09的样品是一个潜在的中温燃料电池的电解质材料。
     (4)第四章—Sn_(1-x)Sc_xP_2O_7的制备及其中温电性能研究。制备了Sn_(1-x)Sc_xP_2O_7(x=0.03,0.06,0.09,0.12,0.15)系列电解质样品。XRD测试表明,Sn_(1-x)Sc_xP_2O_7的掺杂限度为9mol%。掺杂离子浓度x对样品电导率有着显著的影响:σ (x=0.12)<σ (x=0.03)<σ (x=0.09)<σ (x=0.06)。实验气氛对样品的导电性质也有着显著影响:σ (dry O_2)<σ (dry H_2)<σ (wet O_2)<σ (wet H_2)。x=0.06的样品在湿润H_2气氛中200℃下,电导率达到最大值2.8×10-2S·cm~(-1),主要表现为质子导电,同时具有一定程度的氧离子导电和少量的电子导电。样品燃料电池性能测试表明,在150℃下,其最大输出功率密度分别为11.2mW·cm~(-2)(x=0.03),25.0mW·cm~(-2)(x=0.06)和14.3mW·cm~(-2)(x=0.09),表明x=0.06的样品是一个潜在的中温燃料电池的电解质材料。
     (5)第五章—Sn_(1-x)M_xP_2O_7(M=In~(3+), Mg~(2+))的制备及其中温电性能研究。制备了Sn_(0.97)In_(0.03)P_2O_7、Sn_(0.95)Mg_(0.05)P_2O_7及Sn_(0.9)Mg_(0.1)P_2O_7。XRD测试表明,样品衍射峰位置与强度均与立方相SnP_2O_7相同。在湿润H_2气氛中,Sn_(0.97)In_(0.03)P_2O_7在175℃下,Sn_(0.95)Mg_(0.05)P_2O_7在200℃下, Sn_(0.9)Mg_(0.1)P_2O_7在150℃下的电导率分别达到最大值为:2.9×10-2S·cm~(-1),5.9×10-2S·cm~(-1);5.0×10-2S·cm~(-1)。三个样品的燃料电池在175℃下的最大输出功率密度分别为:30.7mW·cm~(-2)(Sn_(0.97)In_(0.03)P_2O_7),19.1mW·cm~(-2)(Sn_(0.95)Mg_(0.05)P_2O_7)和33.9mW·cm~(-2)(Sn_(0.9)Mg_(0.1)P_2O_7),表明这些样品也是潜在的中温燃料电池的电解质材料。
     (6)第六章—Mg~(2+)掺杂的SnP_2O_7-SnO_2复合陶瓷的制备及电性能研究。将浓磷酸与多孔状Mg~(2+)掺杂的SnO_2反应并在较低温度下热处理制备了致密的Mg~(2+)掺杂的SnP_2O_7-SnO_2复合陶瓷(5mol%Mg~(2+))。热处理温度(600℃)远低于通常高温烧结温度(约1200℃)。在干燥氢气气氛中275℃下,复合陶瓷样品的电导率达到最大值3.8×10-2S·cm~(-1),比1200℃下烧结的Sn_(0.91)Zn_(0.09)P_2O_7陶瓷在氢气气氛中的电导率(2.4×10-4S·cm~(-1))高了两个数量级。这可能与高温烧结下陶瓷样品中磷的挥发有关。用本文方法制得的致密复合陶瓷电解质燃料电池具有良好的电池性能,在150℃、200℃、及250℃时的最大输出功率密度分别为:39.7mW cm~(-2),66.9mW cm~(-2)和93.7mW cm~(-2)。本文方法不仅对于制备致密SnP_2O_7-SnO_2复合陶瓷电解质燃料电池、提高电池性能具有简便、有效的优点,也可以用于制备致密ZrP_2O_7-ZrO_2、TiP_2O_7-TiO_2等复合陶瓷电解质燃料电池。
Solid electrolyte materials are a kind of important functional materials and haveattracted much attention because of their potential application values and wideapplication prospects in solid oxide fuel cells (SOFCs), gas sensors, steam electrolyzes,separation and purification of hydrogen, hydrogenation and dehydrogenation of someorganic compounds and ammonia synthesis at atmospheric pressure, etc.
     The traditional Y2O3stabilized ZrO_2(YSZ) has been extensively used aselectrolyte material for many electrochemical devices due to its high oxide-ionicconductivity and good chemical stability in both oxidizing and reducing atmospheres.However, relatively high operating temperature may result in a series of seriousproblems including high fabrication cost for electrochemical devices, diffusion ofcomponents by interface between electrolyte and electrode, difficult in selectivity ofmaterials, easy material aging, etc.
     Compared to low-or high-temperature electrochemical devices, intermediatetemperature electrochemical devices have many advantages:(1) fast electrode reactionrate;(2) high tolerance performance for CO and other impurities;(3) easy electivity forsealing materials and connection materials;(4) simple structure of electrochemicaldevice;(5) easy management in water and thermal cycles. Therefore, considerable efforthas been devoted toward the intermediate-temperature solid electrolyte materials(100―600℃). Recently, a new type of intermediate temperature protonic conductor,AP_2O_7(A=Sn, Ti, Ge, Si, Zr), has attracted considerable attention. However, up to thepresent, the reports on the conduction in AP_2O_7only focous on the proton conduction.There are little reports on the oxide-ionic conduction, mixed protonic and oxide-ionicconduction in SnP_2O_7,and the conduction mechanism.
     Therefore, in the thesis,we focused on the conduction behaviors at intermediatetemperature of Sn1-xRxP2O7(R=M~(3+), M~(2+)) and their applications. Main works and results in this paper are as follows:
     (1) Chapter1—Introduction. We introduced briefly some typical solid electrolytematerials, concerned defect chemistry, ionic transference mechanism, preparationmethods and their applications. In addition, we summarized the internal and externalresearch background on SnP_2O_7-based intermediate temperature electrolyte materials,proposed the present theme and the research meaning.
     (2) Chapter2—Preparation and intermediate temperature conducting performancesof SnP_2O_7. The influence of H_3PO_4concentration, initial molar ratio of P vs Sn (Pini/Sn)and heat treating temperature on phase purity and conducting performances of SnP_2O_7was investigated. It was found that1) the samples with a single cubic phase of SnP_2O_7could be obtained by the reaction between SnO_2and85%H_3PO_4with Pini/Sn≥2.4at500℃;2) The heating temperature remarkably influenced the conductivity in theorder: σ(800℃)<σ(600℃)<σ(500℃);3) The experimental atmosphereremarkably influenced the conductivity in the order: σ(dry air)<σ(wet air)<σ(wetH_2);4) The Pini/Sn also remarkably influenced the conductivity in the order: σ(Pini/Sn=2.2)<σ (Pini/Sn=2.4)<σ(Pini/Sn=2.8)<σ(Pini/Sn=3.0). When Pini/Sn=2.4, theresultant molar ratio of P vs Sn, Pfin/Sn, was equal to2.
     The intermediate temperature (100–250℃) conducting performances of thesample of Pfin/Sn=2were investigated. The ionic, protonic, oxide-ionic, and electronictransport numbers were ti=0.96–0.98,tH=0.76–0.79,tO=0.17–0.21and te=0.02–0.04, respectively, under wet hydrogen atmosphere. The results indicate thatSnP_2O_7is almost a pure ionic conductor, has dominant protonic conduction,oxide-ionic conduction to a certain extent, and a little electronic conduction. Therelationship of logσ–log(pO_2) between conductivity (σ) and oxygen partial pressure(pO_2) was measured. The plots was horizontal at high oxygen partial pressure range(about10~(-10)–1atm), indicating that the total conductivity is independent of pO_2andthe sample is almost a pure ion conductor. Whereas at low oxygen partial pressurerange (about10~(-10)–10~(-20)atm), the total conductivity increases with decreasing oxygenpartial pressure, indicating that it is a mixed conductor of proton and electron. This isbecause Sn4+is reduced to Sn2+at low oxygen partial pressure range.
     (3) Chapter3—Preparation and intermediate temperature conducting performancesof Sn_(1-x)Ga_xP_2O_7. A novel series of samples Sn_(1-x)Ga_xP_2O_7(x=0.00,0.01,0.03,0.06,0.09,0.12,0.15) were synthesized. The doping limit of Ga3+in SnP_2O_7is9mol%. Thedopant content x in the samples remarkably influenced the conduction properties.Conductivities increased in the order: σ (SnP_2O_7)<σ (x=0.01)<σ (x=0.03)<σ (x=0.06)<σ (x=0.12)<σ (x=0.09). The highest conductivities were observed for thesample of x=0.09to be4.6×10~(-2)S·cm~(-1)in wet H_2and2.9×10~(-2)S·cm~(-1)in dry air at175℃, respectively. The result of oxygen concentration cell showed a mixedconduction of oxygen ion and electron hole in dry oxygen-containing atmosphere. Theresult of the hydrogen concentration cell suggested that protons were the major chargecarriers in wet hydrogen atmosphere. The H_2/air fuel cell using x=0.09as electrolyte(thickness:1.45mm) generated a maximum power density of19.2mW·cm~(-2)at150℃and22.1mW·cm~(-2)at175℃, respectively. The result indicated that Sn0.91Ga0.09P2O7may be a potential electrolyte candidate for intermediate temperature fuel cell.
     (4) Chapter4—Preparation and intermediate temperature conducting performancesof Sn_(1-x)Sc_xP_2O_7. The chapter4synthesized a novel series of samples Sn_(1-x)Sc_xP_2O_7(x=0.03,0.06,0.09,0.12). The doping limit of Sc3+in SnP_2O_7is9mol%. The dopantcontent x in the samples remarkably influenced the conduction properties.Conductivities increased in the order: σ (x=0.12)<σ (x=0.03)<σ (x=0.09)<σ (x=0.06). The experimental atmosphere also remarkably influenced the conductivity inthe order: σ (dry O_2)<σ (dry H_2)<σ (wet O_2)<σ (wet H_2). The highest conductivitywas observed to be2.76×10~(-2)S·cm~(-1)for the sample of x=0.06under wet H_2atmosphere at200℃. The ionic conduction was contributed mainly to proton andpartially to oxide ion and electron in wet hydrogen atmosphere. The H_2/air fuel cellsusing Sn_(1-x)Sc_xP_2O_7(x=0.03,0.06,0.09) as electrolytes (1.7mm in thickness)generated the maximum power densities of11.2mW·cm~(-2)for x=0.03,25.0mW·cm~(-2)for x=0.06and14.3mW·cm~(-2)for x=0.09at150℃, respectively. The resultindicated that Sn0.94Sc0.06P2O7may be a potential electrolyte candidate for intermediatetemperature fuel cell.
     (5) Chapter5—Preparation and intermediate temperature conducting performances of Sn1-xMxP2O7(M=In3+, Mg2+). Three samples, Sn_(0.97)In_(0.03)P_2O_7, Sn_(0.95)Mg_(0.05)P_2O_7and Sn_(0.9)Mg_(0.1)P_2O_7were synthesized. All the samples are in agreement with the cubicphase structure of SnP_2O_7. The highest conductivities were observed to be2.9×10~(-2)S·cm~(-1)for Sn_(0.97)In_(0.03)P_2O_7at175℃,5.9×10~(-2)S·cm~(-1)for Sn0.95Mg0.05P2O7at200℃,and5.0×10~(-2)S·cm~(-1)for Sn_(0.9)Mg_(0.1)P_2O_7, respectively, at150℃under wet H_2atmosphere. The H_2/air fuel cells generated the maximum power output densities of30.7mW·cm~(-2)(Sn_(0.97)In_(0.03)P_2O_7),19.1mW·cm~(-2)(Sn_(0.95)Mg_(0.05)P_2O_7) and33.9mW·cm~(-2)(Sn_(0.9)Mg_(0.1)P_2O_7). The results indicated that the samples may be potential electrolytecandidates for intermediate temperature fuel cells.
     (6) Chapter6—Preparation of Mg-doped SnP_2O_7-SnO_2composite ceramic and itsintermediate temperature conducting performance. A dense Mg-doped SnP_2O_7-SnO_2composite ceramic (5mol%Mg~(2+)) was synthesized by reaction of concentratedphosphoric acid with porous Mg-doped SnO_2and heat-treated at lower temperature(600℃). The heat-treated temperature is much lower than the conventional sinteringtemperature (about1200℃). The highest conductivity was observed in dry H_2at275℃to be3.8×10~(-2)S·cm~(-1)which increased by two orders of magnitude ascompared with the highest conductivity (2.4×10-4S·cm~(-1)) of Sn_(0.91)Zn_(0.09)P_2O_7under H_2atmosphere. This may be related to the vaporization of phosphorus species during thesintering process at higher temperature. The H_2/air fuel cell based on the densecomposite ceramic electrolyte prepared by us exhibited good cell performances with amaximum power output densities of39.7mW·cm~(-2)at150℃and66.9mW·cm~(-2)at200℃and93.7mW·cm~(-2)at250℃, respectively.
     The methode is not only easy and effective for preparing the dense SnP_2O_7-SnO_2composite ceramic electrolyte fuel cell and increasing cell performances, but also maybe used to prepare dense ZrP2O7-ZrO_2and TiP2O7-TiO_2etc. composite ceramicelectrolyte fuel cells.
引文
[1] J.B.Goodenough, Annu. Rev. Mater. Res.33(2003)91.
    [2] M. S. Islam, Solid State Ionics154-155(2002)75.
    [3]钱逸泰编著,结晶化学导论,中国科学技术出版社,2002.
    [4] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, Solid State Ionics168(2004)299.
    [5] K.D. Kreuer, Solid State Ionics97(1997)1.
    [6]王常珍编著,固体电解质和化学传感器,冶金工业出版社,2000.
    [7]王零森编著,特种陶瓷,中南工业大学出版社,1998.
    [8] G. Alberti, M. Casciola, Solid State Ionics145(2001)3.
    [9] M.H. Herzog-Cance, J.F. Herzog, A. Potier, J. Potier, H. Arribart, C. D-Morin,Y. Piffard, J. Mol. Struc.143(1986)67.
    [10] R.G. Bell, M.T. Weller, Solid State Ionics28-30(1988)601.
    [11] J. Wang, S. Yin, T. Sato, Mat. Sci. Eng. B126(2006)53.
    [12] D. Majumdar, K. Balasubramanian, Chem.Phys. Lett.397(2004)26.
    [13] L. Zerroual, L. Telli, Sensor. Actuat. B24-25(1995)741.
    [14] J.G. Decaillon, Y. Andres, J.C. Abbe, M. Tournoux, Solid State Ionics112(1998)143.
    [15] W.A. England, M.G. Cross, A. Hammett, P.J. Wiseman, J.B. Goodenough,Solid State Ionics1(1980)231.
    [16] R.C.T. Slade, G.P. Hall, E. Skou, Solid State Ionics35(1989)29.
    [17] I. Arslan-Alaton, J.L. Ferry, Appl. Catal. B: Environ.38(2002)283.
    [18] B. Qiu, X. Yi, L. Lin, W. Fang, H. Wan, Cataly. Today131(2008)464.
    [19] L.A. Neves, J. Benavente, I.M. Coelhoso, J.G. Crespo, J. Membrane Sci.347(2010)42.
    [20] H.L. Wang, J.A. Turner, J. Power Sources183(2008)576.
    [21] J. J. Li, F. Ye, L. Chen, T.T. Wang, J.L. Li, X.D. Wang, J. Power Sources186(2009)320.
    [22] G. Alberti, M. Casciola, U. Costantino, A. Peraio, T. Rega, J. Mater. Chem.5(1995)1809.
    [23] G. Alberti, M. Casciola, Solid State Ionics97(1997)177.
    [24] G. Ye, C.M. Mills, G.R. Goward, J. Membrane Sci.319(2008)238.
    [25] A. Carbone, R. Pedicini, A. Sacca, I. Gatto, E. Passalacqua, J. Power Sources178(2008)661.
    [26] A. Bozkurt, M. Ise, K.-D. Kreuer, W.H. Meyer, G. Wegner, Solid State Ionics125(1999)225.
    [27] S.M. Haile, D.A. Boysen, C.R.I. Chisholm, R.B. Merle, Nature410(2001)910.
    [28] D.A. Boysen, T. Uda, C.R.I. Chisholm, S.M. Haile, Science303(2004)68.
    [29] Y. Wang, Y. Xu, Z. Wang, L. Dai, Chinese Chem. Lett.21(2010)524.
    [30] V. Nalini, R. Haugsrud, T. Norby, Solid State Ionics181(2010)510.
    [31] X. Sun, S. Wang, Z. Wang, X. Ye, T. Wen, F. Huang, Solid State Ionics179(2008)1138.
    [32] S. Teranishi, K. Kondo, M. Nishida, W. Kanematsu, T. Hibino, Electrochem.Solid-State Lett.12(2009) J73.
    [33] M. Nagao, T. Kamiya, P. Heo, A. Tomita, T. Hibino, M. Sano, J. Electrochem.Soc.153(2006) A1604.
    [34] S. Tao, Solid State Ionics180(2009)148.
    [35] X. Chen, C.S. Wang, E.A. Payzant, C.R. Xia, D. Chu, J. Electrochem. Soc.155(2008) B1264.
    [36] X. Wu, A. Verma, K. Scott, Fuel Cells8(2008)453.
    [37] Y.C. Jin, B. Lee, T. Hibino, J. Jpn. Petrol. Inst.53(2010)12.
    [38] A. Tomita, N. Kajiyama, T. Kamiya, M. Nagao, T. Hibino, J. Electrochem.Soc.154(2007) B1265.
    [39] K. Genzaki, P. Heo, M. Sano, T. Hibino, J. Electrochem.Soc.156(2009)B806.
    [40] R.K.B. Gover, N.D. Withers, S. Allen, R.L. Withers, J.S.O. Evans, J. SolidState Chem.166(2002)42.
    [41] A. Tomita, J. Nakajima, T. Hibino, Angew. Chem. Int. Ed.47(2008)1462.
    [42] S. Teranishi, K. Kondo, A. Tsuge, T. Hibino, Sensor. Actuat. B140(2009)170.
    [43] M. Nagao, A. Takeuchi, P. Heo, T. Hibino, M. Sano, A. Tomita, Electrochem.Solid-State Lett.9(2006) A105.
    [44] P. Heo, K. Ito, A. Tomita, T. Hibino, Angew. Chem. Int. Ed.47(2008)7841.
    [45] M. Nagao, T. Yoshii, Y. Namekata, S. Teranishi, M. Sano, A. Tomita, T.Hibino, Solid State Ionics179(2008)1655.
    [46] A. Tomita, Y. Namekata, M. Nagao, T. Hibino, J. Electrochem.Soc.154(2007)J172.
    [47] P. Heo, M. Nagao, M. Sano, T. Hibino, J. Electrochem.Soc.155(2008) B92.
    [48] P. Heo, N. Kajiyama, K. Kobayashi, M. Nagao, M. Sano, T. Hibino,Electrochem. Solid-State Lett.11(2008) B91.
    [49] P. Heo, T. Harada, T. Hibino, Electrochem. Solid-State Lett.12(2009) B1.
    [50] P. Heo, M. Nagao, T. Kamiya, M. Sano, A. Tomita, T. Hibino,J. Electrochem.Soc.154(2007) B63.
    [51] P. Heo, M. Nagao, M. Sano, T. Hibino, J. Electrochem.Soc.154(2007) B53.
    [52] H. Wang, J. Liu, W. Wang, G. Ma, J. Power Sources195(2010)5596.
    [53] H. Wang, H. Zhang, G. Xiao, F. Zhang, T. Yu, J. Xiao, G. Ma, J. PowerSources196(2011)683.
    [54] H. Wang, J. Xiao, F. Zhang, G. Xiao, H. Zhang, G. Ma, Solid State Ionics181(2010)1521.
    [55] H. Iwahara, T. Esaka, H.U.chida, N. Maeda, Solid State Ionics3/4(1981)359.
    [56] H. Iwahara, H. Uchida, K. Ono, K. Ogaki. J. Electrochem. Soc.135(1988)529.
    [57] T. Kudo, K. Yashiro, H. Matsumoto, K. Sato, T. Kawada, J. Mizusaki, SolidState Ionics179(2008)851.
    [58] T. Kobayashi, K. Abe, Y. Ukyo, H. Matsumoto, Solid State Ionics138(2001)243.
    [59] T. Schober, Solid State Ionics145(2001)319.
    [60] T. Shimura, K. Esaka, H. Matsumoto, H. Iwahara, Solid State Ionics149(2002)237.
    [61] Z. Zhong, Solid State Ionics178(2007)213.
    [62] N. Taniguchi, C. Nishimura, J. Kato, Solid State Ionics145(2001)349.
    [63] Y. Guo, Y. Lin, R. Ran, Z. Shao, J. Power Sources193(2009)400.
    [64] A.K. Azad, J.T.S. Irvine, Solid State Ionics179(2008)678.
    [65] J. Xu, X. Lu, Y. Ding, Y. Chen, J. Alloy. Compd.488(2009)208.
    [66] B. Lin, M. Hu, J. Ma, Y. Jiang, S. Tao, G. Meng, J. Power Sources183(2008)479.
    [67] T. Shimada, C. Wen, N. Taniguchi, J. Otomo, H. Takahashi, J. Power Sources131(2004)289.
    [68] K. Xie, R. Yan, X. Liu, Electrochem. Commun.11(2009)1618.
    [69] D. Yang, A.S. Nowick, Solid State Ionics61(1993)77.
    [70] D. Yang, A.S. Nowick, Solid State Ionics91(1996)85.
    [71] A.S. Nowick, Du Yang, Solid State Ionics77(1995)137.
    [72] W. Lee, A.S. Nowick, L.A. Boaturmer, Solid State Ionics18/19(1986)989.
    [73] T. Norby, P. Kofstad, J. Am. Ceram. Soc.67(1984)786.
    [74] T. Shimura, K. Suzuki, H. Iwahara, Solid State Ionics125(1999)313.
    [75] T. Shimura, K. Suzuki, H. Iwahara, Solid State Ionics104(1997)79.
    [76] F. Letouzb, C. Martin, D. Pelloquin, C. Michel, M. Hervieu, B. Raveau, Mater.Res. Bull.31(1996)773.
    [77] C. Navas, H.L. Tuller, H.-C. Loye, J. Eur. Ceram. Soc.19(1999)737.
    [78] H. Yamamura, H. Nishino, K. Kakinuma, J. Phys. Chem. Solids69(2008)1711.
    [79] H. Yamamura, H. Nishino, K. Kakinuma, K. Nomura, Solid State Ionics158(2003)359.
    [80] L. Dong, Y. Wang, Y. Zhao, Mater. Lett.61(2007)2105.
    [81] K. Sangshetty, A.R. Koppalkar, M. Revansiddappa, S. Ekhilekar, M. Prasad,Phys. B404(2009)1883.
    [82] Y. Larring, T. Norby, Solid State Ionics77(1995)147.
    [83] Y. Nigara, K. Yashiro, T. Kawada, J. Mizusaki, Solid State Ionics159(2003)135.
    [84] K.M. Choi, K.H. Kim, J.S. Choi, J. Phys. Chem. Solids49(1988)1027.
    [85] J. Leng, Z. Yu, Y. Li, D. Zhang, X. Liao, W. Xue, Appl. Surf. Sci.256(2010)5832.
    [86] Y. You, A. Ito, R. Tu, T. Goto, Appl. Surf. Sci.256(2010)3906.
    [87] R. Haugsrud, C. Kjolseth, J. Phys. Chem. Solids69(2008)1758.
    [88] R. Haugsrud, Solid State Ionics178(2007)555.
    [89] S. Escolastico, V.B. Vert, J.M. Serra, Chem. Mater.21(2009)3079.
    [90] K. Amezawa, Y. Tomii, N. Yamamoto, Solid State Ionics176(2005)135.
    [91] K. Amezawa, H. Maekawa, Y. Tomii, N. Yamamoto, Solid State Ionics145(2001)233.
    [92] R. Yu, L.C. De Jonghe, J. Phys. Chem. C111(2007)11003.
    [93] C.R.I. Chisholm, E.S. Toberer, M.W. Louie, S.M. Haile, Chem. Mater.22(2010)1186.
    [94] A.I. Baranov, V.M. Duda, D.J. Jones, J. Roziere, V.V. Sinitsyn, R.C.T. Slade,Solid State Ionics145(2001)241.
    [95] G. Ma, T. Shimura, H. Iwahara, Solid State Ionics110(1998)103.
    [96] G. Ma, H. Matsumoto, H. Iwahara, Solid State Ionics122(1999)237.
    [97] L. Qiu, G. Ma, D. Wen, Solid State Ionics166(2004)69.
    [98] H. Naito, N. Sakai, T. Otake, H. Yugami, H. Yokokawa, Solid State Ionics135(2000)669.
    [99] H. Naito, H. Yugami, H. Arashi, Solid State Ionics90(1996)173.
    [100] J. Huang, L. Yang, R. Gao, Z. Mao, C. Wang, Electrochem. Commun.8(2006)785.
    [101] J. Huang, Z. Mao, Z. Liu, C. Wang, J. Power Sources175(2008)238.
    [102] B.C.H. Steele, Solid State Ionics129(2000)95.
    [103] H. Inaba, H. Tagawa, Solid State Ionics83(1996)1.
    [104] A. Venkatasubramanian, P. Gopalan, T.R.S. Prasanna, Int. J. Hydrogen Energ.35(2010)4597.
    [105] Y. Dong, S. Hampshire, B. Lin, Y. Ling, X. Zhang, J. Power Sources195(2010)6510.
    [106] T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc.116(1994)3801.
    [107] T. He, P. Guan, L. Cong, Y. Ji, H. Sun, J. Wang, J. Liu, J. Alloy. Compd.393(2005)292.
    [108] N. Zhang, K. Sun, D. Zhou, D. Jia, J. Rare Earth.24(2006)90.
    [109] K.N. Kim, B.K. Kim, J.W. Son, J. Kim, H.-W. Lee, J.-H. Lee, J. Moon, Solid StateIonics177(2006)2155.
    [110] G. Ma, F. Zhang, J. Zhu, G. Meng, Chem. Mater.18(2006)6006.
    [111] H. Yamamura, H. Nishino, K. Kakinuma, K. Nomura, Solid State Ionics158(2003)359.
    [112] A.V. Shlyakhtina, J.C.C. Abrantes, A.V. Levchenko, A.V. Knot'ko, O.K. Karyagina,L.G. Shcherbakova, Solid State Ionics177(2006)1149.
    [113] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature404(2000)856.
    [114] F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre, Chem. Mater.12(2000)2575.
    [115] X.P. Wang, Z.J. Cheng, Q.F. Fang, Solid State Ionics176(2005)761.
    [116] Q.F. Fang, X.P. Wang, G.G. Zhang, Z.G. Yi, J. Alloy. Compd.355(2003)177.
    [117] R. Subasri, D. Matusch, H. Na¨fe, F. Aldinger, J. Eur. Ceram. Soc.24(2004)129.
    [118] D.M. Zhang, Z. Zhuang, Y.X. Gao, X.P. Wang, Q.F. Fang, Solid State Ionics181(2010)1510.
    [119] X.P. Wang, Q.F. Fang, Solid State Ionics146(2002)185.
    [120] A. Selmi, G. Corbel, P. Lacorre, Solid State Ionics177(2006)3051.
    [121] A. Subramania, T. Saradha, S. Muzhumathi, J. Power Sources167(2007)319.
    [122] D.-S. Tsai, M.-J. Hsieh, J.-C. Tseng, H.-Y. Lee, J. Eur. Ceram. Soc.25(2005)481.
    [123] D. Marrero-Lopez, J. Canales-Vazquez, W. Zhou, J.T.S. Irvine, P. Nunez, J. SolidState Chem.179(2006)278.
    [124] G. Corbel, P. Durand, P. Lacorre, J. Solid State Chem.182(2009)1009.
    [125] X.-S. Kong, C.J. Hou, Q.-H. Hao, C.S. Liu, X.P. Wang, Q.F. Fang, Solid StateIonics180(2009)946.
    [126] T.-Y. Jin, M.V.M. Rao, C.-L. Cheng, D.-S. Tsai, M.-H. Hung, Solid State Ionics178(2007)367.
    [127] J. Yang, Z. Gu, Z. Wen, D. Yan, Solid State Ionics176(2005)523.
    [128] S. Georges, F. Goutenoire, P. Lacorre, M.C. Steil, J. Eur. Ceram. Soc.25(2005)3619.
    [129] D. Li, X.P. Wang, Z. Zhuang, Q.F. Fang, Phys. B404(2009)1757.
    [130] D. Marrero-Lopez, J. Canales-Vazquez, J.C. Ruiz-Morales, J.T.S.Irvine, P. Nunez,Electrochim. Acta50(2005)4385.
    [131] G. Corbel, Y. Laligant, F. Goutenoire, E. Suard, P. Lacorre, Chem. Mater.17(2005)4678.
    [132] C. Li, X.P. Wang, J.X. Wang, D.Li, Z. Zhuang, Q.F. Fang, Mater. Res. Bull.42(2007)1077.
    [133] D. Li, X.P. Wang, Z. Zhuang, J.X. Wang, C.Li, Q.F. Fang, Mater. Res. Bull.44(2009)446.
    [134] Y. Kan, G. Zhang, P. Wang, O.V. Biest, J. Vleugels, J. Eur. Ceram. Soc.26(2006)3607.
    [135]马桂林,顾仁敖,石慧,陈蓉,仇立干,贾定先,化学学报,59(2001)2084.
    [136] A.S. Nowick, Y. Du, K.C. Liang, Solid State Ionics125(1999)303.
    [137] A.L. Samgin, Solid State Ionics136–137(2000)291.
    [138] K. Takeuchi, C.-K. Loong, J.W. Richardson Jr., J. Guan, S.E. Dorris, U.Balachandran, Solid State Ionics138(2000)63.
    [139] H. Yugami, Y. Shibayama, T. Hattori, M. Ishigame, Solid State Ionics79(1995)171.
    [140] N. Sata, H. Matsuta, Y. Akiyama, Y. Chiba, S. Shin, M. Ishigame, Solid State Ionics97(1997)437.
    [141] F. Shimojo, Solid State Ionics179(2008)807.
    [142] E. Matsushita, Solid State Ionics145(2001)445.
    [143] K.D. Kreuer, Solid State Ionics125(1999)285.
    [144] R. Glockner, M.S. Islam, T. Norby, Solid State Ionics122(1999)145.
    [145]王吉德,宿新泰,刘瑞泉,胡云霞,谢亚红,岳凡,化学进展,16(2004)829.
    [146]杨华明编著,无机功能材料,化学工业出版社,2007.
    [147] J. Yin, X. Wang, J. Xu, H. Wang, F. Zhang, G. Ma, Solid State Ionics185(2011)6.
    [148] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, Solid State Ionics168(2004)299.
    [149] A. Sacca, I. Gatto, A. Carbone, R. Pedicini, E. Passalacqua, J. Power Sources163(2006)47.
    [150] D. Maeland, C. Suciu, I. Waernhus, A.C. Hoffmann, J. Eur. Ceram. Soc.29(2009)2537.
    [151] H.B. Yu, J.-H. Kim, Ho-InLee, M.A. Scibioh, J. Lee, J. Han, S.P. Yoon, H.Y. Ha,J. Power Sources140(2005)59.
    [152] L.O.S. Martin, J.I. Pena, A. Larrea, V. Gil, V.M. Orera, Int. J. HydrogenEnerg.35(2010)11499.
    [153] R.T. Baker, R. Salar, A.R. Potter, I.S. Metcalfe, M. Sahibzada, J. PowerSources191(2009)448.
    [154] Z. Tao, Z. Zhu, H. Wang, Wei Liu, J. Power Sources195(2010)3481.
    [155] X.-Z. Fu, J.-L. Luo, A.R. Sanger, N. Luo, K.T. Chuang, J. Power Sources195(2010)2659.
    [156] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, Solid State Ionics168(2004)299.
    [157] S.C. Singhal, Solid State Ionics152–153(2002)405.
    [158] T.-L. Wen, D. Wang, H.Y. Tu, M. Chen, Z. Lu, Z. Zhang, H. Nie, W. Huang,Solid State Ionics152–153(2002)399.
    [159] T. Kobayashi, K. Abe, Y. Ukyo, H. Matsumoto, Solid State Ionics138(2001)243.
    [160] N. Matsunami, T. Shimura, H. Iwahara, Solid State Ionics106(1998)155.
    [161] H. Matsumoto, T. Suzuki, H. Iwahara, Solid State Ionics116(1999)99.
    [162] H. Iwahara, H. Matsumoto, K. Takeuchi, Solid State Ionics136–137(2000)133.
    [163] T. Kobayashi, S. Morishita, K. Abe, H. Iwaharab, Solid State Ionics86–88(1996)603.
    [164] H. Wang, Y. Cong, W. Yang, Catal Today82(2003)157.
    [165] G. Marnellos, M. Stoukides, Science282(1998)98.
    [166] Y. Xie, J. Wang, R. Liu, X. Su, Z. Sun, Z. Li, Solid State Ionics168(2004)117.
    [167] Z. Li, R. Liu, Y. Xie, S. Feng, J. Wang, Solid State Ionics176(2005)1063.
    [168] F. Zhang, Q. Yang, B. Pan, R. Xu, H. Wang, G. Ma, Mater. Lett.61(2007)4144.
    [169] W.B. Wang, X.B. Cao, W.J. Gao, F. Zhang, H.T. Wang, G.L. Ma, J.Membrane Sci.360(2010)397.
    [170] K. Kwon, M. Yano, H. Sun, J. Park, Proton conductor, U.S. PatentApplication Publication.2005, US20050221143A1.
    [171] A. Tomita, T. Yoshii, S. Teranishi, M. Nagao, T. Hibino, J. Catal.247(2007)137.
    [172]李永生,汪伟,耿浩然,柳晓飞,济南大学学报(自然科学版),23(2009)131.
    [173]车全通,王东,何荣桓,应用化学,26(2009)1025.
    [174]周曦亚毕舒编著,无机材料显微结构分析,化学工业出版社,2006.
    [175] J. Guan, S.E. Dorris, U. Balachardran, M. Liu, Solid State Ionics100(1997)45.
    [176] Y.X. Guo, B.X. Liu, C. Chen, W.B. Wang, G.L. Ma, Electrochem. Commun.11(2009)153.
    [177] Y. Shen, M. Nishida, W. Kanematsu, T. Hibino, J. Meter. Chem.21(2011)663.
    [178] Y. Sato, Y. Shen, M. Nishida, W. Kanematsu, T. Hibino, J. Meter. Chem.22(2012)3973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700