低温陶瓷燃料电池氧化铈基复合电解质与电极材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种将化学能直接转化为电能的电化学装置,固体氧化物燃料电池(SOFC)或陶瓷燃料电池(CFC)因为有较高能源利用效率、低环境影响和燃料灵活等特点受到越来越多的关注。当前SOFC发展趋势是低温操作以降低系统的成本和提高其稳定性,从而与现有的能源转换方式相竞争。然而,低温操作需要高离子导电电解质和高催化活性电极,这已经成为发展低温SOFC的挑战课题,并极大限制了其商业化进程。掺杂氧化铈-碳酸盐复合材料的开发能有效地提高离子导电率和解决单相电解质材料一些缺陷,因此成为实现SOFC商业化的新途径。
     本论文从氧化铈-碳酸盐复合材料出发,研究了不同掺杂氧化铈前驱体对其电化学性能的影响;发展了Pr_2NiO_4-Ag和ZnO修饰的锂化氧化镍两种用于氧化铈-碳酸盐电解质基CFC的高效阴极材料;提出分析多离子导电体系离子导电研究普适方法-修饰的Wagner直流极化法。对氧化铈-碳酸盐复合物的离子导电率、混合离子导电行为和可能的离子导电机理以及基于复合电解质与不同电极材料的单电池的电化学性能进行了详细分析与研究,以达到对掺杂氧化铈-碳酸盐复合电解质材料的进一步理解和促进这类新型电解质材料的实际应用。主要研究结果如下:
     不同制备方法制备的钐掺杂氧化铈-(Li/Na)_2CO_3复合电解质材料因前驱体的不同在电化学性能有较大的差异。基于纳米复合方法制备的电解质拥有最小的颗粒尺寸和最均匀的物相分布,因此获得最高的离子导电性。以纳米复合方法获得的复合电解质基CFC在600℃给出了839mW·cm~(-2)的最大功率密度。采用柠檬酸燃烧法制备的次之,固相反应法最差,但是都远远高于SDC电解质基单电池的电化学性能。
     Pr_2NiO_4与复合电解质在650℃以下化学兼容良好。基于Pr_2NiO_4阴极的单电池在600℃具有652mW·cm~(-2)的最大功率密度,同其它钙钛矿阴极相比提高了很多,与经典锂化氧化镍阴极材料相当。添加10wt%活性Ag催化剂的Pr_2NiO_4-Ag复合材料降低Pr_2NiO_4电极的电荷转移和质量扩散阻抗,因此进一步提高了阴极的电催化活性。期望通过改善Ag浸渍工艺和组成获得更高的电化学性能。
     ZnO掺杂/复合后的锂化氧化镍颗粒变小、电导率降低,但其氧还原活性提高,阴极的电催化活性和单电池的功率密度输出也有一定程度的提高。600℃时获得了859mWcm-2的最大功率密度。使用修饰后电极的单电池在5h的恒外阻放电过程中保持稳定。
     氧化铈-碳酸盐中的本征O~(2-)和外源H~+不同的离子传导特性导致不同的离子极化过程。采用交流阻抗谱在不同的气氛中的对欧姆阻抗的分析结果间接证实了混合的O~(2-)/H~+导电性。提出的类似Wagner直流极化证实了O~(2-)和H~+在复合电解质中的传导,该方法也可能成为研究复合材料体系中多离子导电行为的普适方法。直流极化测试结果证实复合电解质中O~(2-)电导率相对单相材料被提高了,而且H~+电导率高于O~(2-)的电导率。因此氧化铈-碳酸盐复合电解质在燃料电池气氛下的高离子导电率是混合O~(2-)/H~+导电的结果,也最终促成了低温下的高电化学性能。
Solid oxide fuel cell (SOFC) or ceramic fuel cell (CFC), an electrochemicaldevice that converts the chemical energy in fuels directly into electricity, has attractedgrowing attention because of its distinct advantages: high efficiency, lowenvironmental impact and fuel flexibility. The current SOFC research trend is todecrease the working temperature with the purpose of reducing the system costs andimproving the reliability. While the lowering operational temperature requires highionically conductive electrolyte and super-performance electrode materials, whichhave become barriers to significantly hinder the commercialization process of CFCs.The development of doped ceria oxide-carbonate composite electrolyte has effectivelyenhanced the ionic conductivity and solved some problems related with the single-phase electrolyte materials, which has demonstrated a new approach to realize thewide application of CFCs.
     In this dissertation, based on the ceria-(Li/Na)_2CO_3composite, we prepared andinvestigated the effects of the different SDC precursors on composites’ electricalproperties, developed and studied the performance of two kinds of novel electrodematerials-Pr_2NiO_4-Ag and lithiated transition metal oxides composites and applied amodified Wagner polarization method to study the complex multi-ionic conductiveproperties. The electrical properties, such as the ionic conductivity, mixed oxygenion/proton conduction behavior, the possible ionic conduction mechanism of SDC-carbonate composite and fuel cell performance for composite electrolyte CFCs withdifferent electrode materials are detailed analyzed. The main results are:
     The electrical properties of SDC-(Li/Na)_2CO_3composite electrolytes werehighly dependent on the SDC precursors which were prepared by nitrate-citriccombustion, solid-state reaction and modified nanocomposite (NANO) approaches,respectively. Among the composites, composite electrolyte by NANO approachexhibited the highest ionic conductivity and fuel cell performance. A maximum powerdensity of839mW·cm~(-2)was achieved at600℃under H_2/air atmosphere.
     The new developed Pr_2NiO_4(PNO) perovskite cathode catalyst showed a goodchemical compatibility with SDC-carbonate composite at and below650℃. Singlecell with PNO cathode delivered a peak power output of652mW·cm~(-2)at600℃withhydrogen as fuel and air as the oxidant, which was comparable with the common usedlithiated NiO cathode, while much higher in comparison with other perovskite oxides. The introduction of10wt%of Ag active catalyst into surface of PNO by infiltrationway not only improved the charge transfer rate but also raised the oxygen surfaceexchange kinetics, leading to a higher catalytic activity and subsequent an increasedelectrochemical performance. It is expected that the optimizations of the impregnationprocess and the electrode composition could further enhance the fuel cellperformance.
     The compositing or doping of ZnO reduced the particle size and the electricalconductivity while improved the oxygen reduction electro-catalytic activity oflithiated NiO. Peak power densities of600and859mW·cm~(-2)were achieved at500and600℃, respectively, in H_2/air condition. Moreover, single cell with modifiedcathode showed a stable performance during5h test under a constant externalresistance condition, indicating great promise for practical application.
     In SDC-carbonate composite, the ionic polarization process varied under oxygenand hydrogen atmospheres, which was attributed to the intrinsic and extrinsic ionicconducting properties, especially for oxygen ion and proton conduction. The ACimpedance spectroscopy measurements in different applied gas atmospheres offeredan indirect evidence for the mixed oxygen ion/proton conduction properties incomposite electrolyte, while the modified Wagner DC polarization approach clearlyshowed the oxygen ion and proton conduction in the SDC-carbonate composite. Themodified Wagner polarization method is also proposed as a universal approach tostudy the materials’ complex multi-ionic conduction properties. The results show thatthe proton conductivity in the SDC-carbonate composite is higher than oxygen ionicconductivity. Moreover, the oxygen ionic conductivity in composite electrolyte isenhanced compared with the single-phase electrolyte. The mixed oxygen ion andproton transports co-contribute the high ionic conductivity of the SDC-carbonatecomposite and subsequent high fuel cell electrochemical performance at the reducedtemperature.
引文
[1] Wachsman E., Lee K., Lowering the temperature of solid oxide fuel cells,Science,2011,334(6058):935-939.
    [2] Grove W. R., On voltaic series and the combination of gases by platinum,Philos. Mag. Ser.,1839,14:127-130.
    [3] Brett D., Atkinson A., Brandon N., et al., Intermediate temperature solid oxidefuel cells, Chemical Society Reviews,2008,37(8):1568-1578.
    [4] Zhan Z. L., Barnett S. A., An octane-fueled olid oxide fuel cell, Science,2005,308(5723):844-847.
    [5] Yang L., Wang S. Z., Blinn K., et al., Enhanced sulfur and coking tolerance ofa mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ, Science,2009,326(5949):126-129.
    [6] Suzuki T., Hasan Z., Funahashi Y., et al., Impact of anode microstructure onsolid oxide fuel cells, Science,2009,325(5942):852-855.
    [7] Wilson J. R., Kobsiriphat W., Mendoza R., et al., Three-dimensionalreconstruction of a solid-oxide fuel-cell anode, Nature Materials,2006,5(7):541-544.
    [8] Pergolesi D., Fabbri E., D’Epifanio A., et al., High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laserdeposition, Nature Materials,2010,9(10):846-852.
    [9] Chueh W. C., Hao Y., Jung W., et al., High electrochemical activity of theoxide phase in model ceria–Pt and ceria–Ni composite anodes, NatureMaterials,2012,11(2):155-161.
    [10] Atkinson A., Barnett S., Gorte R. J., et al., Advanced anodes for high-temperature fuel cells, Nature Materials,2004,3(1):17-27.
    [11] Shao Z. P., Haile S. M., A high-performance cathode for the next generation ofsolid-oxide fuel cells, Nature,2004,431(7005):170-173.
    [12] Shao Z., Haile S., Ahn J., et al., A thermally self-sustained micro solid-oxidefuel-cell stack with high power density, Nature,2005,435(7043):795-798.
    [13] Perry Murray E., Tsai T., Barnett S. A., A direct-methane fuel cell with a ceria-based anode, Nature,1999,400(6745):649-651.
    [14] Park S., Vohs J. M., Gorte R. J., Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature,2000,404(6775):265-267.
    [15] Yang L., Choi Y., Qin W., et al., Promotion of water-mediated carbon removalby nanostructured barium oxide/nickel interfaces in solid oxide fuel cells,Nature Communications,2011,2(0): Article number:357.
    [16] Sholklapper T., Kurokawa H., Jacobson C., et al., Nanostructured solid oxidefuel cell electrodes, Nano Letters,2007,7(7):2136-2141.
    [17] Zhu B., Proton and oxygen ion-mixed-conducting ceramic composites andfuel cells, Solid State Ionics,2001,145(1-4):371-380.
    [18] Zhu B., Proton and oxygen ion conduction in nonoxide ceramics, MaterialsResearch Bulletin,2000,35(1):47-52.
    [19] Zhu B., Liu X. R., Schober T., Novel hybrid conductors based on doped ceriaand BCY20for ITSOFC applications, Electrochemistry Communications,2004,6(4):378-383.
    [20] Huang J., Mao Z., Yang L., et al., SDC-carbonate composite electrolytes forlow-temperature SOFCs, Electrochemical and Solid State Letters,2005,8(9):A437-A440.
    [21] Huang J., Mao Z., Liu Z., et al., Development of novel low-temperatureSOFCs with co-ionic conducting SDC-carbonate composite electrolytes,Electrochemistry Communications,2007,9(10):2601-2605.
    [22] Wachsman E. D., Singhal S. C., Solid oxide fuel cell commercialization,research and challenges, The Electrochemical Society Interface,2009,18(3):38-43.
    [23] Ahn J. S., Pergolesi D., Camaratta M. A., et al., High-performance bilayeredelectrolyte intermediate temperature solid oxide fuel cells, ElectrochemistryCommunications,2009,11(7):1504-1507.
    [24] Zuo C., Zha S., Liu M., et al., BaZr0.1Ce0.7Y0.2O3-δas an electrolyte for low-temperature solid-oxide fuel cells, Advanced Materials,2006,18(24):3318-3320.
    [25] Liu M., Lynch M. E., Blinn K., et al., Rational SOFC material design: Newadvances and tools, Materials Today,2011,14(11):534-546.
    [26] Lynch M. E., Yang L., Qin W., et al., Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δdurability and surface electrocatalytic activity by La0.85Sr0.15MnO3+/-δinvestigated using a new test electrode platform, Energy&EnvironmentalScience,2011,4(6):2249-2258.
    [27] McIntosh S., Gorte R. J., Direct hydrocarbon solid oxide fuel cells, ChemicalReviews,2004,104(10):4845-4865.
    [28] Lee S. I., Vohs J. M., Gorte R. J., A study of SOFC anodes based on Cu-Niand Cu-Co bimetallics in CeO2-YSZ, Journal of the Electrochemical Society,2004,151(9): A1319-A1323.
    [29] Jayakumar A., Kungas R., Roy S., et al., A direct carbon fuel cell with amolten antimony anode, Energy&Environmental Science,2011,4(10):4133-4137.
    [30] Tao S., Irvine J. T. S., A redox-stable efficient anode for solid-oxide fuel cells,Nature Materials,2003,2(5):320-323.
    [31] Ruiz-Morales J. C., Canales-Vázquez J., Savaniu C., et al., Disruption ofextended defects in solid oxide fuel cell anodes for methane oxidation, Nature,2006,439(7076):568-571.
    [32] Jain S. L., Lakeman J. B., Pointon K. D., et al., Electrochemical performanceof a hybrid direct carbon fuel cell powered by pyrolysed MDF, Energy&Environmental Science,2009,2(6):687-693.
    [33] Jiang C., Ma J., Bonaccorso A. D., et al., Demonstration of high power, directconversion of waste-derived carbon in a hybrid direct carbon fuel cell, Energyand Environmental Science,2012,5(5):6973-6980.
    [34] Xie K., Zhang Y., Meng G., et al., Electrochemical reduction of CO2in aproton conducting solid oxide electrolyser, Journal of Materials Chemistry,2011,21(1):195-198.
    [35] Xie K., Zhang Y., Meng G., et al., Direct synthesis of methane from CO2/H2Oin an oxygen-ion conducting solid oxide electrolyser, Energy&Environmental Science,2011,4(6):2218-2222.
    [36] Bi L., Fabbri E., Sun Z., et al., Sinteractive anodic powders improvedensification and electrochemical properties of BaZr0.8Y0.2O3-δelectrolytefilms for anode-supported solid oxide fuel cells, Energy and EnvironmentalScience,2011,4(4):1352-1357.
    [37] Bi L., Fabbri E., Sun Z., et al., A novel ionic diffusion strategy to fabricatehigh-performance anode-supported solid oxide fuel cells (SOFCs) withproton-conducting Y-doped BaZrO3films, Energy and EnvironmentalScience,2011,4(2):409-412.
    [38] Fabbri E., Bi L., Pergolesi D., et al., High-performance composite cathodeswith tailored mixed conductivity for intermediate temperature solid oxide fuelcells using proton conducting electrolytes, Energy&Environmental Science,2011,4(12):4984-4993.
    [39] Fabbri E., Bi L., Tanaka H., et al., Chemically stable Pr and Y co-dopedBarium Zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells, Advanced Functional Materials,2011,21(1):158-166.
    [40] Su P. C., Chao C. C., Shim J. H., et al., Solid oxide fuel cell with corrugatedthin film electrolyte, Nano Letters,2008,8(8):2289-2292.
    [41] Chao C. C., Kim Y. B., Prinz F. B., Surface modification of yttria-stabilizedzirconia electrolyte by atomic layer deposition, Nano Letters,2009,9(10):3626-3628.
    [42] Kim Y. B., Holme T. P., Gür T. M., et al., Surface-modified low-temperaturesolid oxide fuel cell, Advanced Functional Materials,2011,21(24):4684-4690.
    [43] Takagi Y., Lai B.-K., Kerman K., et al., Low temperature thin film solid oxidefuel cells with nanoporous ruthenium anodes for direct methane operation,Energy&Environmental Science,2011,4(9):3473-3478.
    [44] Tsuchiya M., Lai B. K., Ramanathan S., Scalable nanostructured membranesfor solid-oxide fuel cells, Nature Nanotechnology,2011,6(0):282-286.
    [45] Evans A., Bieberle-Hütter A., Rupp J. L. M., et al., Review on microfabricatedmicro-solid oxide fuel cell membranes, Journal of Power Sources,2009,194(1):119-129.
    [46] Santis-Alvarez A. J., Nabavi M., Hild N., et al., A fast hybrid start-up processfor thermally self-sustained catalytic n-butane reforming in micro-SOFCpower plants, Energy&Environmental Science,2011,4(8):3041-3050.
    [47] Muecke U. P., Beckel D., Bernard A., et al., Micro solid oxide fuel cells onglass ceramic substrates, Advanced Functional Materials,2008,18(20):3158-3168.
    [48] Zhu B., Functional ceria-salt-composite materials for advanced ITSOFCapplications, Journal of Power Sources,2003,114(1):1-9.
    [49] Zhu B., Yang X., Xu J., et al., Innovative low temperature SOFCs andadvanced materials, Journal of Power Sources,2003,118(1-2):47-53.
    [50] Wang X., Ma Y., Raza R., et al., Novel core-shell SDC/amorphous Na2CO3nanocomposite electrolyte for low-temperature SOFCs, ElectrochemistryCommunications,2008,10(10):1617-1620.
    [51] Wu J., Zhu B., Mi Y., et al., A novel core–shell nanocomposite electrolyte forlow temperature fuel cells, Journal of Power Sources,2012,201(0):164-168.
    [52] Zhu B., Raza R., Liu Q., et al., A new energy conversion technology joiningelectrochemical and physical principles, RSC Advances,2012,2(12):5066-5070.
    [53] Zhu B., Raza R., Abbas G., et al., An electrolyte-free fuel cell constructedfrom one homogenous layer with mixed conductivity, Advanced FunctionalMaterials,2011,21(13):2465-2469.
    [54] Zhu B., Ma Y., Wang X., et al., A fuel cell with a single componentfunctioning simultaneously as the electrodes and electrolyte, ElectrochemistryCommunications,2011,13(3):225-227.
    [55] George R. A., Status of tubular SOFC field unit demonstrations, Journal ofPower Sources,2000,86(1–2):134-139.
    [56] Steinberger-Wilckens R., European SOFC technology-status and trends, ECSTransactions,2011,35(1):19-29.
    [57] Steinberger-Wilckens R., Blum L., Buchkremer H. P., et al., Recent results insolid oxide fuel cell development at Forschungszentrum Juelich, ECSTransactions,2011,35(1):53-60.
    [58]韩敏芳,彭苏萍,固体氧化物燃料电池发展与展望,新材料产业,2005,7(0):39-41.
    [59] http://www.bloomenergy.com/
    [60] Unno T., Sugano H., Komiyama T., Commercialization of SOFC micro-CHPin theJapanese market, Fuel Cells2012conference, Berlin,2012, weblink:http://www.noe.jx-group.co.jp/english/
    [61] http://news.cumtb.edu.cn/info.php?id=3631
    [62] Shao Z., Zhang C., Wang W., et al., Electric power and synthesis gas co-generation from methane with zero waste gas emission, Angewandte ChemieInternational Edition,2011,50(8):1792-1797.
    [63] Ding J., Liu J., Yin G., Fabrication and characterization of low-temperatureSOFC stack based on GDC electrolyte membrane, Journal of MembraneScience,2011,371(1–2):219-225.
    [64] Steele B. C. H., Heinzel A., Materials for fuel-cell technologies, Nature,2001,414(6861):345-352.
    [65] Zhu W. Z., Deevi S. C., A review on the status of anode materials for solidoxide fuel cells, Materials Science and Engineering: A,2003,362(1-2):228-239.
    [66] Tao S., Irvine J., Kilner J., An efficient solid oxide fuel cell based upon single-phase perovskites, Advanced Materials,2005,17(14):1734-1737.
    [67] Marina O. A., Canfield N. L., Stevenson J. W., Thermal, electrical, andelectrocatalytical properties of lanthanum-doped strontium titanate, Solid StateIonics,2002,149(1–2):21-28.
    [68] Canales-Vázquez J., Tao S. W., Irvine J. T. S., Electrical properties inLa2Sr4Ti6O19δ: a potential anode for high temperature fuel cells, Solid StateIonics,2003,159(1–2):159-165.
    [69] Huang Y. H., Dass R. I., Xing Z. L., et al., Double perovskites as anodematerials for solid-oxide fuel cells, Science,2006,312(5771):254-257.
    [70] Mu oz-García A. B., Bugaris D. E., Pavone M., et al., Unveiling structure–property relationships in Sr2Fe1.5Mo0.5O6δ, an electrode material forsymmetric solid oxide fuel cells, Journal of the American Chemical Society,2012,134(15):6826-6833.
    [71] Yang C., Yang Z., Jin C., et al., Sulfur-tolerant redox-reversible anode materialfor direct hydrocarbon solid oxide fuel cells, Advanced Materials,2012,24(11):1439-1443.
    [72] Shin T. H., Ida S., Ishihara T., Doped CeO2–LaFeO3composite oxide as anactive anode for direct hydrocarbon-type solid oxide fuel cells, Journal of theAmerican Chemical Society,2011,133(48):19399-19407.
    [73] Zhu X., Lü Z., Wei B., et al., A comparison of La0.75Sr0.25Cr0.5Mn0.5O3-δand Niimpregnated porous YSZ anodes fabricated in two different ways for SOFCs,Electrochimica Acta,2010,55(12):3932-3938.
    [74] Zhu X., Lü Z., Wei B., et al., Enhanced performance of solid oxide fuel cellswith Ni/CeO2modified La0.75Sr0.25Cr0.5Mn0.5O3-δanodes, Journal of PowerSources,2009,190(2):326-330.
    [75] Yang L., Zuo C., Wang S., et al., A novel composite cathode for low-temperature SOFCs based on oxide proton conductors, Advanced Materials,2008,20(17):3280-3283.
    [76] Baek S.-W., Kim J. H., Bae J., Characteristics of ABO3and A2BO4(A=Sm,Sr; B=Co, Fe, Ni) samarium oxide system as cathode materials forintermediate temperature-operating solid oxide fuel cell, Solid State Ionics,2008,179(27-32):1570-1574.
    [77] Liu Y., YBaCo2O5+δas a new cathode material for zirconia-based solid oxidefuel cells, Journal of Alloys and Compounds,2009,477(1-2):860-862.
    [78] Zhou Q. J., He T. M., He Q., et al., Electrochemical performances ofLaBaCuFeO5+xand LaBaCuCoO5+xas potential cathode materials forintermediate-temperature solid oxide fuel cells, ElectrochemistryCommunications,2009,11(1):80-83.
    [79] Yamada A., Suzuki Y., Saka K., et al., Ruddlesden-popper-type epitaxial filmas oxygen electrode for solid-oxide fuel cells, Advanced Materials,2008,20(21):4124-4128.
    [80] Sayers R., Liu J., Rustumji B., et al., Novel K2NiF4-type materials for solidoxide fuel cells: Compatibility with electrolytes in the intermediatetemperature range, Fuel Cells,2008,8(5):338-343.
    [81] Tai L. W., Nasrallah M. M., Anderson H. U., et al., Structure and electricalproperties of La1xSrxCo1yFeyO3. Part1. The system La0.8Sr0.2Co1yFeyO3,Solid State Ionics,1995,76(3–4):259-271.
    [82] Chiba R., Yoshimura F., Sakurai Y., An investigation of LaNi1-xFexO3as acathode material for solid oxide fuel cells, Solid State Ionics,1999,124(3-4):281-288.
    [83] Orui H., Watanabe K., Chiba R., et al., Application of LaNi(Fe)O3as SOFCcathode, Journal of the Electrochemical Society,2004,151(9): A1412-A1417.
    [84] Ortiz-Vitoriano N., Ruiz de Larramendi I., Gil de Muro I., et al., A novel onestep synthesized Co-free perovskite/brownmillerite nanocomposite for solidoxide fuel cells, Journal of Materials Chemistry,2011,21(26):9682-9691.
    [85] Dieterle L., Bockstaller P., Gerthsen D., et al., Microstructure of nanoscaledLa0.6Sr0.4CoO3-δcathodes for intermediate-temperature solid oxide fuel cells,Advanced Energy Materials,2011,1(2):249-258.
    [86] Zhang H., Yang W., Highly efficient electrocatalysts for oxygen reductionreaction, Chemical Communications,2007,2007(41):4215-4217.
    [87] Niu Y., Liang F., Zhou W., et al., A three-dimensional highly interconnectedcomposite oxygen reduction reaction electrocatalyst prepared from a core-shell precursor, ChemSusChem,2011,4(11):1582-1586.
    [88] Chen D., Huang C., Ran R., et al., New Ba0.5Sr0.5Co0.8Fe0.2O3-δ+Co3O4composite electrode for IT-SOFCs with improved electrical conductivity andcatalytic activity, Electrochemistry Communications,2011,13(2):197-199.
    [89] Hwang H., Moon J., Lee S., et al., Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs, Journal ofPower Sources,2005,145(2):243-248.
    [90] Zhu X., Sun K., Zhang N., et al., Improved electrochemical performance ofSrCo0.8Fe0.2O3-δ-La0.45Ce0.55O2-δcomposite cathodes for IT-SOFC,Electrochemistry Communications,2007,9(3):431-435.
    [91] Liu B., Chen X., Dong Y., et al., A high-performance, nanostructuredBa0.5Sr0.5Co0.8Fe0.2O3-δcathode for solid-oxide fuel cells, Advanced EnergyMaterials,2011,1(3):343-346.
    [92] Ding C., Hashida T., High performance anode-supported solid oxide fuel cellbased on thin-film electrolyte and nanostructured cathode, Energy&Environmental Science,2010,3(11):1729-1731.
    [93] Park H. J., Kim S., Electrochemical characteristics of ZnO-nanowire/yttria-stabilized zirconia composite as a cathode for SOFCs, Electrochemical andSolid State Letters,2007,10(11): B187-B190.
    [94] Zhao F., Wang Z., Liu M., et al., Novel nano-network cathodes for solid oxidefuel cells, Journal of Power Sources,2008,185(1):13-18.
    [95] Zhi M., Mariani N., Gemmen R., et al., Nanofiber scaffold for cathode of solidoxide fuel cell, Energy&Environmental Science,2011,4(2):417-420.
    [96] Zhi M., Lee S., Miller N., et al., An intermediate-temperature solid oxide fuelcell with electrospun nanofiber cathode, Energy&Environmental Science,2012,5(5):7066-7071
    [97] Bellino M. G., Sacanell J. G., Lamas D. G., et al., High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes, Journal of the AmericanChemical Society,2007,129(11):3066-3067.
    [98] Mamak M., Coombs N., Ozin G., Self-assembling solid oxide fuel cellmaterials: Mesoporous Yttria-Zirconia and metal-Yttria-Zirconia solidsolutions, Journal of the American Chemical Society,2000,122(37):8932-8939.
    [99] varcová S., Wiik K., Tolchard J., et al., Structural instability of cubicperovskite BaxSr1-xCo1-yFeyO3-δ, Solid State Ionics,2008,178(35–36):1787-1791.
    [100] Etsell T. H., Flengas S. N., Electrical properties of solid oxide electrolytes,Chemical Reviews,1970,70(3):339-376.
    [101] Haile S. M., Fuel cell materials and components, Acta Materialia,2003,51(19):5981-6000.
    [102] Ishihara T., Matsuda H., Takita Y., Doped LaGaO3perovskite type oxide as anew oxide ionic conductor, Journal of the American Chemical Society,1994,116(9):3801-3803.
    [103] Huang P., Horky A., Petric A., Interfacial reaction between nickel oxide andLanthanum Gallate during sintering and its effect on conductivity, Journal ofthe American Ceramic Society,1999,82(9):2402-2406.
    [104] Eguchi K., Setoguchi T., Inoue T., et al., Electrical properties of ceria-basedoxides and their application to solid oxide fuel cells, Solid State Ionics,1992,52(1-3):165-172.
    [105] Mogensen M., Sammes N. M., Tompsett G. A., Physical, chemical andelectrochemical properties of pure and doped ceria, Solid State Ionics,2000,129(1-4):63-94.
    [106] Steele B. C. H., Appraisal of Ce1-yGdyO2-y/2electrolytes for IT-SOFCoperation at500°C, Solid State Ionics,2000,129(1-4):95-110.
    [107] Atkinson A., Chemically-induced stresses in gadolinium-doped ceria solidoxide fuel cell electrolytes, Solid State Ionics,1997,95(3–4):249-258.
    [108] Andersson D. A., Simak S. I., Skorodumova N. V., et al., Optimization ofionic conductivity in doped ceria, Proceedings of the National Academy ofSciences of the United States of America,2006,103(10):3518-3521.
    [109] Banerjee S., Devi P. S., Topwal D., et al., Enhanced ionic conductivity inCe0.8Sm0.2O1.9: Unique effect of calcium Co-doping, Advanced FunctionalMaterials,2007,17(15):2847-2854.
    [110] Karageorgakis N. I., Heel A., Rupp J. L. M., et al., Properties of flame sprayedce0.8Gd0.2O1.9-δelectrolyte thin films, Advanced Functional Materials,2011,21(3):532-539.
    [111] Laberty-Robert C., Long J. W., Pettigrew K. A., et al., Ionic nanowires at600°C: Using nanoarchitecture to optimize electrical transport innanocrystalline Gadolinium-doped Ceria, Advanced Materials,2007,19(13):1734-1739.
    [112] Anselmi-Tamburini U., Maglia F., Chiodelli G., et al., Nanoscale effects onthe ionic conductivity of highly doped bulk nanometric Cerium oxide,Advanced Functional Materials,2006,16(18):2363-2368.
    [113] Kim S., Anselmi-Tamburini U., Park H. J., et al., Unprecedented room-temperature electrical power generation using nanoscale fluorite-structuredoxide electrolytes, Advanced Materials,2008,20(3):556-559.
    [114] Avila-Paredes H. J., Chen C.-T., Wang S., et al., Grain boundaries in densenanocrystalline ceria ceramics: exclusive pathways for proton conduction atroom temperature, Journal of Materials Chemistry,2010,20(45):10110-10112.
    [115] Tsch pe A., Sommer E., Birringer R., Grain size-dependent electricalconductivity of polycrystalline cerium oxide: I. Experiments, Solid StateIonics,2001,139(3–4):255-265.
    [116] Iwahara H., Esaka T., Uchida H., et al., Proton conduction in sintered oxidesand its application to steam electrolysis for hydrogen production, Solid StateIonics,1981,3-4(359-363.
    [117] Iwahara H., Uchida H., Morimoto K., High temperature solid electrolyte fuelcells using perovskite-type oxide based on BaCeO3, Journal of theElectrochemical Society,1990,137(2):462-465.
    [118] Kreuer K. D., Proton-conducting oxides, Annual review of materials research,2003,33(1):333-359.
    [119] Fabbri E., Bi L., Pergolesi D., et al., Towards the next generation of solidoxide fuel cells operating below600°C with chemically stable proton-conducting electrolytes, Advanced Materials,2011,24(2):195-208.
    [120] Tao S., Irvine J. T. S., Conductivity studies of dense yttrium-doped BaZrO3sintered at1325°C, Journal of Solid State Chemistry,2007,180(12):3493-3503.
    [121] Tao Z., Bi L., Yan L., et al., A novel single phase cathode material for aproton-conducting SOFC, Electrochemistry Communications,2009,11(3):688-690.
    [122] Lin Y., Ran R., Zhang C., et al., Performance of PrBaCo2O5+δas a proton-conducting solid-oxide fuel cell cathode, The Journal of Physical ChemistryA,2009,114(11):3764-3772.
    [123] Liu Y. L., Jiao C. G., Microstructure degradation of an anode/electrolyteinterface in SOFC studied by transmission electron microscopy, Solid StateIonics,2005,176(5-6):435-442.
    [124] Li Z.-P., Mori T., Auchterlonie G. J., et al., Direct evidence of dopantsegregation in Gd-doped ceria, Applied Physics Letters,2011,98(9):093104-093103.
    [125] Liang C. C., Conduction characteristics of the lithium iodide-aluminum oxidesolid electrolytes, Journal of the Electrochemical Society,1973,120(10):1289-1292.
    [126] Chockalingam R., Amarakoon V. R. W., Giesche H., Alumina/cerium oxidenano-composite electrolyte for solid oxide fuel cell applications, Journal of theEuropean Ceramic Society,2008,28(5):959-963.
    [127] Schober T., Ringel H., Proton conducting ceramics: Recent advances, Ionics,2004,10(5):391-395.
    [128] Mellander B. E., Zhu B., High temperature protonic conduction in phosphate-based salts, Solid State Ionics,1993,61(1-3):105-110.
    [129] Zhu B., Mellander B. E., Chen J., Cubic alkali orthophosphates with highionic conductivity, Materials Research Bulletin,1993,28(4):321-328.
    [130] Zhu B., Mellander B. E., Proton conduction in nitrate-based oxides and relatedceramics at intermediate temperatures, Solid State Ionics,1994,70-71(PART1):285-290.
    [131] Zhu B., Mellander B. E., Proton conduction and diffusion in Li2SO4, SolidState Ionics,1997,97(1-4):535-540.
    [132] Zhu B., Lai Z. H., Mellander B. E., Structure and ionic conductivity of lithiumsulphate---aluminum oxide ceramics, Solid State Ionics,1994,70-71(part1):125-129.
    [133] Tao S., Zhu B., Peng D., et al., Investigation on LiNaSO4-Al2O3ceramics aselectrolytes for H2/O2fuel cells, Materials Research Bulletin,1999,34(10-11):1651-1659.
    [134] Zhu B., Next generation fuel cell R&D, International Journal of EnergyResearch,2006,30(11):895-903.
    [135] Zhu B., Solid oxide fuel cell (SOFC) technical challenges and solutions fromnano-aspects, International Journal of Energy Research,2009,33(13):1126-1137.
    [136] Bin Z., Nanocomposites for advanced fuel cell technology, Journal ofNanoscience and Nanotechnology,2011,11(10):8873-8879.
    [137] Zhu B., Mellander B., Determination of proton diffusion in solid electrolytes,Ionics,1997,3(5):368-372.
    [138] Zhu B., Mat M. D., Studies on dual phase ceria-based composites inelectrochemistry, International Journal of Electrochemical Science,2006,1(8):383-402.
    [139] Di J., Chen M., Wang C., et al., Samarium doped ceria-(Li/Na)2CO3compositeelectrolyte and its electrochemical properties in low temperature solid oxidefuel cell, Journal of Power Sources,2010,195(15):4695-4699.
    [140] Fan L., Wang C., Chen M., et al., Potential low-temperature application andhybrid-ionic conducting property of ceria-carbonate composite electrolytes forsolid oxide fuel cells, International Journal of Hydrogen Energy,2011,36(16):9987-9993.
    [141] Wang X., Ma Y., Li S., et al., Ceria-based nanocomposite with simultaneousproton and oxygen ion conductivity for low-temperature solid oxide fuel cells,Journal of Power Sources,2011,196(5):2754-2758.
    [142] Ma Y., Wang X., Li S., et al., Samarium-doped ceria nanowires: Novelsynthesis and application in low-temperature solid oxide fuel cells, AdvancedMaterials,2010,22(14):1640-1644.
    [143] Fan L., Wang C., Zhu B., Low temperature ceramic fuel cells using all nanocomposite materials, Nano Energy,2012,1(4):631-639.
    [144] Zhu B., Advantages of intermediate temperature solid oxide fuel cells fortractionary applications, Journal of Power Sources,2001,93(1-2):82-86.
    [145] Zhu B., Liu X. R., Zhou P., et al., Cost-effective yttrium doped ceria-basedcomposite ceramic materials for intermediate temperature solid oxide fuel cellapplications, Journal of Materials Science Letters,2001,20(7):591-594.
    [146] Fu Q. X., Zhang W., Peng R. R., et al., Doped ceria-chloride compositeelectrolyte for intermediate temperature ceramic membrane fuel cells,Materials Letters,2002,53(3):186-192.
    [147] Fu Q. X., Zha S. W., Zhang W., et al., Intermediate temperature fuel cellsbased on doped ceria-LiCl-SrCl2composite electrolyte, Journal of PowerSources,2002,104(1):73-78.
    [148] Liu X. R., Zhu B., Xu J. R., et al., Sulphate-ceria composite ceramics forenergy environmental co-generation technology, Key Engineering Materials,2004,280-283(0):425-430.
    [149] Wang H., Xiao J., Zhou Z., et al., Ionic conduction in undoped SnP2O7atintermediate temperatures, Solid State Ionics,2010,181(33-34):1521-1524.
    [150] Hu J., Tosto S., Guo Z., et al., Dual-phase electrolytes for advanced fuel cells,Journal of Power Sources,2006,154(1):106-114.
    [151] Zhu B., Luo X., Xia C., et al., Electrical properties of ZrO2-CeO2atintermediate temperatures, Ionics,1997,3(5-6):363-367.
    [152] Raza R., Abbas G., Wang X., et al., Electrochemical study of the compositeelectrolyte based on samaria-doped ceria and containing yttria as a secondphase, Solid State Ionics,2011,188(1):58-63.
    [153] Raza R., Abbas G., Imran S. K., et al., GDC-Y2O3oxide based two phasenanocomposite electrolyte, Journal of Fuel Cell Science and Technology,2011,8(4):041012.
    [154] Zhu B., Liu Z. G., Xia C. R., Transparent conducting CeO2-SiO2thin films,Materials Research Bulletin,1999,34(10-11):1507-1512.
    [155] Schober T., Composites of ceramic high-temperature proton conductors withinorganic compounds, Electrochemical and Solid State Letters,2005,8(4):A199-A200.
    [156] Li X., Xu N., Zhang L., et al., Combining proton conductor BaZr0.8Y0.2O3-δwith carbonate: Promoted densification and enhanced proton conductivity,Electrochemistry Communications,2011,13(7):694-697.
    [157] Wang X., Ma Y., Zhu B., State of the art ceria-carbonate composites (3C)electrolyte for advanced low temperature ceramic fuel cells (LTCFCs),International Journal of Hydrogen Energy,2012,37(24):19417-19425.
    [158] Raza R., Wang X., Ma Y., et al., Improved ceria-carbonate compositeelectrolytes, International Journal of Hydrogen Energy,2010,35(7):2684-2688.
    [159] Wade J. L., Lee C., West A. C., et al., Composite electrolyte membranes forhigh temperature CO2separation, Journal of Membrane Science,2011,369(1-2):20-29.
    [160] Zhang L., Li X., Wang S., et al., High conductivity mixed oxide-ion andcarbonate-ion conductors supported by a prefabricated porous solid-oxidematrix, Electrochemistry Communications,2011,13(6):554-557.
    [161] Cai T., Zeng Y., Yin S., et al., Preparation and characterization ofCe0.8Sm0.2O1.9(SDC)-carbonates composite electrolyte via molten saltinfiltration, Materials Letters,2011,65(17-18):2751-2754.
    [162] Zhang L., Xu N., Li X., et al., High CO2permeation flux enabled by highlyinterconnected three-dimensional ionic channels in selective CO2separationmembranes, Energy&Environmental Science,2012,5(8):8310-8317.
    [163] Saradha T., Fereira A. S., Patrício S. G., et al., Performance of homogeneousand layered ceria/carbonate composite electrolytes, International Journal ofHydrogen Energy,2012,37(8):7235–7241.
    [164] Xia C., Li Y., Tian Y., et al., Intermediate temperature fuel cell with a dopedceria-carbonate composite electrolyte, Journal of Power Sources,2010,195(10):3149-3154.
    [165] Huang J., Gao Z., Mao Z., Effects of salt composition on the electricalproperties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs, International Journal of Hydrogen Energy,2010,35(9):4270-4275.
    [166] Benamira M., Ringuedé A., Hildebrandt L., et al., Gadolinia-doped ceriamixed with alkali carbonates for SOFC applications: II–An electrochemicalinsight, International Journal of Hydrogen Energy,2012,37(24):19371-19379.
    [167] Chockalingam R., Basu S., Impedance spectroscopy studies of Gd-CeO2-(LiNa)CO3nano composite electrolytes for low temperature SOFCapplications, International Journal of Hydrogen Energy,2011,36(22):14977-14983.
    [168] Xia C., Li Y., Tian Y., et al., A high performance composite ionic conductingelectrolyte for intermediate temperature fuel cell and evidence for ternaryionic conduction, Journal of Power Sources,2009,188(1):156-162.
    [169] Zhang L., Lan R., Kraft A., et al., A stable intermediate temperature fuel cellbased on doped-ceria-carbonate composite electrolyte and perovskite cathode,Electrochemistry Communications,2011,13(6):582-585.
    [170] Zhang L., Lan R., Xu X., et al., A high performance intermediate temperaturefuel cell based on a thick oxide-carbonate electrolyte, Journal of PowerSources,2009,194(2):967-971.
    [171] Song S. A., Jang S.-C., Han J., et al., Enhancement of cell performance using agadolinium strontium cobaltite coated cathode in molten carbonate fuel cells,Journal of Power Sources,2011,196(23):9900-9905.
    [172] Huang J., Mao Z., Liu Z., et al., Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes,Journal of Power Sources,2008,175(1):238-243.
    [173] Zhu W., Xia C., Ding D., et al., Electrical properties of ceria-carbonatecomposite electrolytes, Materials Research Bulletin,2006,41(11):2057-2064.
    [174] Bodén A., Di J., Lagergren C., et al., Conductivity of SDC and (Li/Na)2CO3composite electrolytes in reducing and oxidising atmospheres, Journal ofPower Sources,2007,172(2):520-529.
    [175] Li Y., Rui Z., Xia C., et al., Performance of ionic-conductingceramic/carbonate composite material as solid oxide fuel cell electrolyte andCO2permeation membrane, Catalysis Today,2009,148(3-4):303-309.
    [176] Zhao Y., Xia C., Wang Y., et al., Quantifying multi-ionic conduction throughdoped ceria-carbonate composite electrolyte by a current-interruptiontechnique and product analysis, International Journal of Hydrogen Energy,2012,37(10):8556-8561.
    [177] Heed B., Zhu B., Mellander B. E., et al., Proton conductivity in fuel cells withsolid sulphate electrolytes, Solid State Ionics,1991,46(1-2):121-125.
    [178] Nakayama S., Aono H., Sadaoka Y., Ionic conductivity of Ln10(SiO4)6O3(Ln=La, Nd, Sm, Gd and Dy), Chemistry Letters,1995,24(6):431-432.
    [179] Dudek M., Ceramic oxide electrolytes based on CeO2-Preparation, propertiesand possibility of application to electrochemical devices, Journal of theEuropean Ceramic Society,2008,28(5):965-971.
    [180] Chen H., Xu Z., Peng C., et al., Proton conductive YSZ-phosphate compositeelectrolyte for H2S SOFC, Ceramics International,2010,36(7):2163-2167.
    [181] Tao S., Meng G., The proton and oxygen ion conduction in a NaCl basedcomposite electrolyte, Journal of Materials Science Letters,1999,18(1):81-84.
    [182] Gorelov V., Balakireva V., Kuz’min A., Ionic, proton, and oxygenconductivities in the BaZr1xYxO3-αsystem (x=0.020.15) in humid air,Russian Journal of Electrochemistry,2010,46(8):890-895.
    [183] Zhou X.-D., Pederson L. R., Templeton J. W., et al., Electrochemicalperformance and stability of the cathode for solid oxide fuel cells, Journal ofthe Electrochemical Society,2010,157(2): B220-B227.
    [184] Liu W., Liu Y. Y., Li B., et al., Ceria (Sm3+, Nd3+)/carbonates compositeelectrolytes with high electrical conductivity at low temperature, CompositesScience and Technology,2010,70(1):181-185.
    [185] Zhao Y., Xia C., Xu Z., et al., Validation of H+/O2conduction in doped ceria–carbonate composite material using an electrochemical pumping method,International Journal of Hydrogen Energy,2012,37(15):11378-11382.
    [186] Fan L., Zhang G., Chen M., et al., Proton and oxygen ionic conductivity ofdoped ceria-carbonate composite by modified Wagner polarization,International Journal of Electrochemical Science,2012,7(9):8420-8435.
    [187] Zhu B., Li S., Mellander B. E., Theoretical approach on ceria-based two-phaseelectrolytes for low temperature (300-600°C) solid oxide fuel cells,Electrochemistry Communications,2008,10(2):302-305.
    [188] Zhu B., Albinsson I., Andersson C., et al., Electrolysis studies based on ceria-based composites, Electrochemistry Communications,2006,8(3):495-498.
    [189] Chen M., Wang C., Niu X., et al., Carbon anode in direct carbon fuel cell,International Journal of Hydrogen Energy,2010,35(7):2732-2736.
    [190] Jia L., Tian Y., Liu Q., et al., A direct carbon fuel cell with (moltencarbonate)/(doped ceria) composite electrolyte, Journal of Power Sources,2010,195(17):5581-5586.
    [191] Li H., Liu Q., Li Y., A carbon in molten carbonate anode model for a directcarbon fuel cell, Electrochimica Acta,2010,55(6):1958-1965.
    [192] Amar I., Lan R., Petit C., et al., Solid-state electrochemical synthesis ofammonia: a review, Journal of Solid State Electrochemistry,2011,15(9):1845-1860.
    [193] Amar I. A., Petit C. T. G., Zhang L., et al., Electrochemical synthesis ofammonia based on doped-ceria-carbonate composite electrolyte andperovskite cathode, Solid State Ionics,2011,201(1):94-100.
    [194] Rui Z., Anderson M., Li Y., et al., Ionic conducting ceramic and carbonatedual phase membranes for carbon dioxide separation, Journal of MembraneScience,2012,417-418(0):174-182.
    [195] Ni M., Leung M. K. H., Leung D. Y. C., Technological development ofhydrogen production by solid oxide electrolyzer cell (SOEC), InternationalJournal of Hydrogen Energy,2008,33(9):2337-2354.
    [196] Brisse A., Schefold J., Zahid M., High temperature water electrolysis in solidoxide cells, International Journal of Hydrogen Energy,2008,33(20):5375-5382.
    [197] Stoots C. M., O'Brien J. E., Condie K. G., et al., High-temperature electrolysisfor large-scale hydrogen production from nuclear energy–Experimentalinvestigations, International Journal of Hydrogen Energy,2010,35(10):4861-4870.
    [198] Kiros Y., Liu X. R., Zhu B., Cost-effective perovskite for intermediatetemperature solid oxide fuel cells (ITSOFC), Journal of New Materials forElectrochemical Systems,2001,4(4):253-258.
    [199] Li S., Sun J. C., Sun X. L., et al., A high functional cathode materialLaNi0.4Fe0.6O3for low-temperature solid oxide fuel cells, Electrochemical andSolid State Letters,2006,9(2): A86-A87.
    [200] Li S., Zhu B., Electrochemical performances of nanocomposite solid oxidefuel cells using nano-size material LaNi0.2Fe0.65Cu0.15O3as cathode, Journal ofNanoscience and Nanotechnology,2009,9(6):3824-3827.
    [201] Sun X. L., Li S., Sun J. C., et al., Electrochemical performances of BSCFcathode materials for ceria-composite electrolyte low temperature solid oxidefuel cells, International Journal of Electrochemical Science,2007,2(6):462-468.
    [202] Mat M., Liu X., Zhu Z., et al., Development of cathodes for methanol andethanol fuelled low temperature (300-600°C) solid oxide fuel cells,International Journal of Hydrogen Energy,2007,32(7):796-801.
    [203] Huang J., Gao R., Mao Z., et al., Investigation of La2NiO4+δ-based cathodesfor SDC-carbonate composite electrolyte intermediate temperature fuel cells,International Journal of Hydrogen Energy,2010,35(7):2657-2662.
    [204] Gao Z., Mao Z., Wang C., et al., Preparation and characterization of La1-xSrxNiyFe1-yO3-δcathodes for low-temperature solid oxide fuel cells,International Journal of Hydrogen Energy,2010,35(23):12905-12910.
    [205] Gao Z., Mao Z., Wang C., et al., Novel SrTixCo1-xO3-δcathodes for low-temperature solid oxide fuel cells, International Journal of Hydrogen Energy,2011,36(12):7229-7233.
    [206] Fan L., Chen M., Wang C., et al., Pr2NiO4–Ag composite cathode for lowtemperature solid oxide fuel cells with ceria-carbonate composite electrolyte,International Journal of Hydrogen Energy,2012,37(24):19388-19394.
    [207] Zhu B., Bai X. Y., Chen G. X., et al., Fundamental study on biomass-fuelledceramic fuel cell, International Journal of Energy Research,2002,26(1):57-66.
    [208] Huang J., Xie F., Wang C., et al., Development of solid oxide fuel cellmaterials for intermediate-to-low temperature operation, International Journalof Hydrogen Energy,2012,37(1):877-883.
    [209] Gao Z., Raza R., Zhu B., et al., Development of methanol-fueled low-temperature solid oxide fuel cells, International Journal of Energy Research,2011,35(8):690-696.
    [210] Raza R., Qin H., Liu Q., et al., Advanced multi-fuelled solid oxide fuel cells(ASOFCs) using functional nanocomposites for polygeneration, AdvancedEnergy Materials,2011,1(6):1225-1233.
    [211] Qin H., Zhu Z., Liu Q., et al., Direct biofuel low-temperature solid oxide fuelcells, Energy&Environmental Science,2011,4(4):1273-1276.
    [212] Feng B., Wang C. Y., Zhu B., Catalysts and performances for direct methanollow-temperature (300to600oC) solid oxide fuel cells, Electrochemical andSolid State Letters,2006,9(2): A80-A81.
    [213] Sahibzada M., Steele B. C. H., Hellgardt K., et al., Intermediate temperaturesolid oxide fuel cells operated with methanol fuels, Chemical EngineeringScience,2000,55(16):3077-3083.
    [214] Zhao Y., Xiong D.-B., Qin H., et al., Nanocomposite electrode materials forlow temperature solid oxide fuel cells using the ceria-carbonate compositeelectrolytes, International Journal of Hydrogen Energy,2012,37(24):19351-19356.
    [215] Jing Y., Qin H., Liu Q., et al., Synthesis and electrochemical performances ofLiNiCuZn oxides as anode and cathode catalyst for low temperature solidoxide fuel cell, Journal of Nanoscience and Nanotechnology,2012,12(6):5102-5105.
    [216] Abbas G., Chaudhry M. A., Raza R., et al., Study of CuNiZnGdCe-nanocomposite anode for low temperature SOFC, Nanoscience andNanotechnology Letters,2012,4(4):389-393.
    [217] Raza R., Liu Q., Nisar J., et al., ZnO/NiO nanocomposite electrodes for low-temperature solid oxide fuel cells, Electrochemistry Communications,2011,13(9):917-920.
    [218] Fan L., Zhu B., Chen M., et al., High performance transition metal oxidecomposite cathode for low temperature solid oxide fuel cells, Journal of PowerSources,2012,203(0):65-71.
    [219] Xu S., Niu X., Chen M., et al., Carbon doped MO-SDC material as an SOFCanode, Journal of Power Sources,2007,165(1):82-86.
    [220] Gao Z., Mao Z., Wang C., et al., Development of trimetallic Ni-Cu-Zn anodefor low temperature solid oxide fuel cells with composite electrolyte,International Journal of Hydrogen Energy,2010,35(23):12897-12904.
    [221] Raza R., Wang X., Ma Y., et al., A nanostructure anode (Cu0.2Zn0.8) for low-temperature solid oxide fuel cell at400-600°C, Journal of Power Sources,2010,195(24):8067-8070.
    [222] Lunden A., Mellander B. E., Zhu B., Mobility of protons and oxygen ions inlithium sulfate and other oxyacid salts, Acta Chemica Scandinavica,1991,45(9):981-982.
    [223] Zhu B., New generation or universal fuel cell system? R&D for intermediatetemperature solid oxide fuel cells (ITSOFCs), Journal of New Materials forElectrochemical Systems,2001,4(4):239-251.
    [224] Zhu B., Liu X., Zhou P., et al., Innovative solid carbonate-ceria compositeelectrolyte fuel cells, Electrochemistry Communications,2001,3(10):566-571.
    [225] Liu Q., Zhu B., Theoretical description of superionic conductivities in samariadoped ceria based nanocomposites, Applied Physics Letters,2010,97(18):183115-183113.
    [226] Fan L., Wang C., Di J., et al., Study of ceria-carbonate nanocompositeelectrolytes for low-temperature solid oxide fuel cells, Journal of Nanoscienceand Nanotechnology,2012,12(6):4941-4945.
    [227] Raza R., Ma Y., Wang X. D., et al., Study on nanocomposites based onCarbonate@Ceria, Journal of Nanoscience and Nanotechnology,2010,10(2):1203-1207.
    [228] Li S., Wang X. D., Zhu B., Novel ceramic fuel cell using non-ceria-basedcomposites as electrolyte, Electrochemistry Communications,2007,9(12):2863-2866.
    [229] Ji Y., Liu J., He T., et al., Single intermedium-temperature SOFC prepared byglycine-nitrate process, Journal of Alloys and Compounds,2003,353(1-2):257-262.
    [230] Adler S. B., Factors governing oxygen reduction in solid oxide fuel cellcathodes, Chemical Reviews,2004,104(10):4791-4843.
    [231] Jiang S. P., Love J. G., Ramprakash Y., Electrode behaviour at(La,Sr)MnO3/Y2O3–ZrO2interface by electrochemical impedancespectroscopy, Journal of Power Sources,2002,110(1):201-208.
    [232] Barfod R., Hagen A., Ramousse S., et al., Break down of losses in thinelectrolyte SOFCs, Fuel Cells,2006,6(2):141-145.
    [233] Leonide A., Sonn V., Weber A., et al., Evaluation and modeling of the cellresistance in anode-aupported solid oxide fuel cells, Journal of theElectrochemical Society,2008,155(1): B36-B41.
    [234] Serra J. M., Vert V. B., Büchler O., et al., IT-SOFC supported on mixedoxygen ionic-electronic conducting composites, Chemistry of Materials,2008,20(12):3867-3875.
    [235] Matraszek A., Singheiser L., Kobertz D., et al., Phase diagram study in theLa2O3-Ga2O3-MgO-SrO system in air, Solid State Ionics,2004,166(3-4):343-350.
    [236] Zhou X. D., Scarfino B., Anderson H. U., Electrical conductivity and stabilityof Gd-doped ceria/Y-doped zirconia ceramics and thin films, Solid StateIonics,2004,175(1-4):19-22.
    [237] Ermete A., The stability of molten carbonate fuel cell electrodes: A review ofrecent improvements, Applied Energy,2011,88(12):4274-4293.
    [238] Huggins R. A., Prinz H., Wohlfahrt-Mehrens M., et al., Proton insertionreactions in layered transition metal oxides, Solid State Ionics,1994,70-71(Part1):417-424.
    [239] Ota K., Mitsushima S., Kato S., et al., solubilities of nickel-oxide in moltencarbonate, Journal of the Electrochemical Society,1992,139(3):667-671.
    [240] Zhang L., Lan R., Petit C. T. G., et al., Durability study of an intermediatetemperature fuel cell based on an oxide-carbonate composite electrolyte,International Journal of Hydrogen Energy,2010,35(13):6934-6940.
    [241] Jiang S. P., Issues on development of (La,Sr)MnO3cathode for solid oxidefuel cells, Journal of Power Sources,2003,124(2):390-402.
    [242] Adler S. B., Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes, Solid State Ionics,1998,111(1-2):125-134.
    [243] Dailly J., Fourcade S., Largeteau A., et al., Perovskite and A2MO4-type oxidesas new cathode materials for protonic solid oxide fuel cells, ElectrochimicaActa,2010,55(20):5847-5853.
    [244] Hernández A. M., Mogni L., Caneiro A., La2NiO4+δas cathode for SOFC:Reactivity study with YSZ and CGO electrolytes, International Journal ofHydrogen Energy,2010,35(11):6031-6036.
    [245] Taillades G., Dailly J., Taillades-Jacquin M., et al., Intermediate temperatureanode-supported fuel cell based on BaCe0.9Y0.1O3electrolyte with novelPr2NiO4cathode, Fuel Cells,2010,10(1):166-173.
    [246] Ferchaud C., Grenier J., Zhang-Steenwinkel Y., et al., High performancepraseodymium nickelate oxide cathode for low temperature solid oxide fuelcell, Journal of Power Sources,2011,196(4):1872-1879.
    [247] Boehm E., Bassat J., Dordor P., et al., Oxygen diffusion and transportproperties in non-stoichiometric Ln2-xNiO4+δoxides, Solid State Ionics,2005,176(37-38):2717-2725.
    [248] Ishihara T., Miyoshi S., Furuno T., et al., Mixed conductivity and oxygenpermeability of doped Pr2NiO4-based oxide, Solid State Ionics,2006,177(35–36):3087-3091.
    [249] Grimaud A., Mauvy F., Bassat J. M., et al., Hydration properties and ratedetermining steps of the oxygen reduction reaction of perovskite-relatedoxides as H+-SOFC cathodes, Journal of the Electrochemical Society,2012,159(6): B683-B694.
    [250] Tao S., Wu Q., Zhan Z., et al., Preparation of LiMO2(M=Co, Ni) cathodematerials for intermediate temperature fuel cells by sol-gel processes, SolidState Ionics,1999,124(1-2):53-59.
    [251] Charkin D. O., Zolotova X. N., A crystallographic re-investigation of Cu2Sb-related binary, ternary, and quaternary structures: how many structure typescan exist upon the same topology of a unit cell?, Crystallography Reviews,2007,13(3):201-245.
    [252] Munnings C. N., Skinner S. J., Amow G., et al., Oxygen transport in theLa2Ni1xCoxO4+δsystem, Solid State Ionics,2005,176(23–24):1895-1901.
    [253] Ge X. M., Fang Y. N., Chan S. H., Design and optimization of compositeelectrodes in solid oxide cells, Fuel Cells,2012,12(1):61-76.
    [254] Lynch M. E., Yang L., Qin W., et al., Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δdurability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δinvestigated using a new test electrode platform, Energy&EnvironmentalScience,2011,4(6):2249-2258.
    [255] Huang T., Shen X., Chou C., Characterization of Cu, Ag and Pt addedLa0.6Sr0.4Co0.2Fe0.8O3δand gadolinia-doped ceria as solid oxide fuel cellelectrodes by temperature-programmed techniques, Journal of Power Sources,2009,187(2):348-355.
    [256] Xiao G., Jiang Z., Li H., et al., Studies on composite cathode withnanostructured Ce0.9Sm0.1O1.95for intermediate temperature solid oxide fuelcells, Fuel Cells,2009,9(5):650-656.
    [257] Baker R., Guindet J., Kleitz M., Classification criteria for solid oxide fuel cellelectrode materials, Journal of the Electrochemical Society,1997,144(7):2427-2432.
    [258] Sholklapper T. Z., Radmilovic V., Jacobson C. P., et al., Nanocomposite Ag–LSM solid oxide fuel cell electrodes, Journal of Power Sources,2008,175(1):206-210.
    [259] Adler S. B., Chen X. Y., Wilson J. R., Mechanisms and rate laws for oxygenexchange on mixed-conducting oxide surfaces, Journal of Catalysis,2007,245(1):91-109.
    [260] Perry Murray E., Sever M. J., Barnett S. A., Electrochemical performance of(La,Sr)(Co,Fe)O3-(Ce,Gd)O3composite cathodes, Solid State Ionics,2002,148(1-2):27-34.
    [261] Guo R., Deng Y., Gao Y., et al., Fabrication and properties of Ba(Zr1-xCex)0.9Y0.1O2.95/NaCl composite electrolyte materials, Journal of Alloys andCompounds,2011,509(36):8894-8900.
    [262] http://www.ket.kth.se/nanocofc/
    [263] Bo H. A., Li F., Yu Q. C., et al., Study of NiO cathode modified by ZnOadditive for MCFC, Journal of Power Sources,2004,128(2):135-144.
    [264] Kuk S. T., Song Y. S., Suh S., et al., The formation of LiCoO2on a NiOcathode for a molten carbonate fuel cell using electroplating, Journal ofMaterials Chemistry,2001,11(2):630-635.
    [265] Lee H., Hong M. Z., Bae S. C., et al., A novel approach to preparing nano-sizeCo3O4-coated Ni powder by the Pechini method for MCFC cathodes, Journalof Materials Chemistry,2003,13(10):2626-2632.
    [266] Tsai C. L., Kopczyk M., Smith R. J., et al., Low temperature sintering ofBa(Zr0.8-xCexY0.2)O3-δusing lithium fluoride additive, Solid State Ionics,2010,181(23-24):1083-1090.
    [267] Sata T., High-temperature vaporization of Li2O component from solid solutionLixNi1-xO in air, Ceramics International,1998,24(1):53-59.
    [268] Yuh C. Y., Selman J. R., The polarization of molten carbonate fuel cellelectrodes, Journal of the Electrochemical Society,1991,138(12):3642-3648.
    [269] Zhou Z., Kato K., Komaki T., et al., Effects of dopants and hydrogen on theelectrical conductivity of ZnO, Journal of the European Ceramic Society,2004,24(1):139-146.
    [270] Park J., Zou J., Yoon H., et al., Electrochemical behavior of Ba0.5Sr0.5Co0.2-xZnxFe0.8O3-δ(x=0-0.2) perovskite oxides for the cathode of solid oxide fuelcells, International Journal of Hydrogen Energy,2011,36(10):6184-6193.
    [271] Yoo S., Shin J. Y., Kim G., Thermodynamic and electrical properties oflayered perovskite NdBaCo2-xFexO5+δ-YSZ (x=0,1) composites forintermediate temperature SOFC cathodes, Journal of the ElectrochemicalSociety,2011,158(6): B632-B638.
    [272] Steele B. C. H., Survey of materials selection for ceramic fuel cells II.Cathodes and anodes, Solid State Ionics,1996,86-88(Part2):1223-1234.
    [273] Baumann F. S., Fleig J., Konuma M., et al., Strong performance improvementof La0.6Sr0.4Co0.8Fe0.2O3-δSOFC cathodes by electrochemical activation,Journal of the Electrochemical Society,2005,152(10): A2074-A2079.
    [274] Brown M., Primdahl S., Mogensen M., Structure/performance relations forNi/Yttria-stabilized Zirconia anodes for solid oxide fuel cells, Journal of theElectrochemical Society,2000,147(2):475-485.
    [275] Bebelis S., Neophytides S., AC impedance study of Ni-YSZ cermet anodes inmethane-fuelled internal reforming YSZ fuel cells, Solid State Ionics,2002,152-153(0):447-453.
    [276] Kreuer K. D., On the complexity of proton conduction phenomena, Solid StateIonics,2000,136-137(0):149-160.
    [277] Demin A., Tsiakaras P., Thermodynamic analysis of a hydrogen fed solidoxide fuel cell based on a proton conductor, International Journal of HydrogenEnergy,2001,26(10):1103-1108.
    [278] Matsumoto H., Kawasaki Y., Ito N., et al., Relation between electricalconductivity and chemical stability of BaCeO3-based proton conductors withdifferent trivalent dopants, Electrochemical and Solid-State Letters,2007,10(4): B77-B80.
    [279] Fabbri E., Pergolesi D., Traversa E., Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chemical Society Reviews,2010,39(11):4355-4369.
    [280] Zhu B., Mellander B., Ionic conduction in composite materials containing onemolten phase, Solid State Phenomena,1994,39-40(0):19-22.
    [281] Hebb M. H., Electrical conductivity of silver sulfide, The Journal of ChemicalPhysics,1952,20(1):185-190.
    [282] Wagner C., Galvanic cells with solid electrolytes and mixed conduction,Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie,1956,60(0):4-7.
    [283] Wagner J., Wagner C., Electrical conductivity measurements on cuproushalides, The Journal of Chemical Physics,1957,26(0):1597.
    [284] Navarro L., Marques F., Frade J., N-type conductivity in gadolinia-dopedceria, Journal of the Electrochemical Society,1997,144(1):267-273.
    [285] Shimonosono T., Hirata Y., Ehira Y., et al., Electronic conductivitymeasurement of Sm-and La-doped ceria ceramics by Hebb–Wagner method,Solid State Ionics,2004,174(1-4):27-33.
    [286] Ristoiu T., Petrisor Jr T., Gabor M., et al., Electrical properties ofceria/carbonate nanocomposites, Journal of Alloys and Compounds,2012,532(0):109-113.
    [287]张国权,中低温固体氧化物燃料电池CeO2基复合电解质研究:[硕士学位论文],天津;天津大学,2008
    [288] Zhu B., Using a fuel cell to study fluoride-based electrolytes, ElectrochemistryCommunications,1999,1(6):242-246.
    [289] Nettelblad B., Zhu B., Mellander B. E., Interfacial conduction in ionicallyconducting two-phase materials: Calculations using the grain consolidationmodel, Physical Review B-Condensed Matter and Materials Physics,1997,55(10):6232-6237.
    [290] Li X., Xiao G., Huang K., Effective ionic conductivity of a novelintermediate-temperature mixed oxide-ion and carbonate-ion conductor,Journal of the Electrochemical Society,2011,158(2): B225-B232
    [291] Ferreira A. S. V., Soares C. M. C., Figueiredo F. M. H. L. R., et al., Intrinsicand extrinsic compositional effects in ceria/carbonate composite electrolytesfor fuel cells, International Journal of Hydrogen Energy,2011,36(5):3704-3711.
    [292] Niu Y., Zhou W., Sunarso J., et al., A single-step synthesized cobalt-freebarium ferrites-based composite cathode for intermediate temperature solidoxide fuel cells, Electrochemistry Communications,2011,13(12):1340-1343.
    [293] Lu Z., Zhou X. D., Templeton J., et al., Electrochemical performance andstability of the cathode for solid oxide fuel cells: IV. on the Ohmic loss inanode-supported button cells with LSM or LSCF cathodes, Journal of theElectrochemical Society,2010,157(6): B964-B969.
    [294]邸静,中低温固体氧化物燃料电池新型CeO2基电解质的研究:[博士学位论文],天津;天津大学,2009
    [295] Thorel A. S., Chesnaud A., Viviani M., et al., IDEAL-Cell, a high temperatureinnovative dual membrane fuel-cell, ECS Transactions,2009,25(2):753-762.
    [296] Vladikova D., Stoynov Z., Raikova G., et al., Impedance spectroscopy studiesof dual membrane fuel cell, Electrochimica Acta,2011,56(23):7955-7962.
    [297] Vuilleumier R., Borgis D., Proton conduction: hopping along hydrogen bonds,Nature Chemistry,2012,4(6):432-433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700