稀土掺杂BaSrCoFeO阴极材料高温物性及电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种能够将化学能直接转化为电能,且具有效率高、绿色环保及燃料选择范围广等优点的电化学装置,在能源问题日益严重的今天,SOFC凭借自身优势而受到研究者的广泛关注。随着对SOFC应用研究的深入,如何有效降低电池工作温度成为当前的研究热点。而开发在中低温下具有良好性能的阴极材料是降低电池工作温度,保持电池输出性能的有效方法之一,许多研究者在开发新型中低温阴极材料方面做了大量工作。
     本文围绕中低温固体氧化物燃料电池阴极材料的开发展开。首先,利用EDTA-柠檬酸联合络合法合成了Sm替代Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF) A位中部分Ba、Sr的材料,(Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2O3-δ(BSSCF;0.05≤x≤0.20),并对BSSCF的结构,热性能,电性能及电化学性能进行了系统研究。研究结果表明,BSSCF具有与BSCF相同的立方钙态矿结构。由于Sm3+离子的半径小于BSCF材料A位中Ba2+和Sr2+离子的半径,因此掺杂造成BSSCF的晶胞收缩。30~800°C温区,BSSCF的热膨胀系数为19.1-20.3×10-6K-1。Sm掺杂有效提高了材料的电导率,电导率提高主要得益于Sm掺杂而增加的载流子浓度。而且,电导率随着Sm掺入量的增加而增加,其中掺杂量为x=0.20样品的电导率在392°C时达到了150 S?cm-1。BSSCF在350~500°C温区存在明显的电导弛豫现象,根据电导弛豫数据计算得到的BSSCF氧扩散系数和扩散活化能随着Sm的掺杂量的增加而减小。热重测试结果表明, BSSCF在200°C和350°C温度附近分别出现明显的增重和失重,此现象与Co/Fe离子价态变化伴随的氧吸收和脱出有关,这种变价和氧活动对BSSCF的电导率及热膨胀性能具有十分重要的影响。
     在BSSCF的电化学性能方面,我们首先对能够影响电极性能的烧结条件进行分析,确定电极的最佳烧结条件为:1050°C烧结4h。随后,对以BSSCF为阴极的半电池进行电化学测试。实验结果表明,Sm掺杂有效提高了材料的电化学性能,以交流阻抗谱为例,Sm掺杂量为x=0.10的材料在400,450,500,550oC的总阻抗分别为17.51,7.55,2.98,1.54 ??cm2,而BSCF材料分别为41.06,18.59,4.57,1.82 ??cm2。使用BSSCF阴极的阳极支撑SDC薄膜燃料电池的单电池具有优良的输出性能,其中电池在500,550,600,650 oC的最大功率密度分别为268,442,681,820mW?cm-2。这一结果好于同等条件下测量的BSCF阴极材料。在同一温度下,BSSCF半电池和燃料电池单电池的阻抗谱之间存在明显的差异,造成差异的两个主要原因在于SDC电解质所处气氛环境的不同,以及在H2-O2燃料电池单电池条件下SDC薄膜所具有的电子-离子混和导电性。
     在A位直接Sm掺杂取得成功的基础上,将稀土离子La3+作为掺杂离子引入BSCF,制备出(Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ(BSLCF;0.05≤x≤0.20)材料。重点考察了La掺杂对材料性能的影响,并与Sm掺杂材料进行比较。结果表明,BSLCF具有立方钙态矿结构。由于四价Co/Fe离子热还原的加剧,BSLCF材料在400°C开始出现明显的失重现象。另外,La掺杂略微增大了材料的热膨胀系数,BSLCF在30~800°C温度区间的热膨胀系数为18.7-25.8×10-6 K-1。La掺杂对于提高BSLCF材料电导率效果明显,例如,x=0.20样品在392°C的电导率可以达到376 S?cm-1。利用电导弛豫方法确定了BSLCF的氧扩散系数和扩散活化能,结果显示,BSLCF的扩散系数和扩散活化能均随着掺杂量的增加而减小。交流阻抗的测量结果证明BSLCF的电化学性能也要优于纯的BSCF材料。
     随后对Nd3+掺杂的(Ba0.5Sr0.5) 1-xNdxCo0.8Fe0.2O3-δ(BSNCF; 0.05≤x≤0.20)材料的结构,热、电及电化学性能进行研究,以进一步确定稀土掺杂对于BSCF材料性能的影响。结果表明,BSNCF同样具有立方钙钛矿结构。材料中氧的行为受扩散和表面交换速率的限制,与样品的致密度、表面积有关。Nd掺杂在一定程度上改善了材料的热膨胀系数,BSNCF的热膨胀系数较BSCF略小,在30~800°C,为18.7-19.7×10-6 K-1。BSNCF材料电导率提高明显,其中x=0.20样品的电导率最大。另外,在400~450°C温度区间内,BSNCF材料出现明显的电导弛豫现象,且其氧扩散系数和扩散活化能均随Nd掺杂量的增加而减小。交流阻抗谱结果证明,BSNCF材料的电化学性能要好于BSCF,例如,在550°C时,BSCF的阻抗为1.82 ??cm2,而x=0.20的样品仅为0.69 ??cm2,这也要小于Sm、La掺杂材料。
     为揭示A位稀土掺杂材料的性能与掺杂元素之间的本质联系并找出规律,我们从各种掺杂稀土元素(Ln=La, Nd, Sm)基本性质出发,系统分析了稀土掺杂化合物的物性。重点考察其结构、热性能以及电性能的差异及其产生原因。结果显示,这几种稀土掺杂材料仍保持立方钙态矿结构。虽然,容限因子随掺杂元素和掺杂量的变化有微小变化,但数值仍接近1。滴定实验结果表明,在掺杂量相同的情况下,不同稀土掺杂材料中三、四价Co/Fe离子数量及氧空位数量不同,这是造成不同掺杂材料各项性能差异的主要原因。稀土掺杂并未明显减小材料的热膨胀系数,相同掺杂量条件下的不同稀土掺杂材料的热膨胀系数不同。A位稀土掺杂有效提高了材料的电导率。相同掺杂量条件下,三种稀土掺杂材料的电导率不同。
     本文以中低温阴极材料BSCF为基础,利用三价轻稀土元素La、Nd、Sm部分替代Ba和Sr,有效提高了材料的电导率和氧电极电化学性能,成功开发出性能优良的新型阴极材料体系(Ba0.5Sr0.5)1-xLnxCo0.8Fe0.2O3-δ(Ln=La,Nd,Sm),对各材料中与高温氧化/还原相关的高温物性规律及其机制进行了研究。
Solid oxide fuel cell (SOFC) is one kind of chemical device, which can convert the chemical energy into electrical energy directly. Recently, the energy problem is becoming seriously, thus the SOFC is attracting more and more attentions because of its high-energy conversion efficiency, low pollution and fuel flexibility. How to lower down the operating temperature is the key point of the SOFC’s application research. Finding out a cathode with good characteristics at intermediate temperature is one effective approach to lower down the operating temperature of SOFC while to retain the high performances. Many researchers have done mass works in developing the new cathode materials.
     The objective of this paper is around the development of the cathode material for intermediate temperature solid oxide fuel cell (IT-SOFC). Firstly, the Sm-doped material (Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2O3-δ(BSSCF;0.05≤x≤0.20) was prepared by EDTA-citric acid method, and then the structure, the thermal character, the electrical character as well as the electrochemistry character were researched. The results demonstrated that the BSSCF have a cubic perovskite-type structure as BSCF, and the Sm-doping caused the lattice shrinkage because of the smaller radius of Sm3+ ion. The thermal expansion coefficients (TECs) of BSSCF are 19.1-20.3×10-6 K-1 from 30~800°C. The Sm-doping improved the electrical conductivity of BSCF effectively. While the conductivity is increasing with the increasing of Sm content, and the x=0.20 sample have aσ=150 S?cm-1 at 392°C. The improvement of electrical conductivity is mainly benefit from the enhanced concentration of electronic charge carriers, which is caused by the Sm-doping. Besides, at 350~500°C, there is an obviously electrical conductivity relaxation phenomenon for BSSCF. The results showed that, the chemical diffusion coefficient ( D~ ) of oxygen and the diffusion active energy (Ea) of oxygen were reducing with the increasing of Sm content. In the Thermograimetic measurements (TG) of BSSCF, a weigh addition at 200°C and a weigh loss at 350°C were observed, which is associated with the valence change of Co and Fe followed by the absorption/loss of oxygen.
     On the electrochemistry aspect, the sinter condition of cathode, which can influence the properties, was researched. The best sinter condition is, at 1050°C for 4h. Then, the electrochemistry properties of BSSCF were carried out on a half-cell. The results demonstrated that, the Sm-doping improved the electrochemistry properties of BSSCF effectively. Take the AC-impedance for example, the impedance of x=0.20 sample are 17.51,7.55,2.98,1.54 ??cm2 at 400, 450, 500, 550 oC respectively, while the impedance of BSCF are 41.06,18.59,4.57,1.82 ??cm2. The BSSCF cathode also showed good properties in anode-support, SDC film single-cell. For example, the maximum power densities are respectively 268,442,681 and 820 mW?cm-2 at 500, 550, 600, 650°C. Furthermore, the AC-impedance of BSSCF for half-cell and single-cell at the same temperature are different. The reasons are the different work-atmosphere of SDC electrolyte film in half-cell and single-cell, and the mixed conductivity character of SDC electrolyte film.
     Base on the results of Sm-doped BSCF, the La3+ was used to substitute the Ba2+ and Sr2+ ion in BSCF, and the (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ(BSLCF;0.05≤x≤0.20) was compounded. An emphasis was made on the effect of La-doping on the material’s properties, and the properties of BSLCF were compared with the Sm-doped materials. The results showed that, the BSLCF have a cubic perovskite-type structure. There is an obviously weight loss for BSLCF after 400°C, which is associated with the reduction of Co/Fe with quadrivalence. Furthermore, the La-doping increased the TECs slightly, and the TECs of BSLCF are about 18.7-25.8×10-6 K-1 from 30~800°C. The La-doping increased the electrical conductivity of BSLCF apparently. Compared with the Sm-doping sample, the improvement of BSLCF is more apparently e.g., the sample of x=0.2 demonstrated a conductivity ofσ=376 S ? cm-1 at 392°C. Furthermore, the chemical diffusion coefficient ( D~ ) and diffusion active energy (Ea) of BSLCF were researched by the electrical conductivity relaxation method. The results showed that D~ and Ea were reducing with the increasing of La content. The AC-impedance proved that the electrochemistry properties of BSLCF were better than that of the BSCF.
     In order to ascertain the influence of A-site rare-earth doping on the properties of the material further, we introduced the Nd into BSCF, and got the (Ba0.5Sr0.5) 1-xNaxCo0.8Fe0.2O3-δ(BSNCF; 0.05≤x≤0.20). The structure, thermal, electrical conductivity and electrochemical properties of BSNCF were researched. The results showed that, the BSNCF have a cubic perovskite-type structure. The behaviors of oxygen in the BSNCF are restricted by the diffusion and surface-exchange rate, and are also associated with the density and surface-measure of the sample. To a certain extent, the Nd-doping improved the TECs. The TECs of BSNCF are smaller than that of the BSCF, with the data of 18.7-19.7×10-6 K-1 from 30~800°C. The results of electrical conductivity showed that, the Nd-doping improved the conductivity of BSCF apparently, and the sample of x=0.20 has the highest conductivity. There is an obviously electrical conductivity relaxation phenomenon for BSNCF sample at 400~450°C. The diffusion coefficient and active energy of BSNCF are reducing with the increasing of Nd content. The electrochemistry properties of BSNCF are better than that of the BSCF, which are proved by the AC-impedance. For example, at 550°C, the impedance of BSCF is 1.82 ??cm2, while that of the BSNCF is 0.69 ??cm2.
     To reveal the intrinsic relation between the doping elements and the material’s properties, moreover find out the regular, we analyzed the rare-earth elements (Ln= Sm, La, Nd) doped compounds’properties from the view of the doping rare-earth element’s character and the experiment results. An emphasis was made on the difference in the structure, thermal, electrical character and the reasons. The analysis results revealed that, the rare-earth doping material still have a cubic perovskite-type structure. Although the Tolerance Factor changed a little with the varying of the doping element and content, while the value is still around 1. The results of titration experiment showed that, under the same doping content, the amount of Co3+/Co4+, Fe4+/Fe3+ and the oxygen vacancy are different, which caused the difference in the properties of different element doped material. The rare-earth doping have not reduce the TECs, moreover, under the same doping content, the TEC of the different element doped material are different. The A-site rare-earth doping increased the electrical conductivity of BSCF apparently. Under the same doping content, the conductivity of different rare- earth doped material is different.
     This paper is based on the important cathode material of IT-SOFC BSCF, the rare-earth element La, Nd, Sm were used to substitute the Ba2+ and Sr2+ ion in BSCF, which improved the electrical conductivity and electrochemistry properties. A new type of cathode materials (Ba0.5Sr0.5)1-xLnxCo0.8Fe0.2O3-δ(Ln=La,Nd,Sm) were developed successfully. The high-temperature physical properties and their principles associated with the high-temperature oxidation/reduction of these materials were also researched.
引文
1李瑛,王林山编著,燃料电池,冶金工业出版社,2000
    2江义,李文钊,王世忠,高温固体氧化物燃料电池(SOFC)进展,化学进展,1997,9(4):387~396
    3衣宝廉,燃料电池-原理-技术及应用.化学工业出版社,2003:1~4
    4韩敏芳,固体氧化物燃料电池材料及制备.科学出版社,2004:92~124
    5张耀辉,固体氧化物燃料电池两种电解质膜制备方法的研究与应用,博士毕业论文,2006:8~11
    6李艳,固体氧化物燃料电池复合阴极的制备及性能研究,哈尔滨工业大学硕士学位论文,2004:1~9
    7 S.C. Singhal, K. Kendall著,韩敏芳,蒋先锋译,高温固体氧化物燃料电池——原理、设计和应用,科学出版社,2007:25~96
    8 Y. J. Leng, S. H. Chan, K. A. Khor, S. P. Jiang. Performance Evaluation of Anode-Supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte. International Journal of Hydrogen Energy. 2004, 29:1025~1033
    9 J. Liu, W. Liu, Z. Lv. L. Pei, L. Jia, L. Y. He, W. H. Su. Study on the Properties of YSZ Electrolyte Made by Plaser Casting Method and the Applications in Solid Oxide Fuel Cells. Solid State Ionics. 1999, 118:67~72
    10 J. K. Hong, I. H. Oh, S. A. Hong, W. Y. Lee. Electrochemical Oxidation of Methanol over a Silve Electrode Deposited on Yttria-Stabilized Zirconia Electrolyte. Journal of catalysis. 1996, 163:95~105
    11 M. Katsuk, S. R. Wang, K. Yasumoto, M. Dokiya. The Oxygen Transport in Gd-Doped Ceria. Solid Sate Ionics. 2002, 154~155:589~595
    12 G. S. Lewis, A. Atkinson, B. C. H. Steele, J. Drennan. Effect of Co Addition on the Lattice Parameter, Electrical Conductivity and Sintering of Gadolinia-Doped Ceria. Solid State Ionics. 2002, 152-153:567~573
    13 N. Ai, Z. Lv, K. F. Chen, X. Q. Huang, B. Wei, Y. H. Zhang, S. Y. Li, X. S. Xin, X. Q. Sha, W. H. Su. Low Temperature Solid Oxide Fuel Cells Based on Sm0.2Ce0.8O1.9 Film Fabrication by Slurry Spin Coating. Journal of Power Source. 2006, 159:637~640
    14 S. Haile. Material for Fuel Cell. Mater. Today. 2003, 6:24~29
    15 X. Zhang, S. Ohara, R. Maric, K. Mukai, T. Fukui, Hyoshida, M. Nishimura, T. Inagaki, K. Miura. Ni-SDC Cermet Anode for Medium-Temperature Solid Oxide Fuel Cell with Lanthanum gallate Electrolyte. J. Power Source. 1999, 83:170~177
    16 T. Inagaki, K. Miura, H. Yoshida, R. Maric, S. Ohara, X.Zhang, K. Mukai, T. Fukui. High-Performance Electrode for Reduced Temperature Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte.Ⅱ. La(Sr)CoO3 Cathode. J. Power Source. 2000, 86:347~351
    17 T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Transition Metal Doped LaGaO3 Perovskite Fast Oxide Ion Conductor and Intermediate Temperature Solid Oxide Fuel Cell, Mater. Res. Soc. Symp. Proc. 2000, 575: 283~286
    18 J. W. Yan, Z. G. Lu, Y. Jiang, Y. L. Dong, C. Y. Yu, W. Z. Li. Fabrication and Testing of A Doped Lanthanum Gallate Electrolyte Thin-Film Solid Oxide Fuel Cell. J. Electrochem. Soc. 2002, 149(9):A 1132~A 1135
    19 S. P. Jiang, X. J. Chen, S. H. Chan, J. T. Kwok, K. A. Khor. (La0.75Sr0.75)(Cr0.5Mn0.5)O3/YSZ Composite Anodes for Methane Oxidation Reaction in Solid Oxide Fuel Cells. Solid State Ionics. 2006, 177:149~157
    20 X. Q. Huang, Z. G. Liu, Z. Lv, L. Pei. R. B. Zhu, Y. Q. Liu, J. P. Miao, Z. G. Zhang, W. H. Wu. A Ni/YSZ Composite Containing Ce0.9Ca0.1O2-δParticles as an Anode for SOFCs. Journal of Physics and Chenmistry of Solids. 2003, 64: 2379~2384
    21 M.V.D. Bossche, S. Mclntosh. The Rate and Selectivity of Methane Oxidation Over La0.75Sr0.25CrxMn1-XO3-δas a Function of Lattice Oxygen Stoichiometry Under Solid Oxide Fuel Anode Conditions. Journal of Catalysis. 2008, 255:313~323
    22 X.J. Chen, Q.L. Liu, S.H. Chan, N.P. Brandon, K.A. Khor. High-Performance Cathode-Supported SOFC with Perovskite Anode Operating in Weakly Humidified Hydrogen and Methane. Fuel Cells Bulletin. 2007, 2007:12~16
    23 S. D. Kim, S. H. Hyun, J. H. Moon, J. H. Kim, R. H. Song. Fabrication and Characterization of Anode-Supported Electrolyte Thin Films for Intermediate Temperature Solid Oxide Fuel Cells. Journa of Power Source. 2005, 139:67~72
    24 S. K. Lee, K.H. Kang, J.M. Kim, H.S. Hong, Y.S. Yun and S.K. Woo. Fabrication and Characterization of Cu/YSZ Cermet High-Temperature Electrolysis Cathode Material Prepared by High-Energy Ball-Milling Method: I. 900°C-Sintered. Journal of Alloys and Compounds. 2008, 448:363~367
    25 A. Benyoucef, D. Klein, C. Coddet and B. Benyoucef. Development and Characterisation of (Ni, Cu, Co)-YSZ and Cu-Co-YSZ Cermets Anode Materials for SOFC Application. Surface and Coatings Technology. 2008, 202:2202~2207
    26 O. Costa-Nunes, R.J. Gorte and J.M. Vohs. Comparison of the Performance of Cu–CeO2–YSZ and Ni–YSZ Composite SOFC Anodes with H2, CO, and Syngas. Journal of Power Sources. 2005, 141:241~249
    27 X. J. Chen, Q. L. Liu, S. H. Chan, N. P. Brandon, K. A. Khor. High Performance Cathode-Supported SOFC with Perovskite Anode Operating in Weakly Humidified Hydrogen and Methane. Electrochemistry Communications. 2007, 9:767~772
    28 Mitsunobu Kawano, Koji Hashino, Hiroyuki Yoshida, Hiroshi Ijichi, Seiji Takahashi, Seiichi Suda, Toru Inagaki. Synthesis and Characterizations of Composite Particles for Solid Oxide Fuel Cell Anodes by Spray Pyrolysis and Intermediate Temperature Cell Performance. Journal of Power Source. 2005, 152:196~199
    29 A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. Mcevoy, M. Mogensen, S. C. Singhal, J. Vohs. Advanced Anodes for High Temperature Fuel Cells. Nature. 2004, 3:17~27
    30 S. W. Tao, J. T. S. Irvine. Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3-δin Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material. Chem. Mater. 2004, 16:4116~4121
    31 S. P. Jiang, X. J. Chen, S. H. Chan, J. T. Kwok, K. A. Khor. La0.75Sr0.25Cr0.5Mn0.5O3/YSZ Composite Anodes for Methane Oxidation Reaction in Solid Oxide Fuel Cells. Solid State Ionics. 2006, 177:149~157
    32 O. Marina, N. Canfield, J. Stevenson. Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate. Solid State Ionics. 2003, 149:21~28
    33 M. Mori, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, M.Dokiya. Evaluation of Ni and Ti-Doped Y2O3 Stabilized ZrO2 Cermet as an Anode in High-Temperature Solid Oxide Fuel Cells. Solid State Ionics. 2003, 160: 1~14
    34 Olga A. Marina, Nathan L. Canfield, Jeff W. Stevenson. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics. 2002, 149:21~28
    35 E. P. Murray, T. Tsai, S. A. Barnett. Oxygen Transfer Processes in (La, Sr)MnO3/Y2O3-Stabilized ZrO2 Cathode: an Impedance Spectroscopy Study. Solid State Ionics. 1998, 110:235~243
    36 Y. Matsuzaki, I. Yasuda. Relationship between the Steady-Satate Polarization of the SOFC Air Electrode, La0.6Sr0.4MnO3+δ/YSZ, and Its Complex Impedance Measured at the Equilibrium Potential. Solid State Ionics. 1999, 126:307~313
    37 S.P. Jiang, J.G. Love, J.P. Zhang, M. Hoang, Y. Ramprakash, A.E. Hughes, S.P.S. Badwal. The Electrochemical Performance of LSM/ Zirconia-Yttria Interface as a Function of A-Site Non-Stoichiometry and Cathode Current Treatment. Solid State Ionics. 1999, 121:1~10
    38 J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokiya, H. Inaba, K. Naraya, T. Sasamoto, T. Hashimoto. Oxygen Nonstoichiometry and Defect Equilibrium in the Perovskite-Type Oxides La1-xSrxMnO3+d. Solid State Ionics. 2000, 129:163~177
    39 J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, H. Inada, T. Hashimoto. Electronic Conductivity, Seebeck Coefficient, Defect and Electronic Structure of Nonstoichiometric La1-xSrxMnO3. Solid State Ionics. 2000, 132:167~180
    40 F. L. Chen, M. L. Liu. Preparation of Yttria-Stabilized Zirconia (YSZ) Film on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ Substrates Using an Electrophoretic Deposition (EDP) Process. Journal of the European Ceramic Society. 2001, 21:127~134
    41 J. H. Choi, J. H. Jang, J. H. Ryu, S. M. Oh. Microstructure and Cathodic Performance of La0.9Sr0.1MnO3 Electrodes According to Particle Size of Starting Powder. Journal of Power Sources. 2000, 87:92~100
    42 R. J. Bell, G. J. Millar, J. Drennan. Influence of Sythesis Route on theCatalytic Properties of La1-xSrxMnO3. Solid State Ionics. 2000, 131:211~220
    43 S. P. Jiang, J. G. Love. Origin of the Initial Polarization Behavior of Sr-Doped LaMnO3 for O2 Reduction in Solid Oxide Fuel Cells. Solid State Ionics. 2001, 138:183~190
    44 M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset. Preparation and Characterization of La1-xSrxMnO3+δ(0≤x≤0.6) Powder by Sol-gel Processing. Solid State Science. 2002, 4:125~133
    45 S. P. Jiang, W. Wang. Sintering and Grain Growth of (La,Sr)MnO3 Electrodes of Solid Oxide Fuel Cells Under Polarization. Solid State Ionics. 2005, 176:1185~1191
    46 X. J. Chen, K. A. Khor, S. H. Chan. Electrochemical Bahavior of La(Sr)MnO3 Electrode Under Cathodic and Anode Polarization. Solid State Ionics. 2004, 167:379~387
    47 S. P. Jiang, W. Wang. Sintering and Grain Growth of (La,Sr)MnO3 Electrodes of Solid Oxide Fuel Cells Under Polarization. Solid State Ionics. 2005, 176:1185~1191
    48 K.F. Chen, Z. Lü, X.J. Chen, N. Ai, X.Q. Huang, X.B. Du, W.H. Su, Development of LSM-Based Cathodes for Solid Oxide Fuel Cells Based on YSZ Membranes, Journal of Power Sources. 2007, 172:742~748
    49 L.W. Tai, M.M.Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin. Structure and Electrical Properties of La1-xSrxCo1-yFeyO3. Part 1. The System La0.8Sr0.2Co1-yFeyO3. Solid State Ionics. 1995, 76:259~271
    50 L.W. Tai, M.M.Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin. Structure and Electrical Properties of La1-xSrxCo1-yFeyO3. Part 2. The System La1-xSrxCo0.2Fe0.8O3. Solid State Ionics. 1995, 76:273~283
    51 G. Ch. Kostogloudis, Ch. Ftikos. Properties of A-Site-Deficient La0.6Sr0.6Co0.2Fe0.8O3-δ-Based Perovskite Oxides. Solid State Ionics. 1999, 126:143~151
    52 H. Uchida, S. Arisaka, M. Watanabe. High Performance Electrode for Medium-Temperature Solid Oxide Fuel Cells: Activation of La(Sr)CoO3 Cathode with Highly Dispersed Pt Metal Electrocatalysts. Solid State Ionics. 2000, 135:347~351
    53 A. Mineshige, M. Kobune, S. Fujii, Z. Ogumi, M. Inaba, T. Yao, K. Kikuchi.Metal-lnsulator Transition and Crystal Structure of La1-xSrxCoO3 as Function of Sr-Content, Temperature, and Oxygen Partial Pressure. Journal of Solid State Chemistry. 1999, 142:374~381
    54 V. C. Belessi, C. N. Costa, T. V. Bakas, T. Anastasiadou, P. J. Pomonis, A. M. Efstathiou. Catalytic Behavior of La-Sr-Ce-Fe-O Mixed Oxidic/Perovskitic Systems for the NO+CO and NO+CH4+O2 (lean-NOx) Reactions. Catalysis Today. 2000, 59:347~363
    55 A. Petric, P. Huang, F. Tietz. Evaluation of La-Sr-Co-Fe-O Peroveskites for Solid Oxide Fuel Cells and Gas Separation Membranes. Solid State Ionics. 2000, 135:719~725
    56 T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Iver-Tiffee. Oxygen Reduction Mechanism at Porous La1-xSrxCoO3-d Cathodes/La0.8Sr0.2Ga0.8Mg0.2O2.8 Electrolyte Interface for Solid Oxide Fuel Cells. Electrochimica Acta. 2001, 46:1837~1845
    57 T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Ivers-Tiffee. Stability at La0.6Sr0.4CoO3-d Cathode/La0.8Sr0.2Ga0.8Mg0.2O2.8 Electrolyte Interface under Current Flow for Solid Oxide Fuel Cells. Solid State Ionics. 2000, 138:143~152
    58 P. Tsiakaras, C. Athanasiou, G. Marnellos, M. Stoukides, J. E. ten Elshof, H. J. M. Bouwmeester. Methane Activation on A La0.6Sr0.4Co0.8Fe0.2O3 Perovskite Catalytic and Electrocatalytic Results. Applied Catalysis A: General. 1998, 169:249~261
    59 T. Yao, Y. Uchimoto, T. Sugiyama, Y. Nagai. Sythesis of (La, Sr)MeO3 (Me=Cr, Mn, Fe, Co) Solid Solutions from Aqueous Solutions. Solid State Ionics. 2000, 35:359~364
    60 H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto. Ln0.4Sr0.6Co0.8Fe0.2O3-δ(Ln=La, Pr, Nd, Sm, Gd) for the Electrode in Solid Oxide Fuel Cells. Solid State Ionics. 1999, 117:277~281
    61 F. Riza, Ch. Ftikos, F. Tietz, W. Fischer. Preparation and Characterization of Ln0.8Sr0.2Fe0.8Co0.2O3-x (Ln=La, Pr, Nd, Sm, Eu, Gd). Journal of the European Ceramic Society. 2001, 21:1769~1773
    62 Jingbo Liu, Anne C. Co, Scott Paulson, Viola I. Birss, Oxygen Reduction at Sol-Gel Derived La0.8Sr0.2Co0.8Fe0.2O3 Cathodes. Solid State Ionics. 2006,177:377~387
    63 S. R. Wang, M. Katsuki, M. Dokiya, T. Hashimoto, High Temperature Properties of La0.6Sr0.4Co0.8Fe0.2O3-δPhase Structure and Electrical Conductivity. Solid State Ionics. 2003, 159:71~78
    64 S. P. S. Badwal, S. P. Jiang, J. Love, J. Nowotny, M. Rekas, E. R. Vance. Chemical Diffusion in Peroveskite Cathodes of Solid Oxide Fuel Cells: the Sr Doped LaMn1-xMxO3 (M=Co, Fe) Systems. Ceramics International. 2001, 27: 419~429
    65 M. Katsuki, S. R. Wang, M. Dokiya, T. Hashimoto. High Temperature Properties of La0.6Sr0.4Co0.8Fe0.2O3-δOxygen Nonstoichiometry and Chemical Diffusion Constant. Solid State Ionics. 2003, 156:453~461
    66 Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori. Fabrication and Characterization of a Co-Fired La0.6Sr0.4Co0.2Fe0.8O3?δCathode-Supported Ce0.9Gd0.1O1.95 Thin-Film for IT-SOFCs. Journal of power source. 2007, 164: 56~64
    67 F. S. Baumann, J. Fleig, H. U. Habermeier, J. Maier. Impedance Spectroscpic Study on Well-Defined (La,Sr)(Co,Fe)O3-δModel Electrodes. Solid State Ionics. 2006, 177:1071~1081
    68 N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, A. Caneiro. Electrode Reaction of Sr1-xLaxCo0.8Fe0.2O3-δwith x=0.1 and 0.6 on Ce0.9Gd0.1O1.95 at
    600≤T≤800°C. Solid State Ionics. 2006, 177:907~913
    69 V. Dusastre, J.A. Kilner, Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications. Solid State Ionics. 1999, 126:163~174
    70 J. D. Zhang, Y. Ji, H. B. Gao, T. M. He, J. Liu. Composite Cathode La0.6Sr0.4Co0.2Fe0.8O3–Sm0.1Ce0.9O1.95–Ag for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of Alloys and Compounds. 2005, 395:322~325
    71 S. R. Wang, T. Kato, S. Nagata, T. Honda, T. Kaneko, N. Iwashita, M. Dokiya. Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag Cathode for Ceria Electrolyte SOFCs. Solid State Ionics. 2002, 146:203~210
    72 C. R. Xia, W. Rauch, F. L. Chen, M. L. Liu. Sm0.5Sr0.5CoO3 cathodes for low temperature SOFCs. Solid State Ionics. 2002, 149:11~19
    73 X. G. Zhang, M. Robertson, S. Yick, C. D. Petit, E. Styles, W. Qu, Y. S. Xie,R. Hui, J. Roller, O. Kesler. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9 Composite Cathode for Cermet Supported Thin Sm0.2Ce0.8O1.9 Electrolyte SOFC Operating Below 600°C. Solid State Ionics. 2006, 160:1211~1216
    74 Hong Lv, Yu-ji Wu, Bo Huang, Bin-yuan Zhao, Ke-ao Hu. Structure and Electrochemical Properties of Sm0.5Sr0.5Co1-xFexO3-δCathodes for Solid Oxide Fuel Cells. Solid State Ionics. 2006, 177:901~906
    75 X. D. Zhu, K. N. Sun, N. Q. Zhang, X. B. Chen, L. J. Wu, D. C. Jia. Improved Electrochemical Performance of SrCo0.8Fe0.2O3?δ–La0.45Ce0.55O2?δComposite Cathodes for IT-SOFC. Electrochemistry Communications. 2007, 9:431~435
    76 Z. P. Shao, S. M. Haile. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells. Nature. 2004, 431:170~173
    77 Liang Tan, Xuehong Gu, Li Yang, Wanqin Jin, Lixiong Zhang, Nanping Xu, Influence of Power Sythesis Methodes on Microstructure and Oxygen Permeation Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δPerovskite-Type Membranes. Journal of Membrane Science. 2003, 212:157~165
    78 Liang Tan, Xuehong Gu, Li Yang, Lixiong Zhang, Chongqing Wang, Nanping Xu, Influence of Sintering Condition on Crystal Structure, Microstrure, and Oxygen Permeability of Perovskite-Related Type Ba0.8Sr0.2Co0.8Fe0.2O3-δMembranes. Separation and purification Technology. 2003, 32:307~312
    79 Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J. H. Tong, G. X. Xiong. Investigation of the Permeation Behavior and Stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δOxygen Membrane. Journal of Membrane Science. 2000, 172:177~188
    80 B. Wei, Z. Lv, X. Q. Huang, J. P. Miao, X. Q. Sha, X. S. Xin, W. H. Su. Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ(0.3≤x≤0.7). Journal of the European Ceramic Society. 2006, 26:2827~2832
    81 H. H. Wang, R. Wang, D. T. Liang, W. S. Yang. Experimental and Modeling Studies on Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) Tubular Membranes for Air Separation. Journal of Membrane Science. 2004, 243:405~415
    82 H. Lu, Y. Cong, W. S. Yang. Oxygen Permeability and Stability ofBa0.5Sr0.5Co0.8Fe0.2O3-δas an Oxygen-Permeable Membrane at High Pressures. Solid State Ionics. 2006, 177:595~600
    83 Zaoshu Duan, Aiyu Yan, Yonglai Dong, You Cong, Mojie Cheng, Weishen Yang, Intermediate Temperature Solid Oxide Fuel Cell with Ba0.5Sr0.5Co0.8Fe0.2O3-δCathode. Chinses Journal of Catalysis. 2005, 10:829~831
    84 S. H. Lee, Y. H. Lim, E. A. Lee, H. J. Hwang, J. W. Moon. Ba0.5Sr0.5Co0.8Fe0.2O3?δ(BSCF) and La0.6Ba0.4Co0.2Fe0.8O3?δ(LBCF) Cathodes Prepared by Combined Citrate-EDTA Method for IT-SOFCs. Journal of Power Sources. 2006, 157:848~854
    85 A. Y. Yan, M. J. Cheng, Y. L. Dong, W. S. Yang, V. Maragou, S. Q. Song, P. Tsiakaras. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3?δBased Cathode IT-SOFC: I. The Effect of CO2 on the Cell Performance. Applied Catalysis B: Environmental. 2006, 66:64~71
    86 B. Wei, Z. Lü, X.Q. Huang. S.Y. Li, G. Ai, Z.G. Liu, and W.H. Su. Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ–Sm0.2Ce0.8O1.9 Composite Materials for Low-Temperature Solid Oxide Fuel Cell Cathodes. Mater. Lett. 2006, 60:3642~3645
    87 B. Wei, Z. Lü, S.Y. Li, Y.Q. Liu, K.Y. Liu, and W.H. Su. Thermal and Electrical Properties of New Cathode Material Ba0.5Sr0.5Co0.8Fe0.2O3-δfor Solid Oxide Fuel Cells. Electrochem. Solid State Lett. 2005, 8: A428~A431
    88 Y. Teraoka, M. Yoshimatsu, N. Yamazoe and T. Seiyama. Oxygen Sorptive Properties and Defect Structure of Perovskite-Type Oxide. Chem.Lett. 1984: 893~896
    89吕喆,魏波,黄喜强,诸葛淑媛,李淑彦,苏文辉,含Co的氧离子-电子混合导体的热还原现象与机制,2006年固态离子学会议论文
    90 G.Vh. Kostogloudis, P. Fertis and Ch. Ftikos,“The Perovskite Oxide System Pr1-xSrxCo1-yMnyO3-δ: Crystal Structrue and Thermal Expansion,”J. Eur. Ceram. Soc. 1998, 18:2209~2215
    91 A.L. Shaula, V.V. Kharton, N. P. Vyshatko, E.V. Tsipis, M.V. Patrakeev, F.M.B. Marques and J.R. Frade. Oxygen Ionic Transport in SrFe1-yAlyO3-δand Sr1-xCaxFe0.5Al0.5O3-δCeramics. J. Eur. Ceram. Soc. 2005, 25:489~499
    92张国光,刘卫,谢津桥,陈初升,彭定坤. SrFe1.5-xCoxOy混合导体的制备及氧化扩散研究.硅酸盐学报. 2000, 28:20~24
    93 K. Huang, J.B. Goodenough,“Oxygen Through Cobalt-Containing Perovskites: Surface Oxygen Exchange vs. Lattice Oxygen Diffusion. J. Electrochem. Soc. 2001, 148:E203~E214
    94 K.F.Chen, Z. Lü, N. Ai, X.Q.Huang, Y.H.Zhang, X.S.Xin, R.B.Zhu, W.H. Su. Development of Yttria-Stabilized Zirconia Thin Films Via Slurry Spin Coating for Intermediate-to-Low Temperature Solid Oxide Fuel Cells. Journal of Power Sources. 2006, 160:436~438
    95 Ho-Chieh Yu, Feng Zhao, Anil V. Virkar, Kuan-Zong Fung. Eletrochemical Characterization and Performance Evluation of Intermediate Temperature Solid Oxide Fuel Cell. Journal of Power Source. 2005, 152:22~26
    96 T. Ishihara, T. kudo, H. Matsuda, Y. Takita, Doped PrMnO3 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation. J. Electrochem. Soc. 1995, 142:1519~1524
    97 S. Kim, S. Wang, X. Chen, Y.L. Yang, N. Wu, A. Ignatiev, A.J. Jacobson, B. Abeles, Oxygen Surface Exchange in Mixed Ionic Electronic Condutors: Application to La0.5Sr0.5Fe0.8Ga0.2O3-δ. J. Electrochem. Soc. 2000, 147:2398~2406
    98 T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada, T. Kato. Oxygen Reduction Sites and Diffusion Paths at La0.9Sr0.1MnO3?x/Yttria-Stabilized Zirconia Interface for Different Cathodic Overvoltages by Secondary-Ion Mass Spectrometry. Solid State Ionics. 2000, 127:55~65
    99 G.ch. Kostogloudis, Ch. Ftikos. Crystal Structure, Thermal Expansion and Electrical Conductivity of Pr1-xSrxCo0.2Fe0.8O3-δ(0≤x≤0.5). Solid State Ionics. 2000, 135:537~541
    100 Y.S. Wang, H.W. Nie, S.R. Wang, T.L. Wen, U. Guth, V. Valshook. A2-.αAα'BO4-Type Oxide as Cathode Materials for IT-SOFCs (A=Pr, Sm; A'= Sr; B=Fe, Co). Mater, Lett. 2006, 60:1174~1178
    101 Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Ion, Y. Esaki. Ln1-xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the Cathode Material for Solid Oxide Fuel Cells. Solid State Ionics. 1997, 118:187~194
    102 S. P. Jiang, J. G. Love, J. P. Zhang, M. Hoang, Y. Ramprakash, A. E. Hughes, S. P. S. Badwal. The Electrochemical Performance ofLSM/Zirconia-Yttria Interface as a Function of A-Site Non-Stoichiometry and Cathode Current Treatment. Solid State Ionics. 1999, 121:1~10
    103 G. Ch. Kostogloudis, Ch. Ftikos, A. Ahmad-Khanlou, A. Naoumidis, D. Stover. Chemical Compatibility of Alternative Peroveskite Oxide SOFC Cathodes with Doped Lanthnum Gallate Solid Electrolyte. Solid State Ionics. 2000, 134:127~138
    104 R. Merkle, J. H. V. J. Brabers, H. U. Habermeier, J. Maier. Thermogravimetric Investigation of the Relation between Oxygen Stoichimetry, Temperature and Oxygen Partial Pressure in Nd1-xCaxMnO3+δPerovskites (x≈0.5) Journal of Physics and Chemistry of Solids. 2003, 64:785~791
    105 S. P. S. Badwal, S. P. Jiang, J. Love, J. Nowotny, M. Rekas, E. R. Vance. A Manometric Method for the Determination of Chemical Diffusion in Perovskite-type Cathode Material of the Solid Oxide Fuel Cell. Ceramics International. 2001, 27:431~441
    106 D. Y. Lee, J. H. Han, Y. S. Chun, R. H. Song, D. R. Shin. Preparation and Characterization of Strontium and Magnesium Doped Lanthanum Gallates as the Electrolyte for IT-SOFC. Journal of Power Source. 2007, 166:34~40
    107 S. Tanasescu, N. D. Totir, D. I. Marchidan. Thermodynamic Properties of Some Peroveskite Type Oxides Used as SOFC Cathode Materials. Solid State Ionics. 1999, 119:311~315
    108 K. Xie, Q. L. Ma, B. Lin, Y. Z. Jiang, J. F. Gao, X. Q. Liu, G. Y. Meng. An Ammonia Fuelled SOFC with a BaCe0.9Nd0.1O3?δThin Electrolyte Prepared with A Suspension Spray. Journal of Power Source. 2007, 170:38~41
    109 S. Z. Wang, Y. Jiang, Y. H. Zhang, J. W. Yan, W. Z. Li. Promoting Effect of YSZ on the Electromical Performance of YSZ+LSM Composite Electrodes. Solid State Ionics. 1998, 113-115:291~303
    110 J. D. Kim, G. D. Kin, J. W. Moon, Y. I. Park, W. H. Lee, K. Kobayashi, M. Nagai, C. E. Kim. Characterization of LSM-YSZ Composite Electrode by AC Impedance Spectroscopy. Solid State Ionics. 2001, 143:379~389
    111 Z. W. Wang, M. J. Cheng, Y. L. Dong, M. Zhang, H. M. Zhang. Investigation of LSM1.1-ScSZ Composite Cathodes for Anode-Supported Solid Oxide Fuel Cells. Solid State Ionics, 2005, 176:2555~2561
    112 Z. V. Marinkovic, L. Mancic, J. F. Cribier, S. Ohara, T. Fukui, O. Milosevic. Nature of Structural Changes in LSM-YSZ Nanocomposite Material During Thermal Treatments. Materials Science and Engineering. 2004, A 375-377:615~619
    113 K. Kakinuma, K. Yamakawa, S. Hasunuma, H. Yamamura, T. Atake. Electrical Conductivity of (Ba0.3Sr0.2La0.5)(Ln1-xFex)O3-δ. Solid State Ionics. 2006, 177:1317~1322
    114 N. Dasgupta, R. Krishnamoorthy, K. Thomas Jacob. Crystal Structure, Thermal Expansion and Electrical Conductivity of Nd0.7Sr0.3Fe1-xCoxO3 (0≤x≤0.8). Material Science and Engineering. 2002, B90:278~286
    115 H. C. Yu, K. Z. Fung. Electrode Properties of La1-xSrxCuO2.5-δas New Cathode Materials for Intermediate Temeperature SOFCs. Journal of Power Source. 2004, 133:162~168
    116 L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda. Ln1-xSrxCo1-yFeyO3-δ(Ln=Pr, Nd, Gd; x=0.2, 0.3) for the Electrodes of Solid Oxide Fuel Cells. Solid State Ionics. 2003, 158:55~65
    117 A. A. Yaremchenko, M. V. Patrakeev, V. V. Kharton, F. M. B. Marques, I. A. Leonidov, V. L. Kozhevnikov. Oxygen Ionic and Electronic Conductivity of La0.3Sr0.7Fe(Al) O3-δPerovskites. Solid State Ionics. 2004, 6:357~366
    118 W. Liu, G. G. Zhang, S. Xie, C. S. Chen, G. Y. Meng, D. K. Peng. Electrical Conduction and Oxygen Transport in SrFeCo0.5Ox Oxide Membranes. Solid State Ionics. 2000, 135:727~730
    119 M. Mori, Y. Hiei, N. M. Sammes. Sintering Behavior and Mechanism of Sr-Doped Lanthanum Chromites with A-Site Excess Composition in Air. Solid State Ionics. 1999, 123:103~111
    120 F. Qiang, K. N. Sun, N. Q. Zhang, X. D. Zhu, S. R. Le, D. R. Zhou. Characterization of Electrical Properties of GDC Doped A-Site Deficient LSCF Based Composite Cathode Using Impedance Spectroscopy. Journal of Power Sources. 2007, 168:338~345
    121 Peng Ranran, Wu Yan, Yang Lizhai, Mao Zongqiang, Electrochemical Peoperties of Intermediate-Temperature SOFCs Based on Proton Conducting Sm-Doped BaCeO3 Electrolyte Thin Film. Solid State Ionics. 2006, 177:389~393
    122 T. Ishihara, T. Yamada, H. Arikawa, H. Nishiguchi, Y. Takita. Mixed Electronic-Oxide Ionic Conductivity and Oxygen Permeating Property of Fe-, Co- or Ni-Doped LaGaO3 Perovskite Oxide. Solid State Ionics. 2000, 135:631~636
    123 Q. Li, H. Zhao, L. H. Huo, L. P. Sun, X. L. Cheng, J. C. Grenier. Electrode Properties of Sr Doped La2CuO4 as New Cathode Material for Intermediate-Temperature SOFCs. Electrochemistry Communications. 2007, 9:1508~1512
    124 E. Suda, B. Pacaud, M. Mori. Sintering Characteristics, Electrical Conductivity and Thermal Properties of La-Doped Ceria Powders. Journal of Alloys and Compounds. 2006, 408-412:1161~1164
    125 Z.P. shao, G. Xiong, J. Tong, H. Dong, W. Yang, Ba Effect in Doped Sr (Co0.8Fe0.2) O3-δon the Phase Structure and Oxygen Permeation Properties of the Dense Ceramic Membranes. Sep. Purif. Technol. 2001, 25:419~429
    126 A. Closset, S. Diethelm, K. Nisancioglu, J. V. Herle, A. J. M. Evoy. Study of Oxygen Exchange and Transport in Mixed Conducting Electroceramics. Journal of the European Cermic Society. 1999, 19:843~846
    127 Katsuyoshi Kakinuma, Shingo Machida, Tooru Arisaka, Hiroshi Yamamura, Tooru Atake. Cathode Characteristic of (La0.6Sr0.4)(Mn1-xFex)O3-δfor a Solid Oxide Fuel Cell with a (Ba0.3Sr0.2La0.5)InO2.75 Electrolyte. Solid State Ionics. 2005, 176:2405~2410
    128 K. Kammer. Studies of Fe-Co Based Perovskite Cathodes with Different A-Site Cations. Solid State Ionics. 2006, 177:1047~1051
    129 H. W. Nie, T. L. Wen, S. R. Wang, Y. S. Wang, U. Guth, V. Vashook. Preparation, Thermal Expansion, Chemical Compatibility, Electrical Conductivity and Polarization of A2?αA′αMO4 (A=Pr, Sm; A′=Sr; M=Mn, Ni;α=0.3, 0.6) as a New Cathode for SOFC. Solid State Ionics. 2006, 177:2093~2097
    130 S. Hashimoto, K. Kammer, P. H. Larsen, F. W. Poulsen, M. Mogensen. A Study of Pr0.7Sr0.3Fe1-xNixO3-δas a Cathode Material for SOFCs with Intermediate Operating Temperature. Solid State Ionics. 2005, 176:1013~1020
    131 D. Kuscer, J. Holc, M. Hrovat, D. Kolar. Correlation between the DefectStructure, Conductivity and Chemical Stability of La1-ySryFe1-xAlxO3-δCathodes for SOFC. Journal of the European Ceramic Society. 2001, 21:1817~1820
    132 K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya. An (La, Sr)(Co, Cu) O3-δCathode for Reduced Temperature SOFCs. Solid State Ionics. 2002, 148:545~549
    133 X. L. Zhou, M. X. Zhu, F. J. Deng, G. Y. Meng, X. Q. Liu. Electrical Properties, Sintering and Thermal Expansion Behavior of Composite Ceramic Interconnecting Materials, La0.7Ca0.3CrO3?δ/Y0.2Ce0.8O1.9 for SOFCs. Acta Materialia. 2007, 55:2113~2118
    134 H. C. Yu, K. Z. Fung. La1-xSrxCuO2.5-δas New Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. Materials Research Bulletin. 2003, 38:231~239
    135 Q. Li, Y. Fan, H. Zhao, L. P. Sun, L. H. Huo. Preparation and Electrochemical Properties of a Sm2?xSrxNiO4 Cathode for an IT-SOFC. Journal of Power Source. 2007, 167:64~68
    136刘艳微,含钴燃料电池阴极材料的电导弛豫研究,哈尔滨工业大学硕士学位论文,2006:21~27
    137 D. Waller, J. A. Lane, J. A. Kilner, B. C. H. Steele. The Effect of Thermal Treatment on the Resistance of LSCF Electrode on Gadolinia Doped Ceria Electrolytes. Solid State Ionics. 1996, 86-88:767~772
    138 K. Sasaki, J. Tamura, H. Hosoda, T. N. Lan, K. Yasumoto, M. Dokiya. Pt-Perovskite Cermet Cathode for Reduced-Temperature SOFCs. Solid State Ionics. 2002, 148:551~555

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700